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Abstract

In this paper, a functional inequality is proven and the result is illustrated with some elementary
functions.
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1. Introduction

Let f'be a positive real function defined on a subset E of the real line R .The function h: E =
R, h(x) = f(x)® is defined by h(x) = e/®/ () where the function Inx is the natural
logarithm function. If f'and g are two such functions defined on the set £, then it is a natural
problem to compare the values f(x)”®and g(x)9® for each x € E. Since the arithmetic and
geometric means inequality is a very important elementary tool for making estimates or
approximation it is expected that the inequality play a role for the solution of these types of
problems.

Let W = {1 = (4445...,4,) ER™ A €[0,1] for j=12,...,n,%}_, 4; = 1}be the set of
weight vectors and P = {x = (xll X, --~xn) €ER™ for j=1,2,---,n, xj > O} be the set of
positive vectors.

Definition 1.1. Let A € Wand x € P. The real number
An(x,l) = Alxl + Azxz + + /‘{nxn

is called the weighted arithmetic mean of 7 positive real numbers x4, x5, -+, x,0f weight A and
the number



G,(x,A) = x xgz x,’}”

is called the weighted geometric mean of n positive real numbers x4, x,, -+, x,, of weight 4.

For the weight vector A = (l,l ,l)

n'n’ n
1
Ap(x, ) =A, = E(x1 +x, + 0+ xy)

is the arithmetic mean of the n positive real numbers x4, x,, -, x,, and

1
Gn(x, ) = Gy = (X125 == X )7 = 1/ X1. X5 - Xy

is the geometric mean of the n positive real numbers x4, x5, =+, x;,.

We have the following inequality between arithmetic and geometric means.

Theorem 1.2 (Arithmetic and geometric means inequality [2, 5]). G, (x, 1) < A, (x, 1)for all

positive real numbers xi,Xx,,++,xpand for all A € Wand the inequality is strict unless x, =

Xy = = Xp.

Arithmetic-geometric means inequalities has numerous applications in mathematics and other

areas. We note the following example which shows that certain type of extremum value

problems can be resolved easily by using this inequality.

Example 1.3. We will find the minimum value of the function

flx,y,2) =:%+ ’%+ 3/% over the set 2 = {(x,v,z) € R%:x,y,z € R}.

Solution. From the arithmetic and geometric means inequality for every (x,y,z) € 2 we have

sinx siny 3|sinz
foyz)=——+ |Zz=+ |=
siny sinz sinx

sinx smy 1 sm 13 smz 13 sinz+ 13 [sinz - 66 1 1 sinxsinysinz
smy 2 smz smz sinx 3 sinx 3 ./sinx 4 27 siny sinz sinz

— 22/331/2

sinx 1 |[sin 1 3 [sinz . .
Since the equality occurs when — = > ’S—y =3 fs— or equivalently when siny =
nz mx

siny
v3V2and sinz = E\/?Sinx by the definition of minimum value it follows that
min{f (x,v,2): (x,y,z) € N} = 22/331/2,
For positive real numbers @ and b and for 4 € (0,1) the weighted arithmetic-geometric means
inequality is the inequality
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a’h'=* < Aa + (1 — A)b.

Forp > lifwe take 1 = % 1-A= 5 and replace awith aPand b with b? we get the Young’s

q
inequality ab <L + %

This inequality is one of the most important inequality in mathematics because the famous
Cauchy, Holder and Minkowski inequalities follow from it.

2. The functional inequality and applications

Theorem 2.1. Let f, g be positive real valued functions defined on a subset Eof the real line
R. Then f(x)"™ < g(x)9® if f(x) < g(x) and f(x) + g(x) = 1 for each x € E. The
inequality is strict if f(x) < g(x) and f(x) + g(x) = land the equality occurs if and only if
f(x) _ In(g(x))

= forx € E.
9x)  In(f(x)

Proof. Let x € Ebe arbitrary, a = f(x),b = f(x) + g(x)and A = f ( ) .Thena > 0,b > Oand

A€ (0,1]. Since 1 — A > 0and f(x)+ g(x) = 1by the welghted arlthmetlc and geometric
means inequality

fx) fx) fx)
FO)I® < fFOID(f(x) + g(x) 9@

<IBr@+(1-22) @ + 96 = 9.

It follows that f(x)7®) < g(x)™and the inequality is strict when f(x) < g(x) and f(x) +
g(x)=1.

Remark 2.2. 1) In the proof of the Theorem 2.1 we cannot directly use the properties of the
convex function ¢:(0,00) = R,¢(x) = x* = e¥™* gsince this function has the global

minimum value at the point x = - But since the function ¢(x) = x* is monotone increasing

onE, OO)the inequality is trivial whené < f(x) < g(x).

2) Theorem 2.1 holds true for positive real valued function defined on arbitrary sets not just on
the subsets of the real line.

By mathematical induction we get the following result.

Corollary 2.3. For j = 1,2,---,n let fj, gjbe positive real valued functions defined on a subset
Eof the real line R. Then H ~1/fj (x)ff(x) <IIj. 1g](x)91(") iffj(x) < gj(x)and f;j(x) +
gj(x) = 1 for each x € Eand j = 1,2,--,n The inequality is strict if fj(x) < g;(x)and
f](x) lngj(x)f

® - Inf00 x € Eand j =

fi(x) + gj(x) = land the equality occurs if and only zf

1,2,
For the polynomial functions we have the following result.

29



Corollary 2.4. Let p and q be real polynomial functions such that m = degp < degq = n. If
0 <p(0) <q0), 0<pP(0) <qP0) for j=1,2,,n and p(0) + q(0) =1, where
p(0) and are q9(0) the jderivatives of p and q at x = 0 respectively, then p(x)P® <
q(x)1® forall x € [0, ).

Proof. From the hypothesis we have p(x) < q(x) and p(x) + q(x) = p(0) + q(0) > 1 for all
x € [0, o). So the inequality follows from the Theorem 2.1.

The following result is the problem 32 given in [4].

Proposition 2.5. For all x € (0, %) (sinx)S"¥ < (cosx)Os~,

Proof. Since sinx < cosx and sinx + cosx = V2cos (% — x) > \/Ecos% =1 for all x €

(0, %) the inequality follows from the Theorem 2.1.

A similar reasoning gives the inequality (cosx)®°$* < (sinx)S™for all real numbers x €

G, %).Since the functions cosx and sinx are 2z-periodic functions these inequalities hold true

on2n7 translations of (O, E) and (E,E) for each n € Z.
4 4’2
Proposition 2.6. Forall x € (O, %) (tanx)®@™* < (cotx)co™

Proof. Since tanx + cotx = 5157 > 2 > land tanx < cotxfor all x € (0, %)the inequality
follows from the Theorem 2.1.
A similar argument gives the inequality (cotx)®°%™ < (tanx)®"* forall x € G,g) and since

the functions tanx and cotx are m -periodic functions these inequalities are true for nm
translations of (0, E) and GE) for eachn € Z.

Proposition 2.7. For all x € (0,00) (sinhx)S"M* < (coshx)cosh¥,

Proof. Since
sinhx = %(ex —-eM< %(ex + e ¥) = coshx and sinhx + coshx =e* > 1 for all x €

(0, 00) the inequality follows from the Theorem 2.1.

For the inverse hyperbolic functions cosh™*x = In(x + vVx2 — 1) and sinh™'x = In(x +
\/T-I-l) we have the following result: By the first derivative test the function ¢(x) =
(x + m)(x + \/m) is strictly monotone increasing on[1, ). Since ¢(1) =1 +
V2 < e by the intermediate value theorem for a continuous function there is a unique point c, €

(1, )such that ¢(c,) = e.

Proposition 2.8. For all x € [c,, ) (cosh™x)¢Sh™'* < (sinh~1x)sinh™'x,

Proof. Since cosh™lx = ln(x +Vx2 — 1) < ln(x +Vx2 + 1) = sinh~1xand
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sinh™'x + cosh™'x = In (x ++/x% + 1) +1In (x ++/x% — 1)

=ln(x+\/xz—+1)(x+ xz—l)zln(ce+m)(ce+\/ﬁ)

=lne=1
for all x € [c,, ) the inequality follows from the Theorem 2.1.

Theorem 2.1 can also be applied to show that certain sequences of real numbers are monotone
increasing.

1
n-1

Example 2.9. The sequence ((1 - —)( __)> 1S monotone increasing.
n=3

Solution. Let 3 < n € N be arbitrary. Since 1 — ﬁ <1 —% and

2n-1 2n

> 2 — 2221 5 1by Theorem 2.1 we have
n(n-1) 2n

1-—+41-=-=2-
n—-1 n

(1 _L)(l‘m) < (1 _%)(17)_

oo

Therefore the sequence ((1 - ﬁ)( n_1)> 1S monotone increasing.
n=3

We end the paper with the following question.

Question. Can the hypothesis f(x) + g(x) = 1weakened and is there a best constant smaller
than 1for the functional inequality f(x)® < g(x)9®to hold?
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