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Abstract
The aim of this paper is to study a semi-functional partial linear regression model. The
estimators are constructed by k-nearest neighbors local linear method. Some asymptotic
results are established for an i.i.d sample under certain conditions, including asymptotic
normality of the parametric component and the almost certain convergence (with rate)
of the non-parametric component. Lastly, using cross-validation, the performances of our
estimation method are presented on simulated data and on real data by comparing them
with other known approaches for semi-functional partial linear regression models.
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1. Introduction
The study of the influence of a functional random variable on a scalar variable, called

functional regression, has become a major subject in functional data analysis (FDA) both
by the methods used and by the diversification of application areas such as this is evi-
denced by various works on this subject [16,23,24,36,38] as well as through various recent
bibliographical discussions such as [3]. In particular, among the themes studied on this
subject, we find semi-parametric functional regression models which have the properties
of retaining the flexibility of parametric regression models and overcoming the sensitiv-
ity to dimensional effects of non-parametric approaches (for a complete discussion with a
state of the art on semi-parametric modeling by functional regression, we refer you to the
bibliographical surveys of [25,34]).

One of the most important semi-parametric models is the partially linear regression
model introduced by [7], which is called semi-functional partial linear regression (SPFLR)
model. This model is expressed as:

Y = XT β + m(ξ) + ϵ ,
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where Y is the scalar response variable, X = (X1, X2, . . . , Xp) is a p-vector of explanatory
variables, ξ is functional explanatory variable, β is unknown p-dimensional parameter vec-
tor, m(.) is an unknown smooth functional operator and ϵ is the centered random error with
finite unknown variance. We generally assume an additional condition of independence
of the variable ϵ with respect to the random vector (X, ξ). The authors use the classical
kernel method (Nadaraya-Watson type weights method) to prove the convergence rate of
m and the asymptotic normality of β. This model was extended to dependent data by
[6]. Furthermore, Aneiros-Pérez and Vieu [4] proposed a bootstrap procedure to approx-
imate the distribution of these estimators. The case where the linear component is also
functional was proposed by [29]. More recently, Aneiros-Pérez et al. [5] studied different
bootstrapping procedures for this model under dependency structures while Ling et al.
[31] considers SPFLR models with random missing responses. A procedure for testing
linearity in partially linear functional models is proposed in [39] while the extension of
this model for spatial data was proposed by [13].Other approaches have been proposed to
estimate SPFLR model parameters, we cite for example, the local linear approach (LLE)
used by [22], the robust procedures considered by [15], the k nearest neighbors (kNN)
procedure used by [30] and Bayesian approaches proposed by [37]. For the most recent
contributions in this area, we can consult the bibliographic reviews in [33,34].

In this paper, we consider using the kNN estimation under the local linear approach
(kNN)-LLE for i.i.d data, which was recently developed by [10]. The combination of the
two approaches makes it possible to build an estimator with good statistical properties
which inherits their advantages. This is confirmed by the construction of an attractive and
robust estimator which converges quickly with lower bias and is very easy to implement
in practice (see [1] for more details).

Indeed, in nonparmetric statistics, when the variables are of a functional nature, it
is necessary to take into account the local structures of the data. The kNN approach
is generally the most widely used. This method makes it possible to select a bandwidth
parameter adapted to the structure of the data and the estimator which deduces from it can
be updated with any new observation. Attracting by its characteristics, this approach has
been increasingly considered in recent years the FDA, in particular to the construction of
the kNN kernel estimator of the regression operator and to obtain its asymptotic properties.
The kNN approach for functional data was studied by [18] and reconsidered in other
approaches by [8, 26–28]. Some recent advances for this method can be found in [32,35].

On the other hand, compared to the classical Nadaraya-Watson method, local linear
fitting is known to have various advantages. More precisely, this approach improves the
quality of the bias error (see [21] for more motivations on this method). Thus, the func-
tional local linear modeling has become an attractive topic in nonparametric functional
regression in recent years. The results developed from this approach lead to several ver-
sions of estimators (see. [11,12,14] and [19] for spatial data) The asymptotic distribution
of the estimator was established by [40] while the case where all the variables are curves is
considered by [20]. We also cite the work of [9] where they study the asymptotic properties
uniformly on the smoothing parameter.

For all that we have just mentioned, the objective of this article is to consider an
approach based on a combination of the estimations by the kNN-LLE method with semi-
parametric partially linear models. Our contribution can be considered as the first study
in this direction and our main results are to prove the asymptotic distribution of the para-
metric component and the almost certain convergence (with rate) of the non-parametric
component.

Our paper is organized as follows. In Section 2, the estimators of the model based on a
sample of i.i.d random vectors are defined, whereas Section 3 is devoted to the assumptions
and the asymptotic results. In section 4, some results on simulated data and real data are
carried out to highlight how the kNN-LLE approach allows a nice improvement compared
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to the usual global approach. Finally, the Proof section is devoted to proofs of certain
technical lemmas and proofs of the results of this article.

2. The model and its estimation
Let the observed data {(Yi, Xi1, Xi2, . . . , Xip, ξi)T , 1 ≤ i ≤ n}, which are independant

and identically distributed as (Y, X1, X2, . . . , Xp, ξ)T , be generated by means of a semi
functional partial linear regression model

Yi =
p∑

s=1
Xisβs + m(ξi) + ϵi = XT

i β + m(ξi) + ϵi (i = 1, . . . , n), (2.1)

where Yi, Xi = (Xi1, Xi2, . . . , Xip), β = (β1, . . . , βp)T , m and ϵi are defined as before such
that the random errors satisfying

E(ϵi|Xi1, . . . , Xip, ξi) = 0 and E(ϵ2
i |Xi1, . . . , Xip, ξi) < ∞ .

We assume that ξ is valued in semi-metric space F with associated semi-metric denoted
by d(·, ·) and we denote by B(ξ, h) = {ξ

′ ∈ F} the the topological closed ball in F such
that d(ξ, ξ

′) ≤ h}.
Now, by conditioning Yi on ξ, we have

E(Yi|ξi = ξ) = E(Xi|ξi = ξ)T β + m(ξ) . (2.2)
Then, by the equations (2.1) and (2.2) , we can write

Yi − E(Yi|ξi = ξ) = (Xi − E(Xi|ξi = ξ))T β + ϵi . (2.3)
In the following we denote g1(ξ) = E(Xi|ξi = ξ), g2(ξ) = E(Yi|ξi = ξ), Y i = Yi − g2(ξi)
and Xi = Xi − g1(ξi).

Note that, by equation (2.2), we have

m(ξ) = g2(ξ) − gT
1 (ξ)β, (2.4)

and, by equations (2.3), we have

Y i = XT
i β + ϵi . (2.5)

Thus, under the condition that g1(ξ) and g2(ξ) are known, the least squares estimator
(LSE) of β is

βn = arg min
β

n∑
i=1

(Y i − XT
i β)2,

which is obtained by the following formula

β̂n =
(

n∑
i=1

XT
i Xi

)−1 n∑
i=1

XT
i Y i. (2.6)

However, g1(ξ) and g2(ξ) are generally unknown and they must be estimated for applied
(2.6). Assuming that g1 and g2 are smooth functions of ξi, these can be estimated using
nonparametric estimators noted by ĝ1 and ĝ2.

As cited in the introduction, the functional nonparametric estimator methods used to
estimate g1 and g2 are: Nadaraya-Watson (N-W) kernel approach, kNN method, local
linear approach and robust estimators.

The main purpose of this article is to using local linear approach weighted by the k-
nearest neighbors smoothing procedure (kNN-LLE) to estimate g1 and g2. Recall that the
estimation of gl(ξ) for l = 1, 2 by the kNN-LLE method was introduced by [10]. They
assumed that the gl(ξ) is locally approximated, for all ξ0 ∈ Nξ (Nξ a neighborhood of ξ),
by

gl(ξ0) = a + bϱ(ξ0, ξ) + o(d(ξ, ξ0)),
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where ϱ(·, ·) is a known function from F2 into R such that ϱ(ξ, ξ) = 0. Under this, if we
denote by hk = hk,n the random sequence of positive real numbers such that

hk = min{h ∈ R+ such that
n∑

i=1
1B(ξ,h)(ξi) = k}.

Thus, the LLE-kNN estimator of g1(ξ) and g2(ξ) is expressed by

ĝ1(ξ) =

n∑
i=1

n∑
j=1

Wij(ξ, hk)Xj

n∑
i=1

n∑
j=1

Wij(ξ, hk)
=

n∑
j=1

Wj(ξ)Xj , (2.7)

and

ĝ2(ξ) =

n∑
i=1

n∑
j=1

Wij(ξ, hk)Yj

n∑
i=1

n∑
j=1

Wij(ξ, hk)
=

n∑
j=1

Wj(ξ)Yj , (2.8)

where Wij(ξ, hk) = ϱi(ϱi−ϱj)KiKj , Wj(ξ) =
∑n

i=1 Wij(ξ, hk)/
∑n

i=1
∑n

j=1 Wij(ξ, hk), with
ϱi = ϱ(ξi, ξ) and Ki = K(h−1

k d(ξ, ξi)) (K stands for the kernel function).
As the parameter k is unknown, this estimator cannot be used directly. It is therefore

necessary to estimate the parameter k and for this we will use the cross-validation method.
Precisely, we choose k according to the following cross-validation rule

kopt = arg min
k

CV (k) = arg min
k

n∑
i=1

(
Yi − Ỹ kNN

(−i) ((Xi, ξi)))
)2

, (2.9)

where Ỹ kNN
(−i) (Xi) is the values of the leave one-out kNN-LLE estimator at (Xi, ξi)) (see

[1] for more details).
Hence, an estimator of β after estimating g1 and g2 is given by

β̂n = (X̃T X̃)−1X̃T Ỹ =
(

n∑
i=1

X̃T
i X̃i

)−1 n∑
i=1

X̃T
i Ỹi, (2.10)

where X̃ = (X̃1, . . . , X̃n) and Ỹ = (Ỹ1, . . . , Ỹn) with X̃i = Xi −
∑n

j=1 Wj(ξ)Xj and
Ỹi = Yi −

∑n
j=1 Wj(ξ)Yj .

Finally, a nonparametric estimator for m can be obtained by (2.4) and (2.10)

m̂n(ξ) = ĝ2(ξ) − ĝ1(ξ)T β̂n =
n∑

j=1
Wj(ξ)Yj −

 n∑
j=1

Wj(ξ)Xj

 β̂n. (2.11)

3. Asymptotic properties
The aim of this section is to establish some asymptotic properties of the estimators β̂n

and m̂n(ξ) defined in (2.10) and (2.11), respectively. To do that, we’ll start by introducing
some following notations:

g1s(ξ) = E(Xis|ξi = ξ), (i = 1, . . . , n, s = 1, . . . , p),

ηis = Xis − g1s(ξi), ηi = (ηi1, . . . , ηip)T ,

and we need the following assumptions.
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3.1. Technical assumptions
(A1): For any h > 0, P(B(ξ, h)) := ϕξ(h) > 0 is an invertible function and continu-

ous on a neighborhood of 0 such that ϕξ(0) = 0.
(A2): There exists a positive number α such that, ∀(u, v) ∈ F2 and ∀f ∈ {m, g11, g12,

. . . , g1p},
|f(u) − f(v)| ≤ Cdα(u, v).

(A3): The kernel K is a continuous, derivable and compact supported on ]0, 1[ such
that there exist two constants C and C ′ satisfying

−∞ < C ′ < K ′(.) < C < 0 .

(A4): ∀z ∈ F, the function ϱ is such that

Cd(ξ, z) ≤| ϱ(ξ, z) |≤ C ′d(ξ, z).

(A5): For all sequence h := hn → 0, we have

h

(∫
B(ξ,h/2)

ϱ(u, ξ)dP ξ(u)
)

/

(∫
B(ξ,h/2)

ϱ2(u, ξ)dP ξ(u)
)

→ 0,

where dP ξ denotes the probability distribution of the regressor ξ.
(A6): The number of neighbours k is such that

k
n → 0 and log n

k → 0 as n → ∞.
(A7): There exists two positive constants C and C ′ such that ∀m ≥ 3, E(|X1s|m|ξ1 =

ξ) ≤ C < ∞ for s = 1, . . . , p, and E(|Y |m|ξ1 = ξ) < am(ξ) < C ′ < ∞, with am(·)
is a continuous function on Nξ.

(A8): Σ = E(η1ηT
1 ) is a positive definite matrix.

Comments on the assumptions: We note that the hypotheses considered are quite
usual in local linear smoothing by the kNN approach in this context of non-parametric
functional models and/or partial linear functional models. In particular, the conditions
(A1)-(A3), (A7) and (A8) are used for estimation in the SFPLR model (see [7]), while
the conditions (A4)-(A6) are used even for the kNN-LLE functional estimator which is a
special case of local linear modeling (see [1], [10]).

3.2. Main results
We are now in position to give our asymptotic results. The first one gives the asymp-

totic distribution of the estimator for the parametric component of the model, whereas
the second one precises the rate of almost complete convergence for the nonparametric
component.

Theorem 3.1. Under assumptions (A1)-(A8), if in addition
√

n log n
k → 0 as n → ∞,

√
n log2 n

k → 0 as n → ∞,
√

nϕ−1( k
n)α → 0 as n → ∞ and k ≥ n(2/r)+b−1/(log n)2 for some

constant b > 0 satisfying (2
r ) + b > 1/2 (where r ≥ 3) and n large enough, then we have

(i): n1/2(β̂ − β) D−→ N(0, σ2Σ−1),
(ii): lim supn→∞

√
n

2 log log n |β̂ns − βs| = (σ2σss)
1
2 a.s. , where σss = (Σ−1)ss for

s = 1, . . . , p.

Theorem 3.2. Under the assumptions of Theorem 3.1, we have that

|m̂(ξ) − m(ξ)| = O

(
ϕ−1

(
k

n

)α)
+ O

√ log n

k

 a.s..



542 K.N. Houda, B. Tawfik, N. Amina, F. Omar

4. Application results
4.1. Simulation study

The main objective of this section is to examine the behavior of the local linear kNN
approach on finite samples. More precisely, in order to highlight the superiority of this
approach compared to other approaches, we compare the mean square error of prediction
behavior of the two models: functional nonparametric regression and Semi-functional
partial linear regression for the four estimators: Kernel estimator, linear local estimator,
kNN estimator and kNN-LLE estimator. The proposed estimators regression are:

• Functional Non-Parametric Kernel regression (FNP.KR) proposed by [23];
• Functional Non-Parametric kNN regression (FNP.kNN) introduced by [18];
• Functional Non-Parametric Local-Linear regression (FNP.LLE) proposed by [12];
• Functional Non-Parametric kNN-Local Linear regression (FNP.kNN-LLE) devel-

oped by [1];
• Semi-functional partial linear kernel regression (SFPLR.KR) introduced by [7];
• Semi-functional partial linear kNN regression (SFPLR.kNN) proposed by [30];
• Semi-functional partial linear Local Linear regression (SFPLR.LLE), our estimator

given by the equation (2.11) by replacing hk with hn (through the utilization of a
cross-validation procedure);

• Semi-semi-functional partial linear Local-Linear kNN regression (SFPLR.kNN-
LLE), our estimator given by the equation (2.11).

In this simulation, we used the routine code available at https://www.math.univ-toulouse.
fr/~ferraty/SOFTWARES/NPFDA/npfda-content.html and the ’fda’ R-package, as dis-
cussed in [23], with some enhancements within the SPLR framework.
Formally, we generate our observations (Yi, Xi, ξi) from the following SFPLR model:

Yi = m(ξi) + XT
i β + ϵi, i = 1, . . . , n = 300 ,

where Xi ∼ Exp(0.5), β = 2, ϵi ∼ N(0, 1), and take the nonparametric operators m(.) as
follows:

m(ξ) = 10
1 +

∫ 1
0 ξ(t)dt

.

The functional explanatory variables ξi(t) are defined as: ξi(t) = t sin(2ait), for t ∈ [0, 1]
and ai ∼ N(0, 1).

The sample of curves {ξi}n
1 can be observed in Figure 1.
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Figure 1. A sample of n = 300 functional explanatory variables ξ.
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Recall that the FNP model is defined as follows:
Yi = m(ξi) + ϵi, i = 1, . . . , n = 300.

In order to compute our estimators we use the class of semi-metrics based on derivatives
which is well adapted to this type of data (smooth data):

d(ξ1, ξ2) =

√∫ 1

0
(ξ(s)

1 (t) − ξ
(s)
2 (t))2dt, (4.1)

where ξ(s)(t) denoting the sth derivative of the curve ξ(t), and we selected the asymmetric
quadratic kernel K defined by:

K(u) = 3
4

(1 − u2)I[0,1/2](u). (4.2)

While the Local-Linear estimator ( for the two models FNP and SFPLR) is constructed
by the same procedure proposed by [12] for which the locating function ϱ is defined by

ϱ(ξ1, ξ2) =
∫ 1

0
θ(t)(ξ(s)

1 (t) − ξ
(s)
2 (t))dt (4.3)

where θ is the eigenfunction of the empirical covariance operator:
1

|Λ|
∑
i∈Λ

(ξ(s)
i (t) − ξ(s)(t))t(ξ(s)

i (t) − ξ(s)(t)), with ξ(s)(t) = 1
|Λ|

∑
i∈Λ

ξ
(s)
i (t),

associated with the q-greatest eigenvalue.
On other hand, the models’ performance depends on the parameters used in the es-

timation process. In fact, bandwidth parameters play a critical role in nonparametric
estimation, affecting all asymptotic properties, and in particular the rate of convergence.
In our study, the optimal bandwidth (hopt) is obtained using the kernel cross-validation
(CV) method and we use the selection rule proposed in [23].

hopt = arg min
h

CV (h) where CV (h) =
n∑

i=1

(
Yi − Ỹl,(−i)

)2
, l = 1, 2,

with Ỹ1,(−i) (respỸ2,(−i) ) is the leave-one-out values of the functional nonparametric re-
gression estimators calculate at (ξi) (resp. the leave-one-out values of the semi-functional
nonparametric regression estimators calculate at (Xi, ξi)).

In the second stage, the k-NN technique is utilized to derive hkopt , which represents the
bandwidth associated with the optimal number of neighbors, as determined by following
cross-validation:

hkopt = min
{

h ∈ R+ such that
n∑

i=1
IB(ξ,h) (ξi) = kopt

}
,

where

kopt = arg min
h

CV (k) with CV (k) =
n∑

i=1

(
Yi − Ỹ kNN

l,(−i)

)2
l = 1, 2.

The Ỹ kNN
1,(−i) (resp Ỹ kNN

2,(−i) ) is the leave-one-out values of the functional nonparametric
regression estimators calculate at (ξi) (resp. the leave-one-out values of the semi-functional
nonparametric regression estimators calculate at (Xi, ξi)).

In this simulation study, we take the following parameters: s = 2, q = 8, Λ =
{1, . . . , 300}, and k ∈

{
10, 10 +

⌊
n

100
⌋

, 10 + 2
⌊

n
100
⌋

, . . . ,
⌊

n
2
⌋}

( ⌊.⌋ is the ceiling function).
We randomly split the n-sample into two parts: one is a training sample Strain ={

(Yi, Xi, ξi)i∈ Train
}

(for example, we take 75% of the n-sample) which is used for modeling
procedure, and the other is a testing sample Stest =

{
(Yi, Xi, ξi)i∈ Test

}
which is used to
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verify the prediction effect. To assess the effectiveness of the proposed model for this
prediction problem, we calculated the mean square error of prediction (MSEP ) on the
test sample:

MSEP = 1
nTest

∑
i∈ Test

(
Yi − Ỹl

)2
l = 1, 2,

where nTest is the length of the testing sample and Ỹ1 (resp Ỹ2, ) is the prediction values of
the functional nonparametric regression estimators calculate at (ξi) (resp. the prediction
values of the semi-functional nonparametric regression estimators calculate at (Xi, ξi)).

The experiment was replicated M = 100 times, which allow us to compute M values for
MSEP and display their distribution through a boxplot. More precisely, every MSEP is
calculated by M independent replications of sample size n,

MSEP = 1
n

n∑
u=1

MSEPu,

where MSEPu is the Mean square errors of prediction computed from the uth sample.
The MSEP errors are showing in Figure 2 and summarize in Table 1. This figure shows

the boxplots of the MSEP of the prediction values in the testing sample for the eight
proposed regression models.
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Figure 2. Mean square errors of prediction MSEP from the M replicates of the
experiment.

Table 1. MSEP (Mean squared error) for the six models.

Model Kernel kNN LLE kNN-LLE
FNP Y = m(ξ) + ϵ 17.930123 16.769152 17.192430 16.715073

SFPLR Y = m(ξ) +
∑3

k=1 Xkβk + ϵ 1.530868 1.144981 1.510142 1.143406

The prediction results are given in Figure 3 where we plot the predicted values against
the true values for both models and using the four estimation methods. This Figure gives
an idea on the accuracy of the predictions corresponding to one run.
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Figure 3. Prediction in the testing for the eight methods.

It clearly appears that the SFPLR model shows the best prediction effects compared to
the FNR model. This conclusion can be confirmed by the MSEP error. In fact, the
comparison of Mean Squared Error of Prediction (MSEP ) for the eight methods, as
illustrated in Figure 2, demonstrates that the forecasting accuracy of the SFPLR model.
Additionally, the results suggest that the kNN-LLE approach outperforms other methods
when applied to SFPLR models.

Now, we aim to determine how the degree of of derivation, denoted as s, influences the
distance measure between curves, represented as d(·, ·), in semi-functional partial linear
models using the bias of the β measurement. Table 2 provides insights into the potential
improvement in predictive power through the Square Errors SE for β:

SE = |β̂n − β|2.

Table 2. The SE of β̂n for the four semi-functional partial linear models varies
according to the degree of derivation, denoted as s.

Degree of derivation s SFPLR.KR SFPLR.KNN SFPLR.LLE SFPLR.LLE.KNN
0 0.04603 0.03000 0.03065 0.02729
1 0.04642 0.03605 0.03426 0.03604
2 0.04490 0.02886 0.03166 0.02922
3 0.07023 0.02591 0.03074 0.02647
4 0.23835 0.02912 0.03021 0.02941
5 0.16881 0.03394 0.02949 0.03396
6 0.32991 0.02966 0.03120 0.02958
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4.2. Application to real data
As in the simulation part, the goal of this section is to compare, on a real dataset, our

kNN-LLE estimators to other types of estimators proposed for SFLPR models and to the
estimators used for nonparametric functional regression (FNR), namely kNN estimator,
local linear estimator (LLE) and kernel estimator.

We show, on the one hand, the ease of practical implementation of the estimators
obtained and on the other hand their usefulness compared to other estimation methods
for the two models (FNR and SFLPR).

Data Description
The dataset contains NIR spectroscopy measurements resulting from an experiment to

determine the composition of 72 samples of cookie dough pieces (formed but unbaked
cookies) studied by [17] which had been analysed by [2]. The main objective is to predict
the percentage of fat content Y for cookie dough datasets from the corresponding content,
namely, sucrose (X1), dry flour (X2) and water (X3) as well as from the spectra of near-
infrared absorbance ξ, using SFPLR. For this purpose, near-infrared spectroscopy curves
representing ξi(ω) absorption steps from 1100 to 2498 nm were measured at intervals of
2 nm steps. The absorption ξi(ω) of light is measured for each wavelength ω and each
sample i, i = 1, . . . , 72. ξi (ω1) , . . . , ξi (ω700) represent the i th discretized spectrometric
curve.

The sample of curves {ξi}72
1 can be observed in Figure 4.
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Figure 4. A sample of 72 curves ξ of NIR spectroscopy.

Statistical Models The 72 i.i.d. observations were randomly divided into two subsets.
The first subset, 75% of the cookie dough sample, was used for the modeling procedure
(training sample). The second subset was used as a test sample to evaluate the prediction
quality.

Assuming a Semi-Functional Partial Linear Regression (SFPLR) model, we establish a
relationship between the variables as follows:

Y = m(ξ) +
3∑

k=1
Xkβk + ϵ,
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where β1, β2, β3 and m(·) are unknown modelling the relationship between X1, X2, X3, ξ
and Y . The statistical difficulty is to come up with a suitable estimator. We will concen-
trate on regression models such that E (ϵ | X1, X2, X3, ξ) = 0.

To calculate our estimators, we will keep the same tools as in the simulation. We carry
out M = 100 independent replications, which allow us to compute M values for MSEP
and display their distribution through a boxplot.

The MSEP results are reported in Table 3.

Table 3. MSEP (Mean squared error) for FNP.KR, FNP.kNN, FNP.LLE,
FNP.kNN-LLE, SFPLR.KR, SFPLR.kNN, SFPLR.LLE and SFPLR.kNN-LLE
models.

Model Kernel kNN LLE kNN-LLE
FNP Y = m(ξ) + ϵ 3.2072918 2.0579926 2.7751550 1.9710179

SFPLR Y = m(ξ) +
∑3

k=1 Xkβk + ϵ 0.5793651 0.5166147 0.1919556 0.1038148

Additionally, one hundred random partitions were generated to reduce the impact of
Strain and Stest partitions. One hundred MSEP values were obtained for each procedure
from the FNP and SFPLR models. Figure 5 represents the boxplots corresponding to the
M values of MSEP for the eight models.
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In Figure 6, we plot the predicted values versus the true values.
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Figure 6. Prediction of the testing cookie dough samples

5. Concluding remarks
The considered dataset contains NIR spectroscopy measurements from an experiment

to determine the composition of 72 samples of cookie dough pieces, specifically formed
but unbaked cookies. The primary objective is to predict the fat content percentage of
cookie dough based on key ingredients, including sucrose, dry flour, and water, as well
as the near-infrared absorbance spectra. The model of choice for this predictive task is
SFPLR. Table 3 provides a comprehensive view of Mean Squared Error (MSEP ) values
for various predictive models. These models encompass different configurations, including
FNP.KR, FNP.kNN, FNP.LLE, FNP.kNN-LLE, SFPLR.KR, SFPLR.kNN, SFPLR.LLE,
and SFPLR.kNN-LLE. The results highlight that SFPLR models consistently outperform
FNP models in terms of prediction accuracy, and in particular, the kNN-LLE approach
shows promise in the SFPLR framework. The MSEP obtained (Figure 5) confirm the
previous conclusions by affirming the emergence of the kNN-LLEN approach as an out-
standing player in the SFPLR category. Figure 6 takes the evaluation a step further by
depicting the alignment between predicted values and true values. This scatter plot vi-
sually confirms the accuracy of predictions and provides an intuitive assessment of model
performance. Once again, it reinforces the previous conclusions.
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Appendix A. Proofs section
The proof of asymptotic results follow the same ideas as in [7]. They are based on the

following intermediate results.

Lemma A.1. (Theorem 2 in [10]) Under assumptions (A1)-(A7), we have∣∣∣∣∣∣g1s(ξ) −
n∑

j=1
Wj(ξ)Xjs

∣∣∣∣∣∣ = Oa.co.

ϕ−1
(

k

n

)α

+

√
log n

k

 . (A.1)

∣∣∣∣∣∣g2(ξ) −
n∑

j=1
Wj(ξ)Yj

∣∣∣∣∣∣ = Oa.co.

ϕ−1
(

k

n

)α

+

√
log n

k

 . (A.2)

Lemma A.2. (Lemma 3 in [7]) Let Z1, . . . , Zn be independent centered r.v.’s such that for
some r ≥ 2, max1≤l≤n E|Zl|r ≤ C < ∞. Assume that {ajl, j, l = 1, . . . , n} is a sequence
of positive numbers such that max1≤j,l≤n |ajl| = O(an) and max1≤j≤n

∑n
l=1 |ajl| = O(bn).

If, in addition,

exp
(

− b
1/2
n (log n)2

b
1/2
n + a

1/2
n n1/r log n

)
= O(n−a), (a > 2),

and
a1/2

n n1/r+b = O(b1/2
n log n), (b > 0),

then

max
1≤j≤n

∣∣∣∣∣
n∑

l=1
ajlVl

∣∣∣∣∣ = O(a1/2
n b1/2

n log n) a.s. (A.3)

We then state the following lemmas, similar to Lemmas 6 and 7 in [7], which are
necessary to establish our asymptotic results.

Lemma A.3. Under assumptions (A3) and (A4), if in addition ξ1, . . . , ξn are independent
distributed as ξ, we have

max
1≤j,l≤n

∣∣Wj(ξl)
∣∣ = O

( 1
k − 1

)
. (A.4)

Proof. Let Jj = {j ∈ {1, . . . , n}; d(ξj , ξ) ≤ hk}, according to (A3), for all ξ ∈ F, we have

C1hk ≤ C1d(ξi, ξ) ≤ ϱ(ξi, ξ) ≤ C2d(ξi, ξ) ≤ C2hk.

Then
C ′h2

k ≤ ϱ(ξi, ξ)(ϱ(ξi, ξ) − ϱ(ξj , ξ)) ≤ C ′′h2
k.

Moreover, from assumption (A4) and the fact that |Ji| = k, it follows that∑
j∈Ji

Wij(ξ, hk) ≥ kCh2
kϕ2

ξ(h) and
∑
j∈Ji

Wj(ξ) = 0. (A.5)

Similarly, we verify that ∑∑
i ̸=j

Wij(ξ, hk) ≥ k(k − 1)Ch2
nϕ2

ξ(h). (A.6)

Then we have ∑n
i=1 Wij(ξ, hk)∑∑

j ̸=i Wij(ξ, hk)
≥ 1

k − 1
,

from which we deduce that

max
1≤j,l≤n

∣∣Wj(ξl)
∣∣ = O

( 1
k − 1

)
.

□
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Lemma A.4. Under the conditions (A1)-(A8), we have
1
n

X̃T X̃ → Σ a.s. (A.7)

Proof. Denote X̃ls = Xls −
∑n

j=1 Wj(ξl)Xjs = ηls − g1s(ξl) −
∑n

j=1 Wj(ξl)Xjs (l =
1, . . . , n, s = 1, . . . , p). Then the (r, s)th element of 1

nX̃T X̃ can be written as

n−1∑n
i=1 X̃T

lrX̃ls = n−1[
∑n

l=1 ηlrηls +
∑n

l=1 ηlr

(
g1s(ξl) −

∑n
j=1 Wj(ξl)Xjs )

+
∑n

l=1 ηls

(
g1r(ξl) −

∑n
j=1 Wj(ξl)Xjr )

+
∑n

l=1

(
g1r(ξl) −

∑n
j=1 Wj(ξl)Xjr )

×
(
g1s(ξl) −

∑n
j=1 Wj(ξl)Xjs )] .

(A.8)

Thus, using the strong law of large numbers for i.i.d. variables, we get, as n → ∞,

n−1
n∑

l=1
ηlrηls → Σrs a.s. (A.9)

Furthermore, by applying directly the Lemma A.1 and using again the strong law of
large numbers for i.i.d. variables, we can see that

n−1
n∑

l=1
ηlr

g1s(ξl) −
n∑

j=1
Wj(ξl)Xjs

 → 0 a.s. (A.10)

n−1
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ηls

g1r(ξl) −
n∑
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Wj(ξl)Xjr

 → 0 a.s. (A.11)

and

n−1
n∑

l=1

g1r(ξl) −
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j=1
Wj(ξl)Xjr

×

g1s(ξl) −
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j=1
Wj(ξl)Xjs

 → 0 a.s. (A.12)

Finally, we conclude the proof by using results of A.8-A.12. □
Proof. (Theorem 3.1)

Part (i):
Similar to [30], we can write

√
n
(
β̂n − β

)
=
(
n−1X̃T X̃

)−1 1√
n


n∑

l=1
X̃lmn(ξl) −

n∑
l=1

X̃l

 n∑
j=1

Wj(ξl)ϵj

+
n∑

l=1
X̃lϵl


=
(
n−1X̃T X̃

)−1 1√
n

(Sn1 − Sn2 + Sn3). (A.13)

where m(ξl) = m(ξl) −
∑n

j=1 Wj(ξl)m(ξj).
As, the sth element of X̃l is written as

X̃ls = ηls −
n∑

j=1
Wj(ξl)ηjs + g1s(ξl) −

n∑
j=1

Wj(ξl)g1s(ξj),

= ηls −
n∑

j=1
Wj(ξl)ηjs + m̃ls (l = 1, . . . , n, s = 1, . . . , p) . (A.14)

Then each element of the vectors Sn1, Sn2 and Sn3 can be decomposed into three sum-
mands, noted Snq,1, Snq,2 and Snq,3 for q = 1, 2, 3 , whose asymptotic behavior can be
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obtained from the Lemma A.1, Lemma A.2 and the Lemma A.3. More specifically, if in
the Lemma A.2, we take ajl = Wj(ξl), an = 1

k−1 and bn = 1 with Vl = ϵl(Vl = ηls), it
follows that

| m(ξl) |= Oa.s.

ϕ−1
(

k

n

)α

+

√
log n

k
+ log n√

k − 1

 , (A.15)

and

| m̃ls |= Oa.a.

ϕ−1
(

k

n

)α

+

√
log n

k
+ log n√

k − 1

 . (A.16)

Let us treat term Sn1. It follows from (A.15), (A.16) and Abel’s inequality that

Sn1,3 =
n∑

l=1
m̃lsm(ξl) ≤ n | m(ξl) || m̃ls |

= O

(
n

(
ϕ−1

(
k

n

)2α

+ log n

k
+ log n2

k − 1

))
= o(

√
n) a.s. (A.17)

Again, using the same techniques, if we consider ajl = m(ξl), an = ϕ−1
(

k
n

)α
+
√

log n
k +

log n√
k−1 , bn = nan and Vl = ηls in lemma A.2, it follow that

Sn1,1 =
n∑

l=1
ηlsm(ξl) = O

ϕ−1
(

k

n

)α

+

√
log n

k
+ log n√

k − 1

√
n log n


= o(

√
n) a.s., (A.18)

and

Sn1,2 =
n∑

l=1

 n∑
j=1

Wj(ξl)ηjs

m(ξl)

≤ n |m(ξl)| max
1≤j,l≤n

∣∣∣∣∣∣
n∑

j=1
Wj(ξl)ηjs

∣∣∣∣∣∣
= O

ϕ−1
(

k

n

)α

+

√
log n

k
+ log n√

k − 1

 n log n

k − 1


= o(

√
n) a.s. (A.19)

For the term Sn2, similar to the arguments used to obtain A.17-A.19, given A.16 and
Abel’s inequality, it follows that

Sn2,1 =
n∑

l=1

 n∑
j=1

Wj(ξl)ϵj

 ηts = O

(√
n log2 n√
k − 1

)
= o(

√
n) a.s., (A.20)
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Sn2,2 =
n∑

l=1

 n∑
j=1

Wj(ξl)ηjs

 n∑
j=1

Wj(ξl)ϵj


≤ n max

1≤j,l≤n

∣∣∣∣∣∣
n∑

j=1
Wj(ξl)ηjs

∣∣∣∣∣∣ max
1≤j,l≤n

∣∣∣∣∣∣
n∑

j=1
Wj(ξl)ϵj

∣∣∣∣∣∣
= O

(
n log2 n

k − 1

)
= o(

√
n) a.s., (A.21)

and

Sn2,3 =
n∑

l=1
m̃ls

 n∑
j=1

Wj(ξl)ϵj


= O

ϕ−1
(

k

n

)α

+

√
log n

k
+ log n√

k − 1

 n log n√
k − 1


= o(

√
n) a.s. (A.22)

Finally, for Sn3, we have

Sn3,1 =
n∑

l=1
ηlϵl , (A.23)

Sn3,2 =
n∑

l=1

 n∑
j=1

Wj(ξl)ηjs

 ϵl = O

(√
n log n√
k − 1

)
= o(

√
n) a.s., (A.24)

and

Sn3,3 =
n∑

l=1
m̃lsϵl

= O

ϕ−1
(

k

n

)α

+

√
log n

k

 √
n log n√
k − 1

 = o(
√

n) a.s. (A.25)

Then, by (A.13) and (A.17)-(A.25), it follows that

√
n(β̂ − β) =

(
n−1X̃T X̃

)−1 1√
n

(
n∑

l=1
ηlϵl + o(

√
n)
)

. (A.26)

Therefore, the proof of part (i) of the theorem 3.1 follows directly from central limit
theorem and the Lemma A.4.

Part (ii): using the result A.26 and lemma A.4, the proof of these results is obtained
by following the same steps as those of [7]. □

Proof. (Theorem 3.2)
From equation 2.11, we can write

|m̂(ξl) − m(ξl)| ≤ |
∑n

j=1 Wj(ξl)Xj
T (β̂n − β)| + |

∑n
j=1 Wj(ξl)(m(ξl) + εl)|

≤ |S1| + |S2| .
(A.27)
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On the one hand, we have
|S1| ≤ max1≤j,l≤n |

∑n
j=1 Wj(ξl)Xj|||β̂n − β||

≤ max1≤j,t≤n |
∑n

j=1 Wj(ξl)
(
Xj − E(Xl/ξl

)
|||β̂n − β|| + ||E(Xl/ξl)||||β̂n − β|| .

Under Theorem 3.1(ii), we have ||β̂n−β|| → 0 and according to the fact that ||E(Xl/ξl)|| <
∞, that implies

|S1| → 0 a.s. (A.28)
In other hand, from Lemma A.1, we have

|S2| = Oa.s.

ϕ−1
(

k

n

)α

+

√
log n

k

 . (A.29)

So by using Equations A.27, A.28 and A.29, we have

|m̂(ξ) − m(ξ)| = Oa.s.

ϕ−1
(

k

n

)α

+

√
log n

k

 .

□


