

Nonlinear vibration analysis of three supported nanobeam based on nonlocal elasticity theory

Burak Emre Yapanmış^{1,2}*^(D), Süleyman Murat Bağdatlı¹^(D), Necla Togun³^(D)

¹Department of Mechanical Engineering, Faculty of Engineering, Manisa Celal Bayar University, 45140, Manisa, Türkiye ²Department of Machine and Steel Technology, Aliağa Vocational and Training School, Ege University, 35800, İzmir, Türkiye ³Department of Mechanical Engineering, Faculty of Engineering, Gaziantep University, 27310, Gaziantep, Türkiye

Highlights:

Graphical/Tabular Abstract

- Modeling of three supported nanobeams according to nonlocal elasticity theory
- Examining the effect of different boundary conditions and the second support position on the nanobeam
- Examination of frequency response curves and effects of different modes

Keywords:

- Nanobeam
- · Nonlocal elasticity theory
- Nonlinear vibration
- · Perturbation theory

Article Info:

Research Article Received: 03.05.2023 Accepted: 30.12.2023

DOI:

10.17341/gazimmfd.1291811

Correspondence:

Author: Burak Emre Yapanmış e-mail: burak.emre.yapanmis@ ege.edu.tr phone: +90 232 616 0671 The unique properties of nano elements like nanobeam, nanoplate, and nanoshell have been focused on by scientific people. From that point of view, the nonlinear behavior of three supported nanobeams is investigated in this paper numerically. Linear natural frequencies were calculated; and then, nonlinear natural frequencies were found thanks to nonlinear correction terms. Nonlinear natural frequencies versus amplitude and nonlinear frequency response curves are plotted to clarify the nonlinear behavior. Nonlocal parameters, second support position and different modes effects are examined comprehensively. In addition, the different first and last support types are investigated as it is shown in Figure A.

Figure A. First mode nonlinear frequency response curve for different boundary conditions and $\gamma = 0.3$, $\eta = 0.1$ (S-S-C (---), C-S-S (---), S-S-S (-.), C-S-C (---))

Purpose: Investigation of linear and nonlinear vibration based on the supported positions, the effect of nonlocal parameters, different end types and mode effects on three supported nanobeams.

Theory and Methods: Eringen's nonlocal elasticity theory is used for modelling of nanobeam. Hamilton's principle and perturbation methods are performed to obtained linear and nonlinear governing equation.

Results: The natural frequency values decrease with the increase of the nonlocal coefficient. As the middle support moves away from starting location of the nanobeam, the natural frequency values increase. he nanobeam which has clamped-clamped end type has the higher natural frequency and nonlinear correction terms.

Conclusion: In the present study, the linear and nonlinear solutions of three supported nanobeams have been researched. The supported positions, different modes and the effect of nonlocal parameter values have been a focus in solving the nonlinear problem. In addition, different end types are investigated as clamped-simple, simple-clamped, clamped-clamped and simple-simple. The nonlinear correction term value rises as the nonlocal parameter increase. In solving the nonlinear problem, the positions of supports are of great importance. It enabled higher correction terms to be achieved by placing the second support in the middle position. Higher correction term values are found when modes increase. Therefore, higher nonlinear natural frequency values are obtained. When the frequency response graphs are examined, most wide the unstable region is obtained at the highest nonlocal parameter. Although the amplitudes decreased with the approach of the second support to the middle position, bending to the right increased. Especially this situation is seen more clearly in high nonlocal parameter values. It was observed that the bending right of the curves increased and the amplitudes of the frequency response curves decreased in high modes.

Yerel olmayan elastisite teorisine göre üç mesnetli nano kirişin doğrusal olmayan titreşim davranışı

Burak Emre Yapanmış^{1,2}*¹⁰, Süleyman Murat Bağdatlı¹⁰, Necla Togun³

¹Manisa Celal Bayar Üniversitesi, Mühendislik Fakültesi, Makine Mühendisliği Bölümü, 45140, Muradiye, Manisa, Türkiye ²Ege Üniversitesi, Aliağa Meslek Yüksekokulu, Makine ve Metal Teknolojileri Bölümü, 35800, Aliağa, İzmir, Türkiye ³Gaziantep Üniversitesi, Mühendislik Fakültesi, Makine Mühendisliği Bölümü, 27310, Şehitkamil, Gaziantep, Türkiye

<u>Ö N E Ç I K A N L A R</u>

- Yerel olmayan elastisite teorisine göre üç mesnetli nano kirişin modellenmesi
- Farklı sınır şartı ve orta kısımda yer alan mesnet konumunun nano kirişteki etkisinin incelenmesi
- Farklı modların frekans tepki eğrilerinin ve etkilerinin irdelenmesi

Makale Bilgileri	ÖZ
Araștırma Makalesi	Nano ölçekli cihazların önemi her geçen gün artmaktadır. Bu nedenle nano elektromekanik yapılarda nano
Geliş: 03.05.2023	kiriş, nano levha, nano çubuk vb. nano yapılar son zamanlarda mühendislerin odak noktası olmuştur. Bu
Kabul: 30.12.2023	noktadan hareketle, sunulan çalışmada üç mesnetli nano kirişin doğrusal olmayan titreşim davranışı sayısal olarak incelenmiştir. İlk olarak doğrusal doğal frekanslar hesaplanmış ve ardından doğrusal olmayan
DOI:	düzeltme terimleri sayesinde doğrusal olmayan doğal frekanslar bulunmuştur. Doğrusal olmayan davranışı
10.17341/gazimmfd.1291811	açıklığa kavuşturmak için genliğe bağlı doğrusal olmayan doğal frekans değişim grafikleri ve doğrusal olmayan frekans tepki eğrileri cizilmistir. Yerel olmayan parametre, ikinci mesnet konumu ve farklı mod
Anahtar Kelimeler:	etkileri kapsamlı bir şekilde incelenmiştir. Ayrıca farklı ilk ve son mesnet türleri irdelenmiştir. Yerel
Doğrusal olmayan titreşim, nano kiriş,	olmayan parametrenin ve ortadaki mesnet konumunun nano kiriş için büyük önem taşıdığı gösterilmiştir. Söz konusu durum yüksek modlarda daha net bir şekilde görülmüştür.
pertürbasyon teorisi,	
yerel olmayan elastisite	
teorisi	

Nonlinear vibration analysis of three supported nanobeam based on nonlocal elasticity theory

HIGHLIGHTS

- Modeling of three supported nanobeams according to nonlocal elasticity theory
- Examining the effect of different boundary conditions and the second support position on the nanobeam
- Examination of frequency response curves and effects of different modes

Article Info	ABSTRACT
Research Article	The importance of nanoscale devices is increasing day by day. Therefore, nanobeams, nanoplates, nanorods
Received: 03.05.2023	have been the focus of engineers in nanoelectromechanical structures. From that point of view, the nonlinear
Accepted: 30.12.2023	behaviour of three supported nanobeams is investigated in this paper numerically. Firstly, linear natural frequencies were calculated, and then nonlinear natural frequencies were found thanks to nonlinear
DOI:	correction terms. Nonlinear natural frequencies versus amplitude and nonlinear frequency response curves
10.17341/gazimmfd.1291811	are plotted to clarify the nonlinear behaviour. Nonlocal parameters, second support position and different modes effects are examined comprehensively. In addition, the different first and last support types are
Keywords:	investigated. It is shown that nonlocal parameters and second support position have great importance for
Nanobeam,	nanobeam. The glorious effect is obtained highest modes.

nonlinear vibration, nonlocal elasticity theory, perturbation theory

^{*}Sorumlu Yazar/Yazarlar / Corresponding Author/Authors : *burak.emre.yapanmis@ege.edu.tr, murat.bagdatli@cbu.edu.tr, nkara@gantep.edu.tr / Tel: +90 232 616 0671

1. Giriş (Introduction)

Nano elektromekanik sistemlerin popülaritesi, küçük boyutlarından dolayı son birkaç on yılda oldukça artmıştır. Virüs, kanser gibi hastalıkların teşhisinde kullanılan biyosensörler, gaz dedektörleri, basınç sensörleri, jiroskobik sensörler gibi yapılarda NEMSler günümüzde sıklıkla kullanılmaktadır [1-3]. Benzersiz özellikleri nedeniyle bilim insanları nano kiriş [4, 5], nano plaka [6, 7], nano kabuk [8, 9] gibi nano elemanlar üzerinde oldukça yoğun teorik çalışmalar yapmaktadır. Nano kirişler nano elektro mekanik sistemlerde kullanım amaçlarına göre potansiyel enerji depolayıcı ve rezonatör amacıyla görev alan bir sürekli mekanik sistemlerden birisidir. Nano kirişlere mesnet eklenmesi ile mesnetsiz durumlara göre modlarında öteleme meydana gelmektedir. Başka bir değişle, nano kirişlerin ortadan mesnetli olmasıyla elde edilen modlar ortadan mesnetsiz durumların daha yüksek modlarına denk gelmektedir. Mesnetli durumlar yapıyı rijitleştirerek genlikleri düşürüp mesnet üzerinde frekans kaydırmaya sebep olmaktadır [10].

Klasik elastisite teorisi gerilmenin uygulanan noktadaki bir gerinim fonksiyonu olduğu kabulüne dayanır. Bu olgu gerilmenin malzemelerin iç özelliklerinden bağımsız olduğunu gösterir. Bu durum klasik teorinin boyut etkisini yakalayamadığının bir göstergesidir. Bu nedenle Eringen tarafından yerel olmayan elastisite teorisi geliştirilmiştir [11]. Yerel olmayan elastisite teorisine göre bir noktaya uygulanan gerilme o noktanın değil, gerilme uygulanan noktaya etki eden bölgenin ağırlıklı bir fonksiyonudur. Bu teorinin kısa ve uygulanabilir olmasından dolayı birçok bilim insanının ilgisini cektiği literatürde görülmektedir. Bu bölümde verel olmavan elastisite teorisi ile ilgili bazı önemli çalışmalar özetlenmiştir. Khaniki [12] Eringen'in iki fazlı yerel ve yerel olmayan integral modelini kullanarak nano kirişin titreşim davranışı üzerine çalışmıştır. Farklı sınır şartları, yerel olmayan parametre ve elastik yay parametrelerinin nano kiriş üzerindeki etkilerini incelemiştir. Polit [13] Eringen'in yerel olmayan teorisini kullanarak eğrisel nano kirişlerin serbest ve zorlamalı titreşim davranışını incelemiştir. Eğrilik açısı, uzunluk etkisi ve kalınlık oranı gibi farklı değişken parametrelere odaklanmıştır. Şimşek [14] basit-basit, ankastre-ankastre ve ankastrebasit mesnetli Euler-Bernoulli nano kirişin serbest titreşim davranışı hakkında çalışmıştır. Farklı sınır koşullarının ve yerel olmayan parametrelerin frekans oranı üzerindeki etkisini araştırmıştır. Wang ve Li [15] sönümlü ve sönümsüz etki altındaki nano kirişin doğrusal olmayan titreşim davranışları hakkında çalışmışlardır. Kaghazian vd. [16] yerel olmayan teoriyi kullanarak piezoelektrik nano kirişlerin serbest ve doğrusal titreşimini araştırmışlardır. Yerel olmayan parametre ve uygulanan gerilim etkisinin nano kiriş üzerindeki etkilerini incelemişlerdir. Reddy ve Pang [17] Euler-Bernoulli ve Timoshenko kiriş modellerine uygulanabilecek yerel olmayan bir teori geliştirmişlerdir. Yerel olmayan etkiyi, burkulma yükünü ve karbon nano tüpün doğal frekanslarını inceleyen sayısal bir çalışma gerçekleştirmişlerdir. Genel olarak, yerel olmayan ve kayma deformasyon parametreleri, bir karbon nanotüpünü homojen olarak dağılmış bir yük altında enine eğilme konusunda bir artışa neden olur; tek istisna, yerel olmayan parametrenin aslında enine eğilme miktarını azalttığı bir ankastre durumudur. Kayma deformasyonunun kiriş eğilmesi üzerindeki etkisi, iki uçtan ankastre bir kiriş için en belirgin olanıdır ve tam tersine, yerel olmayan parametre bu sınır koşulu için en az etkiye sahiptir. Burkulma durumu için, yerel olmayan ve kayma deformasyon parametreleri, düşünülen tüm sınır koşulları için burkulma yükünde bir azalmaya neden olur. Yerel olmayan ve kayma deformasyon parametrelerinin etkisi, iki uçtan ankastre bir kiriş için en belirgin olanı ve bir ankastre kiriş için en az anlamlı olanıdır. Serbest titresim analizi icin, verel olmayan ve kayma deformasyon parametreleri, tüm sınır koşulları için öz frekanslarda bir azalmaya neden olur. Yerel olmayan ve kayma deformasyon parametrelerinin etkisi, tüm durumlar için neredeyse aynıdır ve etkiler daha yüksek modlar için daha belirgin hale gelir. Hosseini vd. [18] farklı sınır koşullarına sahip fonksiyonel olarak derecelendirilmiş (FD) nano kirişleri yerel olmayan teoriyi kullanarak incelemişlerdir. Khorshidi ve Shariati [19] modifiye edilmiş gerilme çifti teorisine göre çatlaklı nano kirişin burkulma davranışını araştırmışlardır. Çatlak yoğunluğu, çatlak konumu ve kiriş uzunluğunun kalınlığına oranını incelemişlerdir. Çalışmalarında kiriş boyunun kalınlığa oranı arttıkça burkulma yükü değerinin önemli ölçüde arttığı belirtilmiştir. Ayrıca, çatlak nano kirişin orta noktasına yaklaştıkça burkulma yüklerinin sürekli olarak azaldığı vurgulanmıştır. Malik ve Das [20] yerel olmayan teoriye dayalı olarak dönen Euler-Bernoulli nano kirişi incelemişlerdir. Eksenel kuvvet, yerel olmayan parametre, dönme etkisi, kesit oranı gibi değişken parametreleri kapsamlı bir şekilde incelemişlerdir. Shaat vd. [21] bir ucu ankastre ve diğer ucu serbest olan nano kristal malzemeden yapılmış bir nano kiriş modellemişlerdir. Çatlak uzunluğunun, çatlak konumunun, kiriş malzemesi yapısının ve kiriş boyutunun çatlaklı kiriş titreşim özellikleri üzerindeki etkilerini gösteren parametrik bir çalışma yürütmüşlerdir. Chaht vd. [22] FD nano kirişlerin eğilme ve burkulma davranışlarını incelemişlerdir. Hareket denklemlerini ve sınır koşullarını, yerel olmayan parametre değerlerini kullanılarak potansiyel enerji yöntemi ile elde etmişlerdir. Farklı malzemelerin yerel olmayan parametre, en boy oranı, farklı malzemelerden yapılmış nano kirişin stabilite analizi yapmışlardır. Karami vd. [23] piezoelektrik sensör ve aktüatör ile entegre edilmiş gözenekli FD nano kirişin termal burkulma davranışını yerel olmayan yüksek mertebeden kesme deformasyon kiriş teorisine dayanarak incelemişlerdir. Sıcaklık dağılımı, elektrik voltajı, malzeme bileşimi, gözeneklilik, küçük ölçek etkisi, Ker zemin ve kiriş kalınlığı parametrelerinin FD nano kirişin termal burkulma üzerindeki etkilerini incelemişlerdir. Barretta vd. [24] yapmış oldukları çalışmada nano ölçekli kirişlerin burulma davranışını integral esneklik teorisine başvurarak incelemişlerdir. Önerilen yerel olmayan metodolojinin nano kirişler için etkili bir çözüm sağladığı vurgulanmıştır. Mollamahmutoğlu ve Mercan [25] modifiye edilmiş gerilme çifti teorisine dayalı farklı sınır koşullarına sahip FD Timoshenko mikro kirişlerinin serbest titreşim, eğilme ve burkulma davranışlarını analiz etmişlerdir. Akgöz ve Civalek [26] yüksek mertebeden süreklilik teorisini kullanarak gerinim gradyan teorisine dayanarak mikro çubukların boyuna titresim davranıslarını analiz etmislerdir. Calısmalarında uyguladıkları model ile klasik modele ait doğal frekansların yüksek modlar ve düşük narinlik oranları haricinde uyumlu olduğunu belirtmişlerdir. Akgöz ve Civalek [27] modifiye edilmiş gerinim gradyanı teorisi ile hiperbolik kayma deformasyon kiriş teorisine dayalı olarak yeni bir kiriş modeli geliştirmişlerdir. Çalışmalarında elastik bir ortamdaki basit mesnetli mikro kirişlerin statik eğilme ve burkulma davranışları incelemiştir. Numanoğlu vd. [28] farklı sınır koşullarına sahip nano kirişlerin boyuna serbest titreşim davranışlarını Eringen'in yerel olmayan teorisine dayanarak incelenmiştir. Trabelssi vd. [29] doğrusal elastik zemin üzerindeki nano kirisin zorlanmış ve serbest titreşim davranışlarını Eringen'in yerel olmayan elastisite teorisine göre incelemişlerdir. Analitik ve nümerik olarak çözdükleri kiriş denklemlerinin frekans tepki eğrilerini farklı sınır şartları, zemin katsayısı ve yerel olmayan parametreye göre elde etmişlerdir. Zhao vd. [30] Rayleigh nano ve mikro kirişi yerel olmayan elastisite teorisine göre modelleyerek termo-elastik dinamik analizini gerçekleştirmişlerdir. Karamanlı ve Vo [31] eğri nano kirişi sinüzoidal kiriş teorisi ile modelleyerek farklı en-boy oranlarının, sınır koşullarının ve kiriş yarıçapının serbest titreşim davranışına etkilerini incelemişlerdir. Nalbant vd. [32] kademeli nano kirişin doğrusal olmayan titreşim davranışını yerel olmayan elastisite teorisine göre incelemişlerdir. Kademe oranı ve konumunun doğrusal olmayan titreşim karakterine etkilerini açıklamışlardır. Uzun ve Yaylı [33] Eringen'in yerel olmayan elastisite teorisini kullanarak Pasternak

zemin üzerindeki fonksiyonel olarak derecelendirilmiş kirişin farklı sınır şartları altında eksenel stabilitesini incelemişlerdir. Nano kirişlerin modellenmesi için pek çok farklı kiriş modeli ve farklı teoriler mevcuttur. Bu nedenle Tablo 1'de literatürde kullanılan farklı teorilerin karşılaştırmalı çalışması sunulmuştur. Bu çalışmada, Eringen'in yerel olmayan teorisi kullanılarak Şekil 1'de gösterilmiş üç

Tablo 1. Mevcut çalışmanın uygulanan teorilere göre önceki çalışmalarla karşılaştırılmas	1
(Comparison of the current study with previous works according to applied theories)	

Referans	Kiriş Teorisi	Uygulanan Teori	Hareket Denklemlerinin Elde Edilmesi	Çözüm Yöntemi	Amaç
Kaghazian vd. ^[16]	Euler Bernoulli	Yerel olmayan elastisite teorisi	Hamilton prensibi	Galerkin ve diferansiyel dörtlü yöntem	Piezoelektrik nano kirişin doğrusal serbest titreşimi
Khorshidi ve Shariati ^[19]	Timoshenko	Modifiye edilmiş gerilme çifti teorisi	Minimum potansiyel enerji prensibi	Genelleştirilmiş dörtlü diferansiyel yöntem	Kritik burkulma yükü üzerinde uzunluk ölçeği, çatlak konumu ve çatlak şiddeti etkisi
Gholipour ve Ghayesh ^[34]	Euler Bernoulli	Yerel olmayan gerilme gradyan teorisi	Hamilton prensibi	Sonlu elemanlar yöntemi	FD nano kirişin dinamik analizi
Nalbant vd. ^[35]	Euler Bernoulli	Yerel olmayan elastisite teorisi Corilim	Hamilton prensibi	Çok ölçekli zaman pertürbasyon metodu	Tek kademeli nano kirişin doğrusal titreşim davranışı
Zhang vd. ^[36]	Timoshenko	kaynaklı yerel olmayan integral teorisi	Hamilton prensibi	Laplace dönüşüm tekniği	FD eğimli nano kirişin eğilme davranışı
Jalaei vd. ^[37]	Timoshenko	Yerel olmayan gerinim gradyan teorisi	Hamilton prensibi	Navier ve Bolotin tekniği	FD nano kirişin üzerinde termal ve manyetik etki
Arefi vd. ^[38]	Yüksek mertebeden kesme deformasyon kiriş teorisi	Yerel olmayan gerinim gradyan teorisi	Hamilton prensibi	Dörtlü diferansiyel yöntem	Pasternak zemin üzerine oturan sandviç nano kirişlerin titreşimi üzerine uygulanan voltaj ve sıcaklık etkisi
Abdelrahmana vd. ^[39]	Timoshenko	Yerel olmayan gerinim gradyan teorisi	Hamilton prensibi	Galerkin metodu	Porozite, kütle ataleti, yerel olmayan boyut parametresinin dinamik ve titreşim davranışlarına etkileri
Aria ve Friswell ^[40]	Timoshenko	Yerel olmayan elastisite teorisi	Hamilton prensibi	Sonlu elemanlar yöntemi	FD nano kirişin eğilme ve titreşim davranışının incelenmesi
Numanoğlu vd. ^[41]	Timoshenko	Yerel olmayan elastisite teorisi	Hamilton prensibi	Değişkenlerine ayırma ve sonlu elemanlar yöntemi	Nano kirişlerin termal etkiler altında serbest titreşim özelliklerinin incelenmesi
Mevcut Çalışma	Euler Bernoulli	Yerel olmayan elastisite teorisi	Hamilton prensibi	Çok ölçekli zaman pertürbasyon metodu	Üç mesnetli nano kirişin doğrusal ve doğrusal olmayan zorlamalı titreşimi

Şekil 1. Üç mesnetli nano kiriş görseli (Three-supported nanobeam)

mesnetli nano kirişlerin doğrusal ve doğrusal olmayan titreşim davranışları incelenmiştir. İkinci mesnet konumunun nano kirişin titreşim davranışı üzerindeki etkisi bu çalışmanın temel motivasyon kaynağı olmuştur. İkinci mesnet konumu ve yerel olmayan katsayının etkisini belirtmek için kapsamlı bir parametrik çalışma yapılmıştır. İlk ve son mesnet koşulları için basit-basit (B-B), basit-ankastre (B-A), ankastre-ankastre (A-A) ve ankastre-basit (A-B) gibi farklı türlerde sınır şartları seçilmiştir. Fakat ikinci mesnet her zaman basit (B) mesnet olarak modellenmiştir. Ek olarak, farklı modlar dikkate alınmıştır.

1.1. Yerel Olmayan Elastisite Teorisi (Nonlocal Elasticity Theory)

Nano yapıları modellemek için kullanılan farklı teoriler arasında yerel olmayan elastisite teorisi son yirmi yılda oldukça yaygın olarak uygulanmaktadır. Yerel olmayan elastisite teorisi sayesinde eğilme [42], burkulma [43] ve titreşim [44] gibi pek çok farklı mekanik davranış özelliği incelenebilir. Ayrıca, yerel olmayan elastisite teorisi, kiriş dışında levhalar, kabuklar, çubuklar vb. için de kullanılmaktadır. Yerel olmayan integral kurucu ilişkisi Eş. 1'de verilmiştir.

$$\sigma_{ij}(x) = \int_{V} H_{nl}(|x - x'|, \gamma) \sigma_{ij}^{l}(x') dV$$
⁽¹⁾

Burada, σ_{ij} yerel olmayan gerilme tensörünü ifade eder, H_{nl} yerel olmayan modüldür. |x - x'| x ve x' konumu arasındaki mesafeyi, γ yerel olmayan katsayıyı temsil eder ($\gamma = \frac{e_0 a}{l}$). e_0 malzeme sabiti, a iç karakteristik uzunluğu, l dış uzunluktur. $\sigma_{ij}^{l}(x')$ klasik gerilme, V hacimdir. Klasik gerilme Eş. 2'deki gibi olmaktadır.

$$\sigma_{ij}^{l}(x') = c_{ij}\varepsilon_{kl} \tag{2}$$

burada, ε_{ij} ve c_{ij} elastisite ve gerilme tensörleridir. Büyük dış karakteristik uzunlukları düşürmek için Kernel fonksiyonu Eş. 3'te sunulmuştur.

$$\lim_{\gamma \to 0} \left(\left| x - x' \right|, \gamma \right) = \delta\left(\left| x - x' \right| \right) \tag{3}$$

Eş. 1'de sunulan integrasyonel operasyon oldukça zordur. Bu nedenle, Eringen tarafından önerilen yerel olmayan operatör Eş. 4'teki gibidir.

$$L_{nl}\sigma_{ij} = c_{ij}\varepsilon_{kl} \tag{4}$$

Burada $L_{nl} = 1 - (e_0 a)^2 \nabla^2$ olarak ifade edilir. Yerel olmayan operatörde ∇ Laplasyen operatörünü temsil etmektedir.

2. Temel Hareket Denklemi (Fundamental Equation of Motion)

Bu bölümde, üç mesnetli nano kirişinin doğrusal ve doğrusal olmayan hareket denklemleri elde edilmiştir. Klasik teori, boyut etkisini verimli bir şekilde yakalayamamaktadır. Bu nedenle, nano kirişin modellenmesi için Eringen'in yerel olmayan elastisite teorisi kullanılmıştır. Hareket denklemi Hamilton Prensibi sayesinde oluşturulmuş olup elde edilen hareket denklemi boyutsuz forma dönüştürülmüştür. Son olarak, temel denklem doğrusal ve doğrusal olmayan olmak üzere ikiye ayrılmıştır.

Hamilton Prensibi kinetik ve potansiyel enerjinin varyasyonel bir ifadesidir [45-48]. Sistemin Lagrange'nı kullanılarak Hamilton prensibi uygulanmış ve hareket denklemleri elde edilmiştir. Hamilton ilkesinden elde edilen ana denklem Eş. 5'te gösterilmiştir.

$$\begin{cases} \frac{1}{2} \int_{0}^{x_{s}} \rho A \left(\frac{\partial w_{1}^{*}}{\partial t^{*}} \right)^{2} dx^{*} + \frac{1}{2} \int_{x_{s}}^{L} \rho A \left(\frac{\partial w_{2}^{*}}{\partial t^{*}} \right)^{2} dx^{*} \\ - \frac{1}{2} \int_{0}^{x_{s}} \left(EI \frac{\partial^{2} w_{1}^{*}}{\partial x^{*^{2}}} + (e_{0}a)^{2} N \frac{\partial^{2} w_{1}^{*}}{\partial x^{*^{2}}} \right) \frac{\partial^{2} w_{1}^{*}}{\partial x^{*^{2}}} dx^{*} \\ - (e_{0}a)^{2} \rho A \frac{\partial^{2} w_{1}^{*}}{\partial t^{*^{2}}} \int \frac{\partial^{2} w_{2}^{*}}{\partial x^{*^{2}}} dx^{*} \\ - \frac{1}{2} \int_{x_{s}}^{L} \left(EI \frac{\partial^{2} w_{2}^{*}}{\partial x^{*^{2}}} + (e_{0}a)^{2} N \frac{\partial^{2} w_{2}^{*}}{\partial x^{*^{2}}} \right) \frac{\partial^{2} w_{2}^{*}}{\partial x^{*^{2}}} dx^{*} \\ - \frac{1}{2} \int_{0}^{L} N \left(\frac{\partial w_{1}^{*}}{\partial x^{*}} \right)^{2} dx^{*} - \frac{1}{2} \int_{x_{s}}^{L} N \left(\frac{\partial w_{2}^{*}}{\partial x^{*}} \right)^{2} dx^{*} \end{bmatrix}$$

$$\tag{5}$$

Burada w_l ve w_2 her bölge için enine yer değiştirmeyi, E elastisite modülünü, I alan atalet momentini, e_0 malzeme sabitini, a karakteristik iç uzunluğu temsil etmektedir. Ayrıca, N eksenel kuvvet, ρ yoğunluk, A kesit alanı, L kiriş uzunluğu ve x_s ortadaki mesnetin konumudur. Eş. 5 düzenlendiğinde iki bölge için yeni hareket denklemleri Eş. 6 ve Eş. 7'deki gibidir;

$$-\rho A \frac{\partial^2 w_1^*}{\partial t^{*2}} - EI \frac{\partial^4 w_1^*}{\partial x^{*4}} - (e_0 a)^2 N \frac{\partial^4 w_1^*}{\partial x^{*4}} + (e_0 a)^2 \rho A \frac{\partial^4 w_1^*}{\partial t^{*2} \partial x^{*2}} + N \frac{\partial^2 w_1^*}{\partial x^{*2}} = 0$$
(6)

$$-\rho A \frac{\partial^2 w_2^*}{\partial t^{*2}} - EI \frac{\partial^4 w_2^*}{\partial x^{*4}} - (e_0 a)^2 N \frac{\partial^4 w_2^*}{\partial x^{*4}} + (e_0 a)^2 \rho A \frac{\partial^4 w_2^*}{\partial t^{*2} \partial x^{*2}} + N \frac{\partial^2 w_2^*}{\partial x^{*2}} = 0$$
(7)

Denklemlerdeki N terimi $N = \frac{EA}{2L} \int_{0}^{x} \left(\frac{\partial w_{1}^{*}}{\partial x^{*}}\right)^{2} dx^{*} + \frac{EA}{2L} \int_{x_{s}}^{L} \left(\frac{\partial w_{2}^{*}}{\partial x^{*}}\right)^{2} dx^{*}$

şeklinde ifade edilir. Denklemler malzeme ve boyutsal özelliklerden arındırılmak için boyutsuzlaştırma işlemine tabi tutulur. Konum, zaman ve yerel olmayan parametre terimleri

$$x = \frac{x^*}{L}, w_1 = \frac{w_1^*}{r}, w_2 = \frac{w_2^*}{r}, t = \frac{1}{L^2} \sqrt{\frac{EI}{\rho A}} t^*, \gamma = \frac{e_0 a}{L}, \eta = \frac{x_s}{L} \qquad \text{seklinde}$$

dönüştürülmüştür. Burada, r eğrilik yarıçapıdır. Sistemleri daha iyi temsil etmek için bir sönümleme terimi de dahil edilir ve bu sistem, korunumlu bir sistemden daha gerçekçi bir korunumlu olmayan sistem özelliklerine sahiptir [49]. μ pozitif bir sabittir. Bu nedenle, küçük viskoz sönümleme etkisini içerir [50]. Literatürdeki çoğu makalede (Pakdemirli ve Öz [49], Nayfeh [50], Nayfeh vd. [51], Ghadiri vd. [52], Öz ve Boyacı [53]) sönümleme ve zorlama terimi eklenmesi genellikle mertebe ayrımından sonra denklemlere eklenir. Eğer kuvvet ve sönümleme etkisi Bağdatlı vd. [54] ve Yapanmış [55] çalışmaları gibi eklenirse ve zaman integralinin varyasyonu uygulandıktan sonra, nano kirişin boyutsuz hareket denklemi Eş. 8 ve Eş. 9'daki gibi yazılır.

$$w_{1}^{i\nu} + \ddot{w}_{1} - \gamma^{2} \ddot{w}_{1}'' = \frac{1}{2} \begin{bmatrix} \int_{0}^{\eta} w_{1}^{j^{2}} dx \\ + \int_{\eta}^{1} w_{2}^{j^{2}} dx \end{bmatrix} \begin{bmatrix} w_{1}'' \\ -\gamma^{2} w_{1}^{i\nu} \end{bmatrix} + \overline{F} \cos(\Omega t) - 2\overline{\mu} \dot{w}_{1} \quad (8)$$

2451

$$w_{2}^{i\nu} + \ddot{w}_{2} - \gamma^{2} \ddot{w}_{2}^{\prime\prime} = \frac{1}{2} \begin{bmatrix} \eta & w_{1}^{\prime 2} dx \\ 0 & 0 \\ + \int_{\eta}^{1} w_{2}^{\prime 2} dx \end{bmatrix} \begin{bmatrix} w_{2}^{\prime\prime} \\ -\gamma^{2} w_{2} \dot{i}^{\nu} \end{bmatrix} + \overline{F} \cos(\Omega t) - 2 \overline{\mu} \dot{w}_{2} (9)$$

Boyutsuz hareket denklemleri yazarlar tarafından iyi bilinen nümerik bir yöntem olan pertürbasyon teorisi kullanılarak çözülecektir. Yönetici denklemlerin çözümü için pertürbasyon yöntemlerinden çok ölçekli metot kullanılmıştır. ε parametresi doğrusal olmayan terimlerin küçüklüğünü temsil etmek üzere doğrusal olmayan parametrelere eklenmiştir [56]. Doğrusal olmayan terimlerin ε mertebesinde ortaya çıkabilmesi için dönüşümler yapılmaktadır. Bu dönüşüm ile çözümlerin deplasmanlar için geçerli olduğu varsayılmıştır. Bulunan çözümler bize sistemin davranışı ve genliklerin kararlılığı hakkında önemli bilgiler vermektedir. Genliklerin arttığı bölgelerin tespiti, yüksek genlikler için çözümlerin tespitinden daha önemlidir [50]. Sönümün doğrusal olmayan terimler ile aynı mertebede ortaya çıkabilmesi için sönüm ifadesi $\bar{\mu} = \epsilon \mu$ şeklinde mertebelendirilmiştir. Pertürbasyon yöntemi uygulanmadan önce $w_1 = \sqrt{\varepsilon} y_1, w_2 = \sqrt{\varepsilon} y_2, \overline{F} = \varepsilon \sqrt{\varepsilon} F, \overline{\mu} = \varepsilon \mu$ şeklinde birtakım dönüşümler yapılmıştır. İki bölge için önerilen doğrusal yaya açılımı Eş. 10 ve Eş. 11'deki gibidir.

$$y_1 = y_{11} + \mathcal{E}y_{12} \tag{10}$$

$$y_2 = y_{21} + \mathcal{E}y_{22} \tag{11}$$

Yaya açılımlarının ana denklemlerde yerlerine yazılmasıyla doğrusal ve doğrusal olmayan hareket denklemleri elde edilmiştir. Ortadan mesnetli nano kirişin farklı sınır şartları Tablo 2'de sunulmuştur.

2.1. Doğrusal Bölüm (Linear Part)

Doğrusal doğal frekanslar doğrusal hareket denklemlerinden elde edilir. Pertürbasyon analizi ile elde edilmiş olan doğrusal hareket denklemleri Eş. 12 ve Eş. 13'te gösterilmiştir.

$$y^{i\nu}_{11} + D_0^2 y_{11} - \gamma^2 D_0^2 y_{11}'' = 0$$
⁽¹²⁾

$$y^{i\nu}{}_{21} + D_0^2 y_{21} - \gamma^2 D_0^2 y_{21}'' = 0$$
⁽¹³⁾

Doğrusal hareket denklemlerini çözebilmek amacıyla iki bölge için $y_{11} = \left[Ae^{i\omega T_0} + ke\right]Y_1(x)$ ve $y_{21} = \left[Ae^{i\omega T_0} + ke\right]Y_2(x)$ şeklinde çözüm önerisi yapılır. Burada *ke* kompleks eşlenik, ω doğrusal doğal frekans, *A* ise kompleks genliktir. Çözüm önerisi Eş. 12 ve Eş. 13'te yerlerine yazıldığında elde edilen yeni ifadeler Eş. 14 ve Eş. 15'te verilmiştir.

$$Y_1^{iv}(x) - \omega^2 Y_1(x) + \gamma^2 \omega^2 Y_1''(x) = 0$$
(14)

$$Y_2^{i\nu}(x) - \omega^2 Y_2(x) + \gamma^2 \omega^2 Y_2''(x) = 0$$
(15)

Dördüncü mertebeden karakteristik eşitlik, doğrusal homojen diferansiyel denklem olarak Eş. 16 ve Eş. 17'deki gibi olmaktadır.

$$Y_1(x) = c_1 e^{i\beta_1 x} + c_2 e^{i\beta_2 x} + c_3 e^{i\beta_3 x} + c_4 e^{i\beta_4 x}$$
(16)

$$Y_{2}(x) = x_{1}e^{i\lambda_{1}x} + x_{2}e^{i\lambda_{2}x} + x_{3}e^{i\lambda_{3}x} + x_{4}e^{i\lambda_{4}x}$$
(17)

2.1. Doğrusal Olmayan Bölüm (Non-Linear Part)

Doğrusal olmayan doğal frekanslar Eş. 18 ve Eş. 19'da verilen doğrusal olmayan hareket denklemleri aracılığıyla hesaplanabilmektedir.

$$y_{12}^{i\nu} + D_0^2 y_{12} - \gamma^2 D_0^2 y_{12}^{\prime\prime} = -2D_0 D_1 y_{11} + 2\gamma^2 D_0 D_1 y_{11}^{\prime\prime} + \frac{1}{2} \left[\int_0^{\eta} y_{11}^{\prime\prime}^2 dx + \int_{\eta}^1 y_{21}^{\prime\prime}^2 dx \right] \left[y_{11}^{\prime\prime} - \gamma^2 y_{11}^{i\nu} \right] + F \cos(\Omega t) - 2\mu \dot{y}_{11}$$
(18)

$$y^{jv}_{22} + D_0^2 y_{22} - \gamma^2 D_0^2 y''_{22} = -2D_0 D_1 y_{21} + 2\gamma^2 D_0 D_1 y''_{21} + \frac{1}{2} \left[\int_0^{\eta} {y'_{11}}^2 dx + \int_{\eta}^{1} {y'_{21}}^2 dx \right] \left[y''_{21} - \gamma^2 y^{jv}_{21} \right] + F \cos(\Omega t) - 2\mu \dot{y}_{21}$$
(19)

Doğrusal olmayan denklemleri çözebilmek için Eş. 20 ve Eş. 21'deki şekilde çözüm önerileri yapılmıştır.

$$y_{12} = \phi_1 e^{i\omega T_0} + W_1 + ke \tag{20}$$

$$y_{22} = \phi_2 e^{i\omega T_0} + W_2 + ke \tag{21}$$

Burada, ilk terimler seküler terimleri, ikinci terimler ise seküler olmayan terimleri ve *ke* ile belirtilen ifade ise kompleks eşleniği ifade etmektedir. Doğrusal ve doğrusal olmayan çözüm önerileri doğrusal olmayan hareket denklemlerinde yerlerine yazılarak çözülebilirlik şartı Eş. 22'deki şekilde elde edilir.

$$(2i\omega D_1 A + 2\mu i\omega A) + 2\gamma^2 i\omega D_1 A k_1 + \frac{3A^2 \overline{A}}{2} k_1 k_1 + \frac{3A^2 \overline{A} \gamma^2}{2} k_1 k_2 - \left(\frac{e^{i\sigma T_1}}{2}\right) f = 0$$
 (22)

Zorlama frekansı $\Omega = \omega + \varepsilon \sigma$ ifadesinde olduğu gibi doğal frekansa çok yakın olduğu varsayılmıştır. Eş. 22'de k_1 , k_2 ve f değerleri n=1,

$$\eta_0 = 0, \qquad \eta_2 = I \qquad \text{degerleri} \qquad \text{icin} \qquad k_1 = \sum_{m=0}^n \int_{\eta_m}^{\eta_{m+1}} Y'^2_{(m+1)}(x) dx ,$$

Tablo 2. Mesnetli nano kiriş için sınır şartları (Boundary conditions for supported nanobeam)

Birinci Mesnet		İkinci Mesnet	Üçüncü Mesnet	
Basit (B)	Ankastre (A)	Basit (B)	Basit (B)	Ankastre (A)
		$w_1(x_s,t)=0$		
$w_1(0,t) = 0$	$w_1(0,t) = 0$	$w_2(x_s,t)=0$	$w_2(L,t) = 0$	$w_2(L,t) = 0$
$w_{\mathrm{l}}''(0,t) = 0$	$w_1'(0,t) = 0$	$w_1'(x_s,t) = w_2'(x_s,t)$	$w_2''(L,t) = 0$	$w_2'(L,t) = 0$
		$w_1''(x_s,t) = w_2''(x_s,t)$		

$$k_2 = \sum_{m=0}^{n} \int_{\eta_m}^{\eta_{m+1}} Y_{(m+1)}^{n/2}(x) dx , \quad f = \sum_{m=0}^{n} \int_{\eta_m}^{\eta_{m+1}} FY_{(m+1)}(x) dx \text{ 'dir. Kompleks genlik}$$

A = $\frac{1}{2}ae^{i\theta}$ ifadesinde olduğu gibi yazılabilir. Burada, *a* gerçek genlik

ve θ ise faz ifadeleridir. Denklem gerçek ve sanal kısımlarına ayrılarak genlik faz modülasyon denklemleri Eş. 23 ve Eş. 24'te olduğu gibi elde edilir.

$$-\omega a \left(\sigma - D_1 \xi\right) - \omega \gamma^2 a \left(\sigma - D_1 \xi\right) k_1 + \frac{3a^3}{16} k_1 k_1 + \frac{3a^3 \gamma^2}{16} k_1 k_2 - \frac{1}{2} f \cos \xi = 0$$
(23)

$$\left(\omega D_1 a + \omega \mu a + \omega \gamma^2 D_1 a k_1\right) - \frac{1}{2} f \sin \xi = 0$$
⁽²⁴⁾

Burada, $\theta = \sigma T_1 + \xi$. Düzgün rejim hali için genlik faz modülasyon denklemleri aracılığıyla doğrusal olmayan doğal frekans Eş. 25'teki bulunmuştur.

$$\omega_{nl} = \omega + \frac{3a_0^2}{16\omega(1+\gamma^2k_1)} \left(k_1^2 + \gamma^2k_1k_2\right)$$
(25)

Doğrusal olmayan doğal frekans ifadesinde a_0 gerçek düzgün rejim genliğidir. Doğrusal olmama durumundan kaynaklanan düzeltme

terimi $\lambda = \frac{3}{16\omega(1+\gamma^2k_1)}(k_1^2+\gamma^2k_1k_2)$ olarak ifade edilir. Düzgün

rejim hali durumu için frekans ayar parametresi (σ) Eş. 26'da olduğu gibi elde edilmiştir.

$$\sigma = \left(\frac{1}{\omega(1+\gamma^2 k_1)}\right) \left[\frac{3a_0^2}{16} \left(k_1^2 + \gamma^2 k_2 k_1\right) \pm \frac{1}{a_0} \sqrt{\left[\frac{f}{2}\right]^2 - \left[\omega a_0 \mu\right]^2}\right]$$
(26)

3. Sonuçlar ve Tartışmalar (Results and Discussions)

Doğrusal ve doğrusal olmayan frekans değerleri tablolar ve grafikler halinde sunulmadan önce nano kirişler ile ilgili doğrulama çalışmaları Tablo 3'te verilmiştir. Basit mesnetli durumlara ait doğrusal doğal frekans değerleri ve birinci modlara ait doğrusal olmayan düzeltme terim değerleri Tablo 4'te gösterilmiştir.

 Tablo 3. B-B sınır şartlı nano kirişin doğrulaması

 (Verification of nanobeam with S-S boundary condition)

$(e_0 a)^2$	Mevcut Çalışma	Aydoğdu [4]	Ganapathi ve Polit [13]	Reddy [57]	Eltaher vd. [58]	Thai [59]
0	9,869	9,869	9,869	9,869	9,87	9,867
1	9,415	9,412	9,415	9,415	9,416	9,414
2	9,034	9,013	9,019	9,095	9,019	9,018
3	8,705	8,661	8,668	8,669	8,669	8,667
4	8,356	8,347	8,356	8,356	8,357	8,355
5	8,083	-	-	8,076	8,076	-

Tablo 3 incelendiğinde doğal frekans değerleri yerel olmayan parametre değerinin artmasıyla azalmaktadır. Tablo 4'te yerel olmayan parametrenin artmasıyla düzeltme teriminin arttığı görülmektedir. Ayrıca, ortadaki mesnet konumunun kiriş uç noktalarından uzaklaştırılması ile doğal frekans değerlerinin arttığı görülmektedir. Ortadaki mesnet konumunun düzeltme terimi üzerinde etkisini incelemek için ikinci mesnet başlangıç konumundan orta konuma doğru sistematik bir şekilde yer değiştirtilmiştir. İkinci mesnedin orta konuma doğru yaklaştırılmasıyla doğrusal olmayan düzeltme teriminin düzenli bir şekilde arttığı gözlenmiştir.

Tablo 4. B-B-B sınır şartlı nano kirişin doğrusal doğal frekansları ve birinci moda ait doğrusal olmayan düzeltme terimleri (The natural frequencies and nonlinear correction term of the first mod for S-S-S nanobeam)

γ=(), 1				
η	0,1	0,2	0,3	0,4	0,5
ω_1	16,766	19,748	23,870	29,316	33,427
ω_2	47,429	54,996	63,410	87,906	98,329
ωз	83,849	94,907	121,772	132,507	166,514
λ	2,228	2,877	4,022	6,131	8,742
$\gamma =$	0,3				
η	0,1	0,2	0,3	0,4	0,5
ω_1	11,976	13,475	15,305	17,326	18,501
ω_2	24,771	27,188	29,376	28,666	40,487
ωз	36,870	39,791	39,682	51,219	71,381
λ	4,101	5,400	7,629	11,630	15,795
$\gamma =$	0,5				
η	0,1	0,2	0,3	0,4	0,5
ω_1	8,499	9,360	10,366	11,413	11,974
ω_2	15,861	17,195	18,324	18,015	24,820
ωз	22,867	24,468	30,394	31,164	37,488
λ	6,489	8,537	12,011	18,214	25,405

Tablo 5'te farklı yerel olmayan parametre ve mesnet pozisyonlarına ait birinci, ikinci ve üçüncü modların doğrusal doğal frekans ve doğrusal olmayan düzeltme terimi değerleri verilmiştir. Yüksek modlarda daha yüksek doğrusal olmayan düzeltme terimi değerleri elde edildiği görülmektedir. Üç mesnetli nano kirişin ilk üç mod şekli Şekil 2'de verilmiştir. γ =0.4 ve ikinci mesnedin farklı konumlarına ait birinci mod şekillerinin grafikleri Şekil 3'te gösterilmiştir. Farklı yerel olmayan katsayılara ait üç mesnetli nano kirişin ilk mod şekillerinin grafikleri Şekil 4'te sunulmuştur.

Tablo 5. B-B-B mesnetli nano kirişin ilk üç doğrusal doğal frekansları ve düzeltme terimleri

(The first three natural frequencies and nonlinear correction terms for S-S-S supported nanobeam)

$\gamma = 0,1$								
	$\eta = 0, 1$	λ	$\eta = 0,3$	λ	$\eta = 0.5$	λ		
ω_1	16,766	2,228	23,870	4,022	33,427	8,742		
ω_2	47,429	11,247	63,410	21,427	98,329	45,331		
ωз	83,849	30,661	121,772	57,6319	166,514	133,489		
γ=	0,4							
	$\eta = 0, 1$	λ	η=0,3	λ	$\eta = 0,5$	λ		
ω_l	10,012	5,271	12,430	9,786	14,595	20,022		
ω_2	19,398	29,778	22,618	60,965	30,812	145,208		
ωз	28,272	87,651	37,721	178,215	46,714	506,709		

B-B-B mesnetli nano kirişin farklı yerel olmayan parametre, mesnet konumu ve mod şekillerine ait frekans tepki eğrileri ve doğrusal olmayan doğal frekans genlik grafikleri Şekil 5-Şekil 12'de gösterilmiştir. Yerel olmayan parametrenin 0.1 ve 0.4 değerleri için ikinci modlarına ait doğrusal olmayan doğal frekansın genliğe bağlı değişimi Şekil 4 ve Şekil 5'te sırasıyla gösterilmiştir. Şekil 6'da farklı yerel olmayan parametre değerleri için birinci modun doğrusal olmayan frekansın genliğe göre değişimi verilmiştir. η =0.1 ve γ =0.5 değerleri için farklı modlara ait doğrusal olmayan doğal frekansın genliğe bağlı değişimi Şekil 7'de çizilmiştir.

Şekil 2. η =0.2 ve γ =0.3 değerleri için üç mesnetli nano kirişin ilk üç mod şekli (*1. mod* (—), *2. mod* (· - ·), *3. mod* (- –)) (The first three mode shapes of the three supported nanobeams for η =0.2 and γ =0.3 (1st mode (—), 2nd mode (· - ·), 3rd mode (-–)))

Şekil 3. $\gamma = 0.4$ ve farklı η değerleri için üç mesnetli nano kirişin ilk mod şekilleri ($\eta = 0.2$ (--), $\eta = 0.3$ (--), $\eta = 0.4$ (--)) (The first mode shapes of the three supported nanobeams for $\gamma = 0.4$ and different η ($\eta = 0.2$ (--), $\eta = 0.3$ (--), $\eta = 0.4$ (--)))

Şekil 4. η =0.3 ve farklı γ değerleri için üç mesnetli nano kirişin ilk mod şekilleri (γ =0.1 (—), γ =0.3 (· - ·), γ =0.5 (– –)) (The first mode shapes of the three supported nanobeams for η =0.3 and different γ (γ =0.1 (—), γ =0.3 (· - ·), γ =0.5 (– –)))

Şekil 5. $\gamma=0.1$ ve farklı η değerleri için ikinci mod doğrusal olmayan doğal frekans-genlik değişim grafikleri ($\eta=0.1$ (…), $\eta=0.2$ (· - ·), $\eta=0.3$ (*), $\eta=0.4$ (- -), $\eta=0.5$ (—))

(The nonlinear frequency-changing graphs of the second mode for the different η and $\gamma=0.1$ ($\eta=0.1$ (\cdots), $\eta=0.2$ (\cdot - \cdot), $\eta=0.3$ (*), $\eta=0.4$ (-), $\eta=0.5$ (-)))

Şekil 6. $\gamma=0.4$ ve farklı η değerleri için ikinci mod doğrusal olmayan doğal frekans-genlik değişim grafikleri ($\eta=0.1$ (…), $\eta=0.2$ (· - ·), $\eta=0.3$ (*), $\eta=0.4$ (- -), $\eta=0.5$ (—))

(The nonlinear frequency-changing graphs of the second mode for the different η and $\gamma=0.4$ ($\eta=0.1$ (\cdots), $\eta=0.3$ (*), $\eta=0.4$ (--), $\eta=0.5$ (--)))

Şekil 7. η =0.1 ve farklı γ değerleri için birinci mod doğrusal olmayan doğal frekans-genlik değişim grafikleri (γ =0.1 (—), γ =0.2 (– –), γ =0.3 (*), γ =0.4 (• – •), γ =0.5 (…))

(The nonlinear frequency-changing graphs of the first mode for γ and η =0.1 (γ =0.1 (-), γ =0.2 (-), γ =0.3 (*), γ =0.4 (- -), γ =0.5 (\cdots)))

Şekil 5 ve 6'da ikinci mesnet orta konuma yaklaştığında doğrusal olmayan etki net bir şekilde görülmektedir. Maksimum değişim oranı η 'nın 0.5 olduğu değerde görülmektedir. Şekil 7'de doğrusal olmayan doğal frekansın genliğe bağlı değişimi yerel olmayan parametrenin artmasıyla arttığı gözlenmiştir. Şekil 8'de en yüksek değişim oranı üçüncü mod şekline ait olduğu görülmektedir. Şekil 9-Şekil 12 arasında aynı parametrelere ait doğrusal olmayan frekans tepki eğrilerine yer verilmiştir. Şekil 9 ve Şekil 10'da ikinci mesnedin farklı pozisyonlarına ait frekans tepki eğrileri çizilmiştir. Yerel olmayan parametre sırasıyla 0.1 ve 0.4 olarak belirlenmiştir. Belirtilen iki grafikteki tüm eğriler için maksimum nokta literatürde olduğu gibi ayar parametresinin sağ tarafında elde edilmiştir [60, 61]. Bu duruma sertleştirici etki adı verilmektedir. En geniş stabil olmayan bölge ikinci mesnedin 0.5 olduğu değerde olduğu görülmüştür Bu durum yerel olmayan parametrenin 0.4 olduğu değerde daha belirgindir. Şekil 11'de ikinci mesnedin 0.1 olduğu değer için farklı yerel olmayan parametre değerlerine ait frekans tepki eğrileri karşılaştırılmıştır. Yerel olmayan parametrenin artmasıyla eğrilerdeki sağa yatıklığın arttığı görülmekte fakat aynı ayar parametresine ait değerlere bakıldığında genliklerde düşüş görülmektedir. Farklı modlara ait frekans tepki eğrileri Şekil 12'de verilmiştir. Grafikler incelendiğinde modlardaki artışın sağa yatıklığı arttırmasına karşın genlikleri düşürdüğü görülmüştür.

3.1. Mesnet tiplerinin karşılaştırılması (Comparison of Support type)

Bu bölümde üç mesnetli nano kiriş için farklı mesnet türlerinin karşılaştırılması yapılmıştır. İkinci mesnet olan ortadaki mesnet basit mesnet olarak belirlenmiş uçlardaki birinci ve üçüncü mesnetler ise basit-ankastre, ankastre-basit ve ankastre-ankastre olarak seçilmiştir. Belirtilen mesnet konumlarına ait doğal frekanslar ve doğrusal olmayan düzeltme terimleri Tablo 6-Tablo 11'de verilmiştir. Tablolar incelendiğinde ilk ve son mesnedin ankastre sınır şartlarına sahip olan kirişin daha yüksek doğal frekans ve düzeltme terimlerine sahip olduğu anlaşılmaktadır.

Şekil 13-Şekil 16'te farklı yerel olmayan parametre ve ortadaki mesnet konumlarına ait değişik mesnet türlerinin karşılaştırma grafikleri sunulmuştur. Frekans tepki eğrilerinin karşılaştırmaları Şekil 13 ve Şekil 15'te verilmiş doğrusal olmayan doğal frekans değerlerinin karşılaştırmalı değişim grafikleri Şekil 14 ve Şekil 16'da gösterilmiştir. Frekans tepki grafikleri incelendiğinde ankastreankastre ve basit-ankastre uç türlerine sahip nano kiriş grafiklerinin stabil olmayan bölgesini daha dar olduğu ve doğrusal olmayan doğal frekanslardaki değişim oranlarının nispeten daha düşük olduğu görülmektedir.

Şekil 8. η =0.1 ve γ =0.3 değerleri için farklı modların doğrusal olmayan doğal frekans-genlik değişim grafikleri (1. mod (—), 2. mod (– –), 3. mod (…)) (The nonlinear frequency-changing graphs of the different modes for η =0.1 and γ =0.3 (1st mode (—), 2nd mode ((--), 3rd mode ((--))))

Sekil 9. $\gamma=0.1$ ve farkli η değerleri için ikinci mod doğrusal olmayan frekans tepki eğrileri ($\eta=0.1$ (...), $\eta=0.2$ (...), $\eta=0.3$ (*), $\eta=0.4$ (...), $\eta=0.5$ (...)) (The nonlinear frequency response curve of the second mode for the different η and $\gamma=0.1$ ($\eta=0.1$ (...), $\eta=0.2$ (...), $\eta=0.3$ (*), $\eta=0.4$ (...), $\eta=0.5$ (...))

Sekil 10. $\gamma=0.4$ ve farkli η değerleri için ikinci mod doğrusal olmayan frekans tepki eğrileri ($\eta=0.1$ (…), $\eta=0.2$ (· - ·), $\eta=0.3$ (*), $\eta=0.4$ (– –), $\eta=0.5$ (—)) (The nonlinear frequency response curve of the second mode for the different support position and $\gamma=0.4$ ($\eta=0.1$ (…), $\eta=0.2$ (· - ·), $\eta=0.3$ (*), $\eta=0.4$ (– –), $\eta=0.5$ (—)))

Şekil 11. η =0.1 ve farklı γ değerleri için birinci mod doğrusal olmayan frekans tepki eğrileri (γ =0.1 (--), γ =0.2 (--), γ =0.3 (*), γ =0.4 (--), γ =0.5 (···))(The nonlinear frequency response curve of first mode for the different γ and η =0.1 (γ =0.1 (--), γ =0.2 (--), γ =0.3 (*), γ =0.4 (·-·), γ =0.5 (···)))

Şekil 12. $\eta = 0.1$ ve $\gamma = 0.3$ değerleri için farklı modların doğrusal olmayan frekans tepki eğrileri (*1. mod* (--), *2. mod* (--), *3. mod* (...)) (The nonlinear frequency response curve of the different modes for $\eta = 0.1$ and $\gamma = 0.3$ ($I^{st} mode$ (--), $2^{nd} mode$ (--))))

Tablo 6. B-B-A mesnet tipine sahip nano kirişin doğal frekansları ve ilk modun doğrusal olmayan düzeltme terimleri

(Natural frequencies of nanobeam with S-S-C supported type, and nonlinear correction terms of the first mod)

	η	ω_1	ω2	W3	λ
	0,1	24,254	57,807	95,933	2,098
$\gamma = 0, 1$	0,3	34,482	74,838	136,028	4,298
	0,5	38,733	64,892	136,353	8,883
	0,1	17,031	29,394	42,009	5,335
$\gamma = 0,3$	0,3	21,318	43,231	54,928	11,076
	0,5	21,173	33,269	54,552	18,087
	0,1	11,977	18,642	26,159	9,244
$\gamma = 0,5$	0,3	14,221	21,690	26,690	18,794
	0,5	13,658	21,076	33,327	28,739

Tablo 7. B-B-A mesnet tipine sahip nano kirişin ilk üç doğal frekansları ve doğrusal olmayan düzeltme terimleri

(First three natural frequencies of nanobeam with S-S-C supported type and nonlinear correction terms)

$\gamma = 0,1$								
	$\eta = 0, 1$	λ	η=0,3	λ	$\eta = 0,5$	λ		
ω_1	24,254	2,098	34,482	4,298	38,733	8,883		
ω_2	57,807	12,399	74,838	24,380	64,892	11,403		
ωз	95,933	33,528	136,028	66,080	136,353	65,469		
γ= I	0,4							
	$\eta = 0, 1$	λ	$\eta = 0,3$	λ	$\eta = 0,5$	λ		
ω_1	14,160	7,271	17,151	14,915	16,667	23,351		
ω_2	22,882	41,510	26,223	69,258	25,884	47,626		
ωз	32,284	86,351	41,841	182,13	41,419	240,812		

Tablo 8. A-B-B mesnet tipine sahip nano kirişin doğal frekansları ve ilk modun doğrusal olmayan düzeltme terimleri

(Natural frequencies of nanobeam with C-S-S supported type, and nonlinear correction terms of the first mod)

	η	ω_1	ω_2	W3	λ
	0,1	16,997	47,946	84,643	2,247
$\gamma = 0, 1$	0,3	24,654	66,405	109,259	3,926
	0,5	38,733	64,892	136,353	8,883
	0,1	12,112	25,004	37,210	4,172
$\gamma = 0,3$	0,3	15,823	30,958	44,456	7,732
	0,5	21,173	33,269	54,552	18,087
	0,1	8,585	16,007	23,082	6,617
$\gamma = 0,5$	0,3	10,720	27,212	34,087	12,311
	0,5	13,658	21,076	33,327	28,739

Tablo 9. A-B-B mesnet tipine sahip nano kirişin ilk üç doğal frekansları ve doğrusal olmayan düzeltme terimleri (First three natural frequencies of nanobeam with C-S-S supported type, and nonlinear correction terms)

$\gamma = 0,1$								
	η=0,1	λ	η=0,3	λ	η=0,5	λ		
ω_1	16,997	2,247	24,654	3,392	38,733	8,883		
ω_2	47,946	11,318	66,405	20,906	64,892	11,403		
ωз	84,643	30,797	109,259	52,902	136,353	65,469		
γ=	0,4							
	$\eta = 0, 1$	λ	$\eta = 0,3$	λ	$\eta = 0,5$	λ		
ω_1	10,118	5,370	12,853	9,989	16,667	23,351		
ω_2	19,578	30,153	23,871	59,665	25,884	47,626		
(M)2	28 535	87 966	33 798	178 248	41 419	240 812		

 Tablo 10.
 A-B-A mesnet tipine sahip nano kirişin doğal frekansları ve ilk modun doğrusal olmayan düzeltme terimleri

 (Natural frequencies of nanobeam with C-S-C supported type, and nonlinear

correction	terms o	of the first m	od)			
	η	ω_1	ω2	ωз	λ	
	0,1	24,574	58,421	96,839	2,112	
$\gamma = 0, 1$	0,3	35,660	80,191	121,125	4,067	
-						

	0,1	24,574	58,421	96,839	2,112
$\gamma = 0, 1$	0,3	35,660	80,191	121,125	4,067
	0,5	50,983	121,348	195,569	9,911
	0,1	17,227	29,664	42,419	5,423
$\gamma = 0, 3$	0,3	22,262	36,495	49,629	10,837
	0,5	27,001	49,676	71,382	24,795
	0,1	12,102	18,807	26,423	9,528
$\gamma = 0, 5$	0,3	14,919	22,702	30,439	18,463
-	0,5	17,274	30,484	43,321	40,950

 Tablo 11. A-B-A mesnet tipine sahip nano kirişin ilk üç doğal

 frekansları ve doğrusal olmayan düzeltme terimleri

 (First three natural frequencies of nanobeam with C-S-S supported type, and nonlinear correction terms)

$\gamma = 0,1$							
	$\eta = 0, 1$	λ	$\eta = 0,3$	λ	$\eta = 0,5$	λ	
ω_{I}	24,574	2,112	35,660	4,067	50,983	9,911	
ω_2	58,421	12,475	80,191	23,997	121,348	54,991	
ωз	96,839	33,652	121,125	52,652	195,569	155,105	
$\gamma = 0,4$							
	$\eta = 0, 1$	λ	$\eta = 0,3$	λ	$\eta = 0,5$	λ	
ω_{I}	14,320	7,402	17,962	14,635	21,139	32,844	
ω_2	23,088	42,143	28,046	79,988	37,827	174,130	
ωз	32,605	86,156	37,777	178,369	53,950	495,159	

Sekil 13. $\gamma = 0.3$, $\eta = 0.1$ ve farklı sınır şartları için birinci modların doğrusal olmayan frekans tepki eğrileri (B-B-A (--), A-B-B (--), B-B-B (-.), A-B-A (--)) (The nonlinear frequency response curve of the first mode for the different boundary conditions and $\gamma = 0.3$, $\eta = 0.1$ (S-S-C (--), C-S-S (--), S-S-S (-.), C-S-C (--)))

Şekil 14. $\gamma = 0.3$, $\eta = 0.1$ ve farklı sınır şartları için birinci modların doğrusal olmayan doğal frekans-genlik değişim grafikleri (B-B-A (--), A-B-B (--), B-B-B (-.), A-B-A (...)) (The nonlinear frequency-changing graphs of the first mode for the different nonlocal parameters and $\gamma = 0.3$, $\eta = 0.1$ (S-S-C (--), S-S-S (--), S-S-S (-.), C-S-C (...)))

Şekil 15. $\gamma = 0.1$, $\eta = 0.4$ ve farklı sınır şartları için birinci modların doğrusal olmayan frekans tepki eğrileri (B-B-A (--), A-B-B (--), B-B-B (-.), A-B-A (--))) (The nonlinear frequency response curve of the first mode for the different boundary conditions and $\gamma = 0.3$, $\eta = 0.1$ (S-S-C (--), C-S-S (--), S-S-S (-.), C-S-C (--))))

Şekil 16. $\gamma = 0.1$, $\eta = 0.4$ ve farklı sınır şartları için birinci modların doğrusal olmayan doğal frekans-genlik değişim grafikleri (B-B-A (--), A-B-B (--), B-B-B (-.), A-B-A (...)) (The nonlinear frequency-changing graphs of the first mode for the different nonlocal parameters and $\gamma = 0.3$, $\eta = 0.1$ (S-S-C (--), S-S-S (--), S-S-S (-.), C-S-C (...)))

4. Simgeler (Symbols)

- : İc karakteristik uzunluk A
- : Nano kiriş kesit alanını A
- =Elastisite tensörü Cij
- Ε : Elastisite modülü : Malzeme sabiti
- e_0
- F = Kuvvet
- H_{nl} : yerel olmayan modül
- : Kesit atalet momenti Ι
- : Kiriş uzunluğu L
- l : Uzunluk ölçek parametresi
- N : Eksenel kuvvet
- V = Hacim
- = Enine yer değiştirme w

4.1. Yunan Harfleri (Greek Letters)

- : Boyutsuz yerel olmayan parametre γ
- =Gerilme tensörü ε_{ii}
- : Boyutsuz ortadaki mesnet konumu
- $_{\theta}^{\eta}$: Faz
- : Sönüm parametresi μ
- : Mikro kirişin yoğunluğu ρ
- = yerel olmayan katsayı ς
- =yerel olmayan gerilme tensörü σ_{ij}
- : Doğal frekans ω

5. Sonuçlar (Conclusions)

Sunulan çalışmada, üç mesnetli nano kirişe ait doğrusal ve doğrusal olmayan çözümler gerçekleştirilmiş ve çalışma sonuçları tablolar ve grafikler halinde sunulmuştur. Doğrusal olmayan problemin cözümünde ortadaki mesnedin konumu ve yerel olmayan parametrenin etkisi üzerine odaklanılmıştır. Ortadaki mesnet konumunun büyük bir öneme sahip olduğu görülmüştür. Farklı modlara ait grafikler ve sonuçlara yer verilmiştir. Belirtilen parametreler üzerinde sistematik bir çalışma yürütülüp ilk ve son mesnedin basit-basit, basit-ankastre, ankastre-basit ve ankastreankastre türlerine ilişkin incelemeler ile çalışmanın içeriği zenginleştirilmiştir. Mesnet türü ve konumunun doğal frekansa önemli katkı sağladığı görülmektedir. İstenilen frekans aralığının belirlenmesinin mesnet konumunu değiştirilerek kolaylıkla gerçekleştirilebileceği gösterilmiştir. Literatürde üç mesnetli nano kiriş üzerine detaylı bir çalışmaya denk gelinmemiş olması sunulan çalışmanın bu alandaki boşluğu dolduracağına inanılmaktadır. NEMS üzerinde sıklıkla kullanılan kirişlerin üç mesnetli olma durumu ve ortadaki mesnet etkisinin farklı durumlardaki karakterinin açıklanması nano sensör ve eyleyici tasarımında büyük öneme sahip olacağı değerlendirilmektedir.

Sonuçlar yorumlandığında,

- Yerel olmayan parametre değerinin artmasıyla doğal frekans değerlerinin azalmasına karşılık doğrusal olmayan düzeltme terimi değerlerinin arttığı gözlenmiştir.
- İlk ve son mesnedin ankastre mesnete sahip olması durumunda en yüksek doğal frekans değerlerine ulaşılmıştır.
- Ortadaki mesnedin tam orta konuma yerleştirilmesi durumunda en yüksek doğrusal olmayan düzeltme terimi elde edilmiştir.
- Modların artmasıyla doğrusal olmayan düzeltme terimlerindeki değerler artmaya devam etmiştir. Belirtilen duruma bağlı olarak modlardaki artış ile birlikte doğrusal olmayan doğal frekans değerlerinde daha yüksek değişim oranları elde edilmiştir.
- Frekans tepki eğrileri incelendiğinde modlardaki artışla ve ikinci mesnedin orta konuma yaklaştırılmasıyla genlik değerlerinin düştüğü görülmüştür. Bu durum yerel olmayan parametre için tam

tersi bir özellik sergilemiştir. Grafiklerdeki sağa yatıklığın ise ilgilenilen bu üç değişken parametrenin artması ile arttığı görülmektedir. Birinci ve üçüncü mesnedin sırasıyla ankastre-basit ve basit-basit olmaları durumlarında sağa yatıklığın ve genliklerin arttığı gözlemlenmiştir.

Kaynaklar (References)

- Kaynak B.E, Alkhaled M., Kartal E., Yanik C., Hanay M. S., 1. Atmospheric Pressure Mass Spectrometry by Single-Mode Nanoelectromechanical Systems, Nano Letters, 23 (18), 8553-8559, 2023.
- 2. Secme A., Pisheh H. S., Tefek U., Uslu H. D., Kucukoglu B., Alatas C., Kelleci M., Hanay M. S., On-Chip Flow Rate Sensing via Membrane Deformation and Bistability Probed by Microwave Resonators, Microfluidics and Nanofluidics, 27, 2023.
- Karakan M.Ç., Ari A.B., Kelleci M., Yanık C., Kaya I.I., Taştan Ö., 3. Hanay M. S., Vapor Sensing of Colorectal Cancer Biomarkers in Isolation by Bare and Functionalized Nanoelectromechanical Sensors, IEEE Sensors, 23, 21113-21120, 2023.
- 4. Aydoğdu M., A general nonlocal beam theory: Its application to nanobeam bending, buckling and vibration, Physica E: Lowdimensional Systems and Nanostructures, 41 (9), 1651-1655, 2009.
- Aya S.A., Tufekci E., Modeling and analysis of out-of-plane behavior 5. of curved nanobeams based on nonlocal elasticity, Composites Part B: Engineering, 119, 184-195, 2016.
- Ruoccoa E., Reddy J.N., Buckling analysis of elastic-plastic nanoplates 6. resting on a Winkler-Pasternak foundation based on nonlocal thirdorder plate theory, International Journal of Non-Linear Mechanics, 121, 103453, 2020.
- Malikan M., Nguyen V.B., Buckling analysis of piezo-magnetoelectric 7. nanoplates in hygrothermal environment based on a novel one variable plate theory combining with higher-order nonlocal strain gradient theory, Physica E: Low-dimensional Systems and Nanostructures, 102, 8-28, 2018.
- 8. Ma L.H., Ke L.L., Reddy J.N., Yang J., Kitipornchai S., Wang Y.S., Wave propagation characteristics in magneto-electro-elastic nanoshells using nonlocal strain gradient theory, Composite Structures, 199, 10-23, 2018
- Karami B., Janghorban M., Tounsi A., Variational approach for wave 9. dispersion in anisotropic doubly-curved nanoshells based on a new nonlocal strain gradient higher order shell theory, Thin-Walled Structures, 129, 251-264, 2018.
- Villanueva L.G., Schmid S., Roukes M., Fundamentals of 10. Nanomechanical Resonators, Springer International Publishing, Cham, Switzerland, 2016.
- 11. Eringen A.C., Linear theory of nonlocal elasticity and dispersion of plane-waves, International Journal of Engineering Science, 10 (5), 233-248, 1972
- Khaniki H.B., On vibrations of nanobeam systems. International 12. Journal of Engineering Science, 124, 85-103, 2018.
- Ganapathi M., Polit O., Dynamic characteristics of curved nanobeams using nonlocal higher-order curved beam theory. Physica E, 91, 190-202 2017
- Şimşek M., Large amplitude free vibration of nanobeams with various 14. boundary conditions based on the nonlocal elasticity theory, Composites Part B: Engineering, 56, 621-628, 2014.
- 15. Wang Y.Z., Li F.M., Nonlinear free vibration of nanotube with small scale effects embedded in viscous matrix, Mechanics Research Communications, 60, 45-51, 2014.
- Kaghaziana A., Hajnayeb A., Foruzande H., Free vibration analysis of a 16. piezoelectric nanobeam using nonlocal elasticity theory, Structural Engineering and Mechanics, 61 (5), 617-624, 2017.
- 17. Reddy J.N., Pang S.D., Nonlocal continuum theories of beams for the analysis of carbon nanotubes, Journal of Applied Physics, 103 (2), 023511-023511, 2008.
- 18. Hosseini S.A.H., Moghaddam M.H.N, Rahmani O., Exact solution for axial vibration of the power, exponential and sigmoid FG nonlocal nanobeam, Advances in Aircraft and Spacecraft Science, 7 (6), 517-536, 2020.
- Khorshidi M.A., Shariati M.A., Multi-spring model for buckling 19. analysis of cracked timoshenko nanobeams based on modified couple stress theory, Journal of Theoretical and Applied Mechanics, 55 (4), 1127-1139, 2017.

- Malik M., Das D., Free vibration analysis of rotating nanobeams for flap-wise, chord-wise and axial modes based on Eringen's nonlocal theory, International Journal of Mechanical Sciences, 179, 105655, 2020.
- Shaat M., Khorshidi M.A., Abdelkefi A., Shariati M., Modeling and vibration characteristics of cracked nanobeams made of nanocrystalline materials, International Journal of Mechanical Sciences, 115, 574–585, 2016.
- 22. Chaht F.L., Kaci A., Houari M.S.A., Tounsi A., Bég O.A., Mahmoud S., Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect, Steel and Composite Structures, 18, 425–442, 2015.
- Karami B, Shahsavari D., Nazemosadat S.M.R., Li L., Ebrahimi A., Thermal buckling of smart porous functionally graded nanobeam rested on Kerr foundation, Steel and Composite Structures, 29 (3), 349-362, 2018.
- Barretta R., Diaco M., Feo L., Luciano R., Sciarra F.M.D., Penna R., Stress-driven integral elastic theory for torsion of nanobeams, Mechanics Research Communications, 87, 35–41, 2018.
- Mollamahmutoğlu, Ç., Mercan, A., A novel functional and mixed finite element analysis of functionally graded micro-beams based on modified couple stress theory, Composite Structures, 223, 110950, 2019.
- Akgöz, B., Civalek, Longitudinal vibration analysis for microbars based on strain gradient elasticity theory, Journal of Vibration and Control, 20, 606-616, 2014.
- Akgöz, B., Civalek, Ö., A novel microstructure-dependent shear deformable beam model, International Journal of Mechanical Sciences, 99, 10-20, 2015.
- Numanoğlu, H.M., Akgöz, B., Civalek, Ö., On dynamic analysis of nanorods, International Journal of Engineering Science, 130, 33-50, 2018.
- Trabelssi, M., El-Borgi, S., Fernandes, R., Ke, L.L. Nonlocal free and forced vibration of a graded Timoshenko nanobeam resting on a nonlinear elastic foundation, Composites Part B: Engineering, 157, 331-349, 2019.
- Zhao, X., Zhu, W.D., Li, Y.H. Analytical solutions of nonlocal coupled thermoelastic forced vibrations of micro-/nano-beams by means of Green's functions, Journal of Sound and Vibration, 481, 115407, 481.
- **31.** Karamanlı, A., Vo, T.P., Finite element model for free vibration analysis of curved zigzag nanobeams, Composite Structures, 282, 115097, 2022.
- Nalbant M.O., Bagdatli S.M., Tekin A. Investigation of nonlinear vibration behavior of the stepped nanobeam, Advances in Nano Research, 15 (3), 2023.
- Uzun B., Yayli M. Ö., Winkler-Pasternak foundation effect on the buckling loads of arbitrarily rigid or restrained supported nonlocal beams made of different FGM and porosity distributions, ZAMM, e202300569, 2023.
- Gholipour A., Ghayesh M.H., Nonlinear coupled mechanics of functionally graded nanobeams, International Journal of Engineering Science, 150, 103221, 2020.
- Nalbant M.O., Bagdatli S.M., Tekin A. Free Vibrations Analysis of Stepped Nanobeams Using Nonlocal Elasticity Theory, Scientia Iranica, 2023.
- Zhang P., Qing H., Gao C.F., Exact solutions for bending of Timoshenko curved nanobeams made of functionally graded materials based on stress-driven nonlocal integral model, Composite Structures, 245, 112362, 2020.
- Jalaeia M.H., Arani A.G., Xuande H.N., Investigation of thermal and magnetic field effects on the dynamic instability of FG Timoshenko nanobeam employing nonlocal strain gradient theory, International Journal of Mechanical Sciences, 161–162, 105043, 2019.
- 38. Arefi M., Pourjamshidian M., Arani A.G., Application of Nonlocal Strain Gradient Theory and Various Shear Deformation Theories to Nonlinear Vibration Analysis of Sandwich Nano-Beam with FG-CNTRCs Face-Sheets in Electro-Thermal Environment, Applied Physics A, 123, 323, 2017.
- Abdelrahman, A.A., Esen, I., Özarpa, C., Eltaher, M.A., Dynamics of perforated nanobeams subject to moving mass using the nonlocal strain gradient theory, Applied Mathematical Modelling, 96, 215-235, 2021.

- **40.** Aria, A.I., Friswell, M.I., A nonlocal finite element model for buckling and vibration of functionally graded nanobeams, Composites Part B: Engineering, 166, 233-246, 2019.
- Numanoğlu, H.M., Ersoy, H., Akgöz, B., Civalek, Ö. A new eigenvalue problem solver for thermo-mechanical vibration of Timoshenko nanobeams by an innovative nonlocal finite element method, Mathematical Methods in the Applied Sciences, 45, 2592-2614, 2022.
- Yan J., Tong L., Li C., Zhu Y., Wang Z., Exact solutions of bending deflections for nano-beams and nano-plates based on nonlocal elasticity theory, Composite Structures, 125, 304–313, 2015.
- Benguediab S., Tounsi A., Zidour M., Semmah A., Chirality and scale effects on mechanical buckling properties of zigzag double-walled carbon nanotubes, Composites Part B: Engineering, 57, 21–24, 2014.
- **44.** Chakraverty S., Behera L., Free vibration of non-uniform nanobeams using Rayleigh–Ritz method, Physica E: Low-dimensional Systems and Nanostructures, 67, 38–46, 2015.
- **45.** Sokół K., Uzny S., Instability and vibration of multi-member columns subjected to Euler's load, Arch Appl Mech., 86, 883–905, 2016.
- Uzny S., Sokół K., Free Vibrations of Column Subjected to Euler's Load with Consideration of Timoshenko's Theory, Vibrations in Physical Systems, 26, 319-326, 2014.
- Akkoca Ş., Bağdatli S. M., Toğun N., Linear vibration movements of the mid-supported micro beam, Journal of the Faculty of Engineering and Architecture of Gazi University, 36 (2), 1089-1104, 2021.
- 48. Yapanmış B.E., Elastik Zemin ve Manyetik Alan Etkisi Altındaki Kademeli Kirişin Doğrusal Titreşim Analizi, Mühendislik Bilimleri ve Tasarım Dergisi, 11 (3), 1109-1119, 2023.
- Pakdemirli M., Öz H.R., Infinite mode analysis and truncation to resonant modes of axially accelerated beam vibrations, J. Sound Vib., 311 (3-5), 1052-1074, 2008.
- Nayfeh A.H., Introduction to Perturbation Techniques, New York, ABD, John Wiley, 1981.
- Nayfeh A.H., Mook D.T., Lobitz D.W., Numerical-Perturbation method for the nonlinear analysis of structural vibrations, AIAA Journal, 12 (9), 1222-1228, 1974.
- 52. Ghadiri M., Soltanpour M., Yazdi A., Safi M., Studying the influence of surface effects on vibration behavior of size-dependent cracked FG Timoshenko nanobeam considering nonlocal elasticity and elastic foundation, Appl. Phys. A. 122 (5), 1-21, 2016.
- Öz H.R., Boyacı H., Transverse vibrations of tensioned pipes conveying fluid with time-dependent velocity, J. Sound Vib., 236 (2), 259-276, 2000.
- Bagdatli S.M., Oz H.R., Ozkaya E., Dynamics of axially accelerating beams with an intermediate support. J. Vib. Acoust., 133 (3), 031013, 2011.
- Yapanmış B.E., Nonlinear vibration and internal resonance analysis of microbeam with mass using the modified coupled stress theory, J. Vib. Eng. Technol, 11 (5), 2167-2180, 2023.
- Akkaya M. K., Yılmaz A. E., Kuzuoğlu M., Analytic and numeric perturbation techniques approach for the solution of electromagnetic wave problems, Journal of the Faculty of Engineering and Architecture of Gazi University, 39, (1), 299-314, 2024.
- Reddy J.N., Nonlocal theories of bending, buckling and vibration of beams, International Journal of Engineering Science, 45 (2-8), 288–307, 2007.
- Eltaher M.A., Alshorbagy A. E., Mahmoud F.F., Vibration analysis of Euler–Bernoulli nanobeams by using finite element method, Applied Mathematical Modelling, 37, 4787–4797, 2013.
- Thai H., T., A nonlocal beam theory for bending, buckling, and vibration of nanobeams. International Journal of Engineering Science, 52, 56-64, 2012.
- **60.** Bagdatli S.M., Nonlinear vibration of nanobeams with various boundary condition based on nonlocal elasticity theory, Composites Part B, 80, 43-52, 2015.
- **61.** Ansari R., Gholami R., Rouhi H., Size-dependent nonlinear forced vibration analysis of magneto-electro-thermo-elastic Timoshenko nanobeams based upon the nonlocal elasticity theory, Composite Structures, 126, 216–226, 2015.