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Abstract 
In this research, we use the multi-wave method to obtain new exact solutions for generalized forms of 
the 5th order KdV equation and the fifth order KdV (fKdV) equation with power law nonlinearity. 
Computations are performed with the help of the mathematics software Mathematica. Then periodic 
wave solutions, bright soliton solutions and rational function solutions with free parameters are 
obtained by this approach. It is shown that this method is very useful and effective. 
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1. Introduction 

 
The research of exact solutions to nonlinear evolution equations is very important, because 
these problems appear in fluid mechanics, plasma physics, optical fibers, biology, solid state 
physics, chemical kinematics, chemical physics, and so on. For this reason, a lot of 
mathematical methods have been developed in this area. In order to find the wave solutions, 
many methods were attempted in literature such as solitary wave ansatz method [1], Hirota’s 
bilinear transformation method [2,3], exp-function method [4,5],  '/G G  -expansion method 

[6], trial equation method [7], and so on. Also, Dai et al. [8] proposed extended three-soliton 
method. Then, Shi et al. [9-11] constructed a novel approach, namely, multi-wave method to 
find new exact solutions for nonlinear problems and extend Dai et al.'s work [8]. 
 
In this work, we apply the multi-wave method in order to find new results to nonlinear 
problems. We demonstrate an application of multi-wave method for finding exact solutions of 
two generalized nonlinear evolution equations. One of these equations is 5th order KdV 
equation [12] 
 
   0,       (1) 
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where	 , ,   and  are all constants. The first term is the evolution term, while the second 
and third terms together form the nonlinear terms. Finally, the coefficients of  and  are the 
third and fifth order dispersion terms, respectively. The other one is the dimensionless form of 
the fifth order KdV (fKdV) equation with power law nonlinearity [13] 
 
    0,       (2) 
 
where	 ,  and  are constants parameters and 0. 
 

2. The bilinear form of 5th order KdV equation 
 
Let’s suppose 1	 in Eq. (1) and 
 
    ln ,				 ln 0.       (3) 
 
Substituting 	 into Eq. (1), we can get 
 
   0.      (4) 
 
Integrating Eq. (4) with respect to  and equating the integral constant to zero, we have 
 
   0.        (5) 

 
Substituting Eq. (3) into Eq. (5), we can reduce Eq. (1) into the bilinear forms as follows 
 

    ∙ 0,             

    3 ∙ 0,        (6) 

 
where ,  is an unknown real function, the bilinear operator  is defined as 
 

  , , ′ | 0.      (7) 

 
3. An application of the multi-wave method for 5th order KdV equation 

 
We first consider the test function of extended four-soliton method as follows: 
 

, ,     (8) 
 
where	 , 1,2,3,4. Substituting (8) into (3), we can write the form of general 
solution of Eq. (1) 
 

.     (9) 
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Using Eqs. (9) and (6), we obtain a set of algebraic equations for 
	 , , , , , , , , , , , . Solving these systems with the aid of Mathematica, 
we obtain the following solutions, respectively: 
 
Case 1.  

0, 2 , 4√3 24 , (10) 

 
where ,  are free parameters. Substituting (10) into Eq. (9) yields the following wave 
solution of Eq. (1) 
 

    , ,       (11) 

 

where 2 4√3 24 . 

 
Case 2.  

3 18
,			

18 3
, √3 54

6
5

,	 

	 √3 54 ,		      (12) 

 
where ,  and  are free parameters. Substituting (12) into Eq. (9) yields the exact solution  
 

, ,   (13) 

 

where √3 54 , √3 54 . 

Also, if we take 6  and 1, 1, then Eq. (13) can be reduced to the 

following form: 
 

, 1 .     (14) 

 
Case 3.  

0, 0, 0, , 2√3 54 ,   (15) 

 
where  is a free parameter. Substituting (15) into Eq. (9), we can obtain the following exact 
solitary solution: 
 

    , ,       (16) 

 



16 

where 2√3 54 . 

 
Case 4.  

0,
3 18

,			
18 3

, √3 54
6

5
,	 

	 √3 54 ,		      (17) 

 
where ,  and  are free parameters. Substituting (17) into Eq. (9) yields the exact 
solution  
 

, ,   (18) 

 

where √3 54 , √3 54 . 

Also, if we take 6  and 1, 1, then Eq. (18) can be reduced to the 

following form: 
 

, 1 .      (19) 

 
Case 5.  

0,
3 18

,			
18 3

, √3 54
6

5
,	 

	 √3 54 ,		      (20) 

 
where ,  and  are free parameters. Substituting (20) into Eq. (9), we can write the exact 
solution  
 

, ,   (21) 

 

where √3 54 , √3 54 . 

Also, if we take 6  and 1, 1, then Eq. (21) can be reduced to the 

following form: 
 

, 1 .      (22) 

 



17 

Case 6.  

0,
3 18

,			
18 3

, √3 54
6

5
,		 

√3 54 ,		      (23) 

 
where ,  and  are free parameters. Substituting (23) into Eq. (9) yields the solitary 
solution  
 

, ,   (24) 

 

where √3 54 , √3 54 . 

Also, if we take 6  and 1, then Eq. (24) can be reduced to the following 

form: 
 

, 1 .    (25) 

 
Case 7.  

0,				 , √3 54 ,	    (26) 

 
where ,  are free parameters. Substituting (26) into Eq. (9) yields the following wave 
solution to Eq.(1)  
 

, ,   (27) 

 

where √3 54 . Also, if we take 6  and 

1, 1, then Eq. (27) can be reduced to the following form: 
 

, 1 .     (28) 
 
Case 8.  

, ,			 ,			 

	 √3 54 , √3 54 ,		    (29) 

 
where 	and  are free parameters. Substituting (29) into Eq. (9), we have the following 
wave solution:  
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, ,   (30) 

 

where √3 54 , √3 54 . Also, if we 

take 6  and 1, then Eq. (30) can be reduced to the following form: 

 

, 1 .      (31) 

 
Case 9.  

, ,			 ,			 

	 √3 54 , √3 54 ,		    (32) 

 
where 	and  are free parameters. Substituting (32) into Eq. (9) yields the solitary solution  

, ,   (33) 

 

where √3 54 , √3 54 . Also, if we 

take 6  and 1, then Eq. (33) can be reduced to the following form: 

 

, 1 .     (34) 

 
Case 10.  

0,				 ,			 √3 54 ,	    (35) 

 
where  is a free parameter. Substituting (35) into Eq. (9), we can obtain soliton solution as 
follows: 
 

, ,     (36) 

 

where √3 54 . Also, if we take 6  and 	 1, then 

Eq. (36) can be reduced to the following soliton solution 
 

, .       (37) 
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Figure 1. Solitary solution; Bright soliton 

 
 

4. The bilinear form of fKdV equation 
 
If 2	, then Eq. (2) can be converted into 
 
    0.     (38) 
 
Suppose that 
    ln ,				 ln ,      (39) 
 
and substituting it into Eq. (38), we can get 
 
    0.     (40) 
 
Integrate x one time, and let the integral constant is zero, we have 
 
    0.     (41) 
 
Substituting Eq. (39) into Eq. (41), we can reduce Eq. (38) into the bilinear forms as follows 
 

    ∙ 0,             

    ∙ ∙ 3 ∙ 0,     (42) 
 
where ,  is an unknown real function, 15 		and the bilinear operator  is 
defined as 
 

  , , ′ | 0.    (43) 

 
If we take 
 

∙ ∙ ,       (44) 
then Eq. (42) is converted into 
 

∙ 0.     (45) 
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5. The application of the multi-wave solutions method  
for solving the fKdV equation 

 
For this problem, we can use test function of extended four-soliton method 
 

, ,   (46) 
 
where	 , 1,2,3,4. Substituting (46) into (45), we can write the form of general 
solution of the fKdV equation 
 

.   (47) 

 
Substituting Eq. (47) into Eq. (45), and equating the coefficients of all powers of polynomials, 
we can find a set of algebraic equations for , , , , , , , , , , , . Solving 
these algebraic equations with the aid of Mathematica, we obtain the exact solutions as 
follows: 
 
Case 2.  

0, 0, ,    (48) 

 
where , ,  are free parameters. Substituting (48) into Eq. (47) yields the following wave 
solution  
 

    , ,       (49) 

 

where . 
 
Case 2.  

0, 		 , , 			 √3 ,
3 16

,	 

	 , , √ ,		   (50) 

 
where , ,  and  are free parameters. Substituting (50) into Eq. (47), we can obtain  
 

, √ , (51) 

 

where 3
16 3

4 3 2
 and √3 . 

 
Case 3.  

		 , , ,			 ,     (52) 
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where , , ,  are free parameters. Substituting (52) into Eq. (47), we have the following 
solutions: 
 

  , 1 ,    (53) 

 

where . Also, if 1, 1, then Eq. (53) can be 

reduced to the following form: 
 

, 4
2 .       (54) 

 
Case 4.  

0, 0, 0, ,	    (55) 

where ,  are free parameters. Substituting (55) into Eq. (47) yields the exact solution  

    , ,        (56) 

 

where . Also, if we take 1, then Eq. (56) can be reduced to the 

following form: 
 

, .       (57) 

 
Case 5.  

0,			 , 			 √3 ,
3 16

,	 

		 , √ 		,		    (58) 

 
where ,  are free parameters. Substituting (58) into Eq. (47) yields the solution  
 

, √ ,   (59) 

 

where 3
16 3

4 3 2
 and √3 . 

 
Case 6.  

0,			 , 			 √3 ,
3 16

,	 

		 , √ 		,		    (60) 

 
where ,  are free parameters. Substituting (60) into Eq. (47), we obtain solitary solution  
 

, √ ,   (61) 
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where 3
16 3

4 3 2
 and √3 . Also, if we take 

1, then Eq. (61) can be reduced to the following form: 
 

, √ .   (62) 

 
Case 7.  

 0,			 , 			 √3 , , 4
√3 2 3 2 16 3

4
		,	   (63) 

 
where ,  are free parameters. Substituting (63) into Eq. (47) yields the periodic solitary 
solution  
 

, √ ,   (64) 

 

where 2
16 3

4 3 2
 and √3 . 

Case 8.  

  0,						 √3 , , 4
√3 3 3 2 16 3

4
		,	   (65) 

 
where 	is a free parameter. Substituting (65) into Eq. (47), we find  

, √ ,   (66) 

 

where 3
16 3

4 3 2
 and √3 . 

 
Case 9.  

  0,						 √3 , , 4
√3 2 3 2 16 3

4
		,	   (67) 

 
where 	is a free parameter. Substituting (67) into Eq. (47) yields the periodic solitary 
solution 

, √ ,   (68) 

 

where 2
16 3

4 3 2
 and √3 . 

Case 10.  

0,				 , ,				 4

3 2 16 4
4

, 4

3 2 16 4
4

,	   (69) 

 
where , ,  are free parameters. Substituting (69) into Eq. (47) yields the exact solution  
 

  , ,    (70) 
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where 4
16 4

4 3 2
. Also, if we take 1 and 1,then Eq. (70) can be 

reduced to the solution 
 

, 1      (71) 

 
Case 11.  

0,				 , ,				 4

3 2 16 4
4

, 4

3 2 16 4
4

,	   (72) 

 
where , ,  are free parameters. Substituting (72) into Eq. (47) yields the solitary solution  
 

  , ,     (73) 

 

where 4
16 4

4 3 2
. Also, if we take 1 and 1,then Eq. (73) can 

be reduced to the solution 
 

, 1 .    (74) 
 
Case 12.  

0,				 ,			 4

3 2 16 4
4

, 4

3 2 16 4
4

,	   (75) 

 
where , ,  are free parameters. Substituting (75) into Eq. (47), we have  
 

  , ,    (76) 

 

where 4
16 4

4 3 2
. Also, if we take 1 and 1,then Eq. (76) can be 

reduced to the solution 
 

, 1 .     (77) 

 
Case 13.  

0,				 ,			, 3

3 2 16 3
4

,	    (78) 

 
where ,  are free parameters. Substituting (78) into Eq. (47), we get  
 

   , ,     (79) 

 

where 3
16 3

4 3 2
. Also, if we take 1 and 1,then Eq. (79) can be 

reduced to  
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, 1 .    (80) 
 
Case 14.  

0,				 , 2

3 2 16 2
4

,			 2

3 2 16 2
4

,	   (81) 

 
where ,  are free parameters. Substituting (81) into Eq. (47), we can obtain  
 

   , ,     (82) 

 

where . Also, if we take 1,then Eq. (82) can be reduced to the 

wave solution 
 

, 1 .     (83) 

 
Case 15.  

0,				 , 1

3 2 16 1
4

,			 1

3 2 16 1
4

,	   (84) 

 
where ,  are free parameters. Substituting (84) into Eq. (47) yields the following exact 
solution 
 

   , ,     (85) 

 

where . Also, if we take	 1 and 1,then we can reduce 

Eq. (85) to the following form: 
 

, .      (86) 
 
Case 16.  

0,						 4

3 2 16 4
4

,	     (87) 

 
where  is a free parameter. Substituting (87) into Eq. (47) yields soliton solution 
 

    , ,      (88) 

 

where . Also, if we take 1,then Eq. (88) can be reduced to the 

following form: 
 

, .      (89) 
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Figure 2. Periodic solution; Bright soliton 
 
 

6. Conclusion 
 
In this paper, we used the multi-wave method to obtain exact solutions to 5th order KdV 
equation and fifth order KdV (fKdV) equation. Using a useful test function, we obtain new 
exact solitary solutions, such as M-type wave solution, periodic solitary wave solution, 
triangular periodic wave solution, etc., for two nonlinear evolution equations. So, these 
applications illustrate the effectiveness of the suggested method with the help of the 
Mathematica. The obtained results show that this approach is possible for integrable equations 
or non-integrable equations to have periodic solitary waves. 
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