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Abstract
Aim: Determining oocyte quality is crucial for successful fertilization and embryonic development, and there is a serious correlation 
between live birth rates and oocyte quality. Parameters such as the regular/irregular formation of the cumulus cell layer around the 
oocyte, the number of cumulus cell layers and the homogeneity of the appearance of the ooplasm are used to determine the quality of 
the oocytes to be used in in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI) methods.
Material and Methods: In this study, classification processes have been carried out using convolutional neural networks (CNN), a 
deep learning method, on the images of the cumulus-oocyte complex selected based on the theoretical knowledge and professional 
experience of embryologists. A convolutional neural network with a depth of 4 is used. In each depth level, one convolution, one ReLU 
and one max-pooling layer are included. The designed network architecture is trained using the Adam optimization algorithm. The 
cumulus-oocyte complexes (n=400) used in the study were obtained by using the oocyte aspiration method from the ovaries of the 
bovine slaughtered at the slaughterhouse.
Results: The CNN-based classification model developed in this study showed promising results in classifying three-class image data 
in terms of cumulus-oocyte complex classification. The classification model achieved high accuracy, precision, and sensitivity values 
on the test dataset. 
Conclusion: Continuous research and optimization of the model can further improve its performance and benefit the field of cumulus-
oocyte complexes classification and oocyte quality assessment.
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INTRODUCTION
Infertility is a reproductive issue affecting millions of people 
worldwide (1). IVF and ICSI methods, which are applied 
in the centers of Assisted Reproductive Technologies 
(ART) are among the most common treatment methods 
for infertility today. These methods also used in animal 
breeding and biotechnology centers. After ovulation 
induction under clinician supervision, oocyte aspiration 
is performed on the day determined by the clinician for 
obtaining oocytes to be used in IVF and ICSI methods. 
The collected oocyte(s) are examined microscopically by 
the embryologist. High-quality oocytes are selected for 

fertilization based on various criteria and morphological 
classifications. Oocyte quality is crucial for successful 
fertilization and embryonic development (2). There is a 
serious correlation between oocyte quality and live birth 
rates. In order to select high-quality oocytes to improve 
the ability to select the best single embryo with the highest 
implantation potential, minimize the likelihood of multiple 
pregnancies due to multiple embryo transfers, increase 
pregnancy rates, and achieve an increase in live birth rates, 
oocyte classification must be done without causing doubt. 
In determining the quality of oocytes to be used in IVF 
and ICSI methods, morphological parameters related to 
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the cumulus-oocyte complex structure, oocyte cytoplasm, 
polar body, meiotic spindle properties, perivitelline space, 
and zona pellucida can be used (3). 

Cumulus cells are critical for oocyte maturation, ovulation, 
and fertilization (4). Many studies have shown that the 
presence of cumulus cells is a requirement for oocytes to 
gain developmental abilities in vitro. Cumulus cells also 
support energy production in the cumulus-oocyte complex 
(5) and play a role in protecting oocytes from damage 
that reactive oxygen species (ROS) can cause (6). Recent 
studies suggest that the mitochondrial function of cumulus 
cells can directly affect the reproductive capacity (7,8). The 
number of cumulus cell layers surrounding the oocyte is an 
essential factor in determining oocyte quality (4). Oocyte 
quality is generally evaluated based on the structure of 
cumulus-oocyte complexes. This method is simple and 
provides information about oocyte quality. Embryologists 
and researchers evaluate the cumulus-oocyte complex 
by looking at parameters such as the regular/irregular 
formation of the cumulus cell layer around the oocyte, the 
number of cumulus cell layers, and the homogeneity of the 
ooplasm's appearance (9,10). They use their theoretical 
knowledge and professional experience to select the most 
ideal oocytes.

However, the professional experience required for oocyte 
selection, which is heavily based on subjective opinions, 
is a challenging and time-consuming process. Although 
the observational experiences accumulated cumulatively 
over the years are precious, human error margins, 
time-consuming protocols, and high-cost equipment 
encountered in every traditional method cannot be ignored. 
ART methods have significantly improved over the past 30 
years but success rates have not reached desired levels 
and remain relatively low. Minimizing human intervention 
in oocytes and embryos, increases the viability of these 
highly sensitive cells and reduces the rate of human errors. 

In recent years, machine learning (ML) methods have been 
widely used in biomedical imaging. ML is the field of study 
that gives computers the ability to learn from data without 
explicitly writing code (11). ML gives computers the ability 
to "learn from experience," a trait naturally found in humans. 
Machine learning algorithms use computational methods 
to "learn" information directly from data without relying on a 
predetermined equation model. As the number of samples 
available for learning increases, the algorithms adaptively 
improve their performance. ML is fundamentally about 
predicting the future based on past experience (12,13).

Convolutional Neural Network (CNN) is a specialized form 
of ML methods, is a very important tool for medical image 
classification. This method is widely used for classifying 
images obtained from various medical imaging techniques, 
such as computed tomography (CT), magnetic resonance 
imaging (MRI), ultrasonography (USG), and microscopic 
imaging. By its nature, CNN has image-shaped inputs and 
automatically performs feature extraction from images 
(11,14). Upon reviewing these studies, almost all of them 
focus on segmenting oocytes, and the studies addressing 

the classification problem using CNN are quite insufficient. 

The classification of medical images with highly detailed 
structures is often a time-consuming and high-attention 
task, making it prone to human errors. The classification 
success may vary depending on the workload and 
experience of the staff performing the classification. 
However, artificial intelligence methods like CNN, which 
can learn from data, can perform classification tasks faster 
and with higher accuracy rates. We believe that an artificial 
intelligence approach trained on hundreds of oocytes 
can reliably predict classification of cumulus-oocyte 
complex and oocyte quality without human intervention. 
In our literature review, we have not come across a study 
classifying the cumulus-oocyte complex, an important 
criterion in determining high-quality oocytes to be applied 
in ART procedures, using artificial intelligence methods.

This study is expected to be a pioneering study in the 
literature and lay the groundwork for the integration of 
artificial intelligence into ART. The image data obtained 
of this study will be useful in increasing the originality and 
sensitivity of future studies on this subject and will shed 
light on scientific research.

MATERIAL AND METHOD
Oocyte Aspiration and Collection of Cumulus-Oocyte 
Complexes

This study was conducted with the approval of the Ege 
University Animal Experiments Local Ethics Committee, 
numbered 2021-045, stating that ethical committee 
approval is not required according to the Ministry 
regulations. Ovaries were obtained as waste material 
from animals slaughtered for human consumption at 
various commercial slaughterhouses in accordance with 
international meat production guidelines. 

Ovaries collected at different times were placed in thermos 
flasks containing a transport medium immediately after 
slaughter and brought to the laboratory within a maximum 
of 3 hours. Sterile PBS, adjusted to a temperature of 20-
25°C and supplemented with Penicillin (50-100 IU/ml) and 
Amphotericin-B (50 ng/ml), was used as the transport 
medium. The transport medium was freshly prepared 
for each study. The ovaries brought to the laboratory 
were washed twice with 0.9% NaCl to remove blood and 
transport medium and then dried with a drying paper 
before proceeding to the aspiration process. Follicles with 
a diameter of 2-10 mm in the ovaries were aspirated with 
5-10 ml sterile needle-tipped syringes varying in thickness 
from 26-20-Gauge (Ayset, Adana, Türkiye; Berika, Konya, 
Türkiye; Beybi, İstanbul, Türkiye). The follicular fluid 
obtained by aspiration was collected in 50 ml Falcon tubes. 
The tubes containing the collected follicular fluid were left 
at room temperature for 20 minutes to allow the cumulus-
oocyte complexes to settle at the bottom. At the end of 
this period, the cumulus-oocyte complexes that settled at 
the bottom of the tube in the follicular fluid were taken with 
the help of a Pasteur pipette and transferred to 90x15 mm 
Petri dishes (Figure 1). 
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Figure 1. Obtaining cumulus-oocyte complexes from bovine ovaries with 
photographs from current study A. Specimens from bovine ovaries B. 
Injectors with various needle sizes C. Aspiration process D. Aspirated 
material in Falcon tube E. Examination under a stereo microscope F. 
Imaging and analysis

Cumulus-Oocyte Complex Classification

A total of 400 cumulus-oocyte complexes were classified 
under the Olympus SC50 digital camera attached to the 
Olympus SZ61 Stereo Microscope with WHSZ10X-H/22 
eyepieces. The classification was performed by 
embryologists on the research team, considering the 
number and appearance of cumulus cell layers surrounding 
the oocyte and the characteristics of the oocyte and 
oocyte cytoplasm, based on the features described in the 
literature (15-17). Accordingly: Cumulus-oocyte complexes 
surrounded by at least five layers of compact cumulus cells, 
with transparent, homogeneous, and bright cytoplasm 
were classified as Good Quality (Category A) (n=100). 
Cumulus-oocyte complexes surrounded by 3-5 layers of 
compact cumulus cells, with slightly granular, dark-colored 
cytoplasm were classified as Medium Quality (Category 
B) (n=100). Cumulus-oocyte complexes surrounded by 
1-2 layers of sparse irregular cumulus cells, with granular, 
dark-colored cytoplasm were classified as Poor Quality 
(Category C) (n=100) (Figure 2). 

Figure 2. The classification of cumulus-oocyte complexes with 
representative images from the training set A1-3. Good quality (category 
A) B1-3. Medium quality (category B) C1-3. Poor quality (category C)

Data Set

For the preparation of data sets to be used in artificial 
intelligence training, digital images of each cumulus-oocyte 
complex in categories A, B, and C were obtained with one 
hundred images per category. To test and evaluate the 
performance of the deep learning method, 100 cumulus-
oocyte complexes, which were never used in artificial 
intelligence training, were classified by embryologists on 
the research team, considering the features described in 
the literature (15-17), and their digital images were obtained 
from the images taken with the the stereo microscope.

Cumulus-Oocyte Complex Classification with 
Convolutional Neural Networks

In this study, the classification process was performed 
using convolutional neural networks on images divided 
into 3 different classes. 75% of the 400 images from 
different classes were used for the training of the designed 
CNN model, while 25% were used for testing. In the training 
set, there were 100 images for each of the classes A, B, 
and C, while in the test set, there were 34 images for class 
A and 33 images for classes B and C. Sample images from 
different classes are given in Figure 3 below.

The CNN architecture used in the study for classifying 
images is given in Figure 4 below. The designed architecture 
has an input size of 128x128x3 and an output consisting 
of 3 neurons. The Rectified Linear Unit (ReLU) activation 
function was used as the activation function for each 
convolutional layer in the architecture, which consists of 
4 convolutional layers. A max-pooling layer was used after 
each convolutional layer in the architecture, and a fully 
connected layer consisting of 128 neurons was placed 
between the last convolutional layer and the output layer. 
The CNN model training was carried out with the ADAM 
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optimization algorithm in 200 epochs, and the batch size 
was set to 64.

Figure 3. Sample images from the test set representing the classification 
of cumulus-oocyte complexes as good quality (A1-3). medium quality 
(B1-3), and low quality (C1-3)

In this study, data augmentation was performed on the 
training set to prevent overfitting and achieve better 
performance by increasing the relatively small number 
of data for deep CNN model training. For the test set, 

only original images were used. The data augmentation 
process was carried out within the flow shown in Figure 
5 below. Each image follows the process shown in Figure 
5 before being applied to the network for training. During 
the augmentation process, horizontal and vertical flip 
operations are applied to the images with a probability of 
p=0.5. Then, after performing a rotation operation with a 
random angle between -30 and +30 degrees, the brightness 
of the image is changed with a random coefficient between 
0.5 and 1.5. Finally, each color channel of the images is 
shifted randomly between -20 and 20. This process can 
help the model generalize more broadly against color 
changes by altering the color distributions of the images.

Figure 4. Proposed CNN model

Figure 5. Data augmentation process

RESULTS
The confusion matrices obtained for the test set are given 
in Table 1. According to the confusion matrix, the model 
made 32 correct predictions for Class A, with only 2 
incorrect predictions. For Class B, 24 correct predictions 
were made, while 7 and 2 incorrect predictions were 
made for Class A and C, respectively. Finally, 32 correct  
predictions were obtained for Class C, and only 1 incorrect 
prediction was made for Class B.

Table 1. Confusion matrix for the test set
Confusion matrix

Predicted
Class A B C

Actual
A 32 0 2
B 7 24 2
C 0 1 32

It can be seen that the CNN model is successful in 
classifying 3-class image data. High accuracy rates were 
obtained especially for Class A and C, while an acceptable 
accuracy rate was achieved for Class B. These results 
indicate that CNN-based classification methods are reliable 
and effective tools for oocyte quality and classification.

Table 2 presents the precision, recall (sensitivity), and 
accuracy metric measurement results calculated using 
the confusion matrices. In this study, the performance 
of the classification model on data belonging to three 
different classes was evaluated. The model's success 
was measured using accuracy, precision, and sensitivity 
metrics. The accuracy value obtained on the test set was 
calculated to be 0.8800.

The precision values calculated for Class A are 0.8205; 
for Class B, 0.9600; and for Class C, 0.8888. These results 
show that the model makes predictions with the highest 
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precision value for Class B and the lowest precision value 
for Class A. The macro average of precision values was 
found to be 0.8898.

Table 2. Metric measurement results

Metrics A B C Macro average

Precision 0.8205 0.9600 0.8889 0.8898

Recall 0.9412 0.7273 0.9697 0.8794

Overall accuracy 0.8800

Sensitivity values were calculated as 0.9412 for Class A, 
0.7273 for Class B, and 0.9697 for Class C. The model 
detects true positives with the highest sensitivity value for 
Class C and the lowest sensitivity value for Class B. The 
macro average of sensitivity values is 0.8794.

DISCUSSION
Human ART and animal reproductive technologies have 
been developing intensively, especially in recent years. For 
both species, gamete cells are of particular importance as 
the focus of reproductive biotechnologies. All processes, 
from in vivo derivation of cumulus-oocyte complexes to in 
vitro maturation of oocytes, and from fertilization to live birth 
were human-dependent (15). The integration of artificial 
intelligence into ART, where success is highly proportional 
to the knowledge, experience, and manipulation abilities of 
human beings, has been developed with innovative results. 
However, the human dependence persists, and there 
remains a need to develop artificial intelligence applications 
in reproductive biotechnologies for both humans and 
animals. In addition, considering the acceleration of the 
livestock industry of economically valuable animals or the 
improvement of their products, and the protection of rare 
species and animal welfare, the magnitude of the need 
for artificial intelligence applications to be integrated into 
animal reproductive technologies can be understood in 
order to make rapid and effective results commercially 
viable (18).

The process of distinguishing those with the highest 
viability among oocytes and embryos is based on the 
analysis of their morphological criteria. Attempts to 
characterize morphological features associated with 
oocyte/embryo quality to produce a full-term pregnancy 
have long been significant, but limited success due to 
several reasons remains a major barrier. While cellular and 
molecular analyzes can provide new clues for defining more 
objective criteria of quality, many of these approaches are 
incompatible with cell viability (19). 

Artificial intelligence applications that minimize human 
intervention and have the potential to self-develop the 
established standards and can be applied directly in vivo 
or in vitro have become essential for acquiring competent 
oocytes/embryos. Due to the recent acceleration in the 
capacity to extract tissue descriptors from a given image, 
there has been increasing interest in the use of artificial 
intelligence-based methods that select oocyte/embryo by 
scoring over digital images. Firuzinia et al. and Targosz et 

al. have performed oocyte segmentation using pretrained 
networks, Resnet and MobileNet (20-21). Similarly, 
Athanasiou et al. have carried out oocyte segmentation 
using U-net (22). Raudonis et al. designed a 5-class model 
using AlexNet and Vgg16 to classify embryos based on 
the number of cells within the embryo in their study (23). 
Kragh and colleagues predicted the inner cell mass (ICM) 
and trophectoderm (TE) grades from a single frame in 
time-lapse imaging using CNN (24). Monge and Beltran 
classified seven distinct species of avian Eimeria oocytes 
using their designed CNN (25).

To the best of our knowledge for the first time in the 
literature, the images of cumulus-oocyte complexes 
selected based on the theoretical knowledge and 
professional experience of embryologists were classified 
using CNN, a deep learning method, which has 4 depths, 
has convolution, ReLU and maximum pooling layer at 
each depth level, and has a designed network architecture 
trained with Adam optimization algorithm. The results 
obtained from the classification model developed in this 
study were aimed to demonstrate the effectiveness of the 
CNN-based approach in categorizing image data divided 
into three classes, especially related to oocyte quality and 
classification.

As shown in Table 1, our results demonstrate the 
effectiveness of the CNN-based approach for this 
application, as the model achieved high accuracy rates for 
Class A and C, and an acceptable accuracy rate for Class 
B. This indicates that CNN-based classification methods 
are reliable and effective tools for such applications. 
Analyzing the performance metrics presented in Table 2, 
the model's precision and sensitivity values were evaluated 
for each class. The highest precision value was achieved 
for Class B, whereas the lowest precision value was 
observed for Class A. This suggests that the model is 
more likely to make accurate predictions for Class B, while 
improvements can be made for Class A. The sensitivity 
values revealed that the model detects true positives 
with the highest sensitivity for Class C and the lowest 
sensitivity for Class B. This indicates that the model can 
effectively identify true positives for Class C, but has room 
for improvement in detecting true positives for Class B. 
Despite the high accuracy, precision, and sensitivity values 
obtained on the test dataset, the lower sensitivity for Class 
B and lower precision for Class A indicate that further 
refinements are required for these classes. Nevertheless, 
the overall performance of the current model indicates the 
potential of CNN-based methods as reliable and effective 
tools for tasks involving oocyte quality assessment and 
classification. 

Due to the limited number of studies, this study is 
expected to make a significant contribution to the 
literature. The dataset obtained from this study will fulfill 
the needs required in this field. However, reviewing the 
sample size and class balance of the dataset should be 
considered for future studies to enhance the model's 
performance. This may involve increasing the number of 
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samples for underrepresented classes, ensuring a more 
balanced dataset, and potentially improving classification 
performance. Additionally, exploring feature engineering 
methods could lead to more accurate and reliable 
classification results. Investigating various preprocessing 
techniques, such as image augmentation, denoising, and 
normalization, may improve the model's ability to extract 
relevant features from the image data. Furthermore, the 
implementation of different CNN architectures or the use 
of ensemble methods might also enhance the model's 
performance (26).

In summary, our CNN-based classification model 
demonstrated promising results in classifying three-class 
image data related to oocyte quality and classification. 
While improvements can be made for specific classes, 
the overall performance of the model indicates that CNN-
based approaches are reliable and effective tools for such 
tasks. Continued research and optimization of the model 
can further enhance its performance, ultimately benefiting 
the field of oocyte quality assessment and classification.

CONCLUSION
The classification model developed in this study achieved 
high accuracy, precision, and sensitivity values on the test 
dataset. However, it is important to note that the model 
shows lower sensitivity for Class B and lower precision 
for Class A. This indicates that further improvements are 
needed for these classes. In future studies, reviewing 
the sample size and class balance of the dataset and 
considering feature engineering methods might be 
beneficial to further increase the model's performance.
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