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Abstract

Let B be a x-algebra with the unity and a nontrivial projection. In the present paper,
we show under certain restrictions that if a map ¥ : B —9B satisfies U([E ¢ K, D],) =
(V(E)oK,D]i+[Eo¥(K), D]+ [Eo K,V (D)], for all E, K, D € B, then V¥ is an additive
x-derivation.
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1. Introduction

Let % be a *-algebra with unity over the complex field C. For E, K € ‘B, let E o
K = FK+KE, [E,K| = FK — KE, Ee K = EK + KE*, Eo K = EF*K + KE*
and [F, K|, = EK — KE* denote Jordan product, Lie product, Jordan s-product, bi-
skew Jordan product and skew Lie product of E and K respectively. An additive map
U B — B is known as an additive derivation if ¥(EK) = ¥(E)K + EV(K) for all
E,K € 8. Moreover, if U(E*) = ¥(E)* holds for all E € B, then V¥ is termed as an
additive x-derivation. Let ¥ : B — 9B be a mapping (not necessarily additive). Then ¥
is called a nonlinear skew Lie derivation if

U([E, K].) = [W(E), K]« + [E, U(K)].
holds for all E, K € 8. A map (not necessarily additive) ¥ : 8 — B is said to be a
nonlinear mixed Lie triple derivation if
holds for all E, K, D € B (for details see [15]). Throughout the text, a map (not necessarily
additive) ¥ : B — B is called a nonlinear mixed skew triple derivation if
W([E o K, Dl) = [W(E) o K, D). + [E o W(K), D], + [E o K, ¥(D)],

holds for all E, K, D € ‘B.
From the past few years, the evaluation of Jordan product, Jordan #-product, skew
Lie product, bi-skew Jordan product, mixed Lie product in *-algebras have attracted the

>kCorresponding Author.

Email addresses: aslamsiddeeque@gmail.com (M.A. Siddeeque), raofbhat1211@gmail.com (R. A. Bhat),
mohammadshanealam1@gmail.com (M. S. Alam)

Received: 10.05.2023; Accepted: 09.01.2024


https://orcid.org/0000-0002-2275-8328
https://orcid.org/0009-0009-4601-0937
https://orcid.org/0000-0002-8605-2674

2 M. A. Siddeeque, R. A. Bhat, M. S. Alam

attention of many algebraists (see [1,2,4-8,10,11,13,14]). Darvish et al. [3] showed that
if 9B is a prime *-algebra and ¥ : B — B is a map such that

VEAKAD)=U(E)AKAD+EAY(K)AD+EAKAWUD),

for all E,K,D € B, where E A K = E*K + K*E, then ¥ is an additive *-derivation.
Taghavi et al. [9] showed that if B is a prime x-algebra and ¥ : B — B is a map satisfying

\I/(EQ)\KQAD):\I’(E)QAKQAD—}-EQ)\\I/(K)Q)\D+E<IAK<1>\\I’(D),

for all E, K, D € B and for all A € C, where E<y K = EK +AKE* with |A\| # 0,1, then ¥
is additive. Moreover, if W([) is self-adjoint, then ¥ is an additive *-derivation. Yaoxian
et al. [12] studied the structure of nonlinear mixed Lie triple derivation on factor von
Neumann algebras and proved that every nonlinear mixed Lie triple derivation on factor
von Neumann algebra is an additive *-derivation. Zhou et al. [15], extended their result
to prime x-algebras and obtained the same conclusion.

Inspired by the results mentioned above, in this paper we characterize the form of
nonlinear mixed skew triple derivations on x-algebras. Precisely, we show that under
certain conditions, every nonlinear mixed skew triple derivation on x-algebra is an additive
x-derivation.

2. Main result
We begin with our main result.

Theorem 2.1. Let B be a unital x-algebra with a non trivial projection Py satisfying

KBP, =0 implies K =0 (2.1)
and
K®B(I — P1) =0 implies K =0, (2.2)
where K € B. Suppose that a map ¥ : B — B satisfies
U([EoK,D],) =[¥(E)oK,D|,+[Eo¥(K),D], +[E oK, V(D).

for all E,K,D € B. Then VU is additive. Moreover, if U(I) is self-adjoint, then ¥ is a
x-derivation.

Proof. Let P, = I — Py and *B;; = B'BP; for i,j = 1,2. By Peirce decomposition of
B, we have B = B1; & Bio @ B & Bog. Note that any E € B can be written as
E = E11 + E2 + Eo1 + Egp, where Ej; € 9B;; for i,j7 = 1,2. Now to show the additivity
of ¥ on B, we use the above partition on B and establish some lemmas that will show
that U is additive on each B;; for ¢,j7 = 1,2. Also the following multiplicative relations
are satisfied:

(1) BB By (4,5,1=1,2).

(1) BBy =0 (k=1,2) if j#k.
O
So our main Theorem 2.1 is a consequence of the following lemmas.
Lemma 2.2. ¥(0) =0.
Proof. 1t is trivial that
U(0)=9([0<0, 0]x) =[¥(0) <0, 0]« + [0 T(0), 0], +[0c0, ¥(0)],=0. O

Lemma 2.3. Let Ej9 € Bia and E91 € Boy. Then V(E1y + E91) = V(E12) + V(FEa).
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Proof. Let K = V(E19+ FE91) —V(E12)— VY (E9;). Since [ ¢ Fa1, P, = 0, utilizing Lemma
2.2, we have
U([Io (B2 + Ea1), Pos) = V(I o Erg, Poli) + ([ 0 Ea1, P2s)
= [V(I)o Erg, Po]s + [I 0V (E12), Pols + [I © E12, Y (P)]«
H[W(I) o Bor, Pay + [I 0 U(Ea1), Pa)s + [T 0 Ear, U(P2))s.
On the other hand, we have
V([Io (B2 + Ear), Pal) = [Y(I)o (B2 + Ear), Pals + [1 0 V(B2 + Ea1), P«
+[I o (Ei2 + E91), V(P)].
From the last two relations, we infer that [[oK, P], = 0, i.e., K Po— P, K* = 0. Multiplying
the previous relation by P; from left, we get PiKP, = 0. Analogously, we can show
PKP, =0.
Now, again since [I ¢ i{(P; — P,), F2]« = 0, where 7 is the imaginary unit, invoking
Lemma 2.2, we have
U([Ioi(Py — P2),E19+ Exly) = Y([Ioi(P — P2), Erzls) + Y([I o (P — Pa), Eals)
= (W) oiP, — P),Era)s + [[oVU(i( Py — P)), Er2]«
+[ Lo WPy — P2),V(E12)]« + [V(I) o i(Py — P2), Ea1]«
+[L o V(i(Py — P2)), E2rls + [T o i(PL — Py), U (Ea1 )]s
On the other hand, we have
U([Ioi(P— P),Ei12+ Eals) = [Y(I)oi(P— P2),Ei2+ Eols
+[ o W(i(PL — Py)), E12 + Eo1l«
+ o i(P1 — Py), V(E12 + E21)]s
From the previous two relations, we get [I ¢ i(P; — P3), K|, =0, i.e., 2iP| K — 2iP, K
+ 2iK Py — 2iK P, = 0. Multiplying the previous relation by P; from both left and right,
we get PLK P, = 0. Analogously, multiplying the previous relation by P, from both left
and right, we get Po K P, = 0. Hence, K =0, i.e., U(F13 + E91) = V(E12) + V(Ey). O
Lemma 2.4. For every Eqy1 € B11, E10 € B12, Fo1 € By and Eax € Bog, we have
(i) W(E1 + Erg + Eo1) = V(En) + Y(Er2) + ¥ (E2).
(ii) ¥(E12 + Eo1 + Eag) = V(E12) + VU(Ea1) + V(Ea2).
Proof. Let K = V(FE11 + E12+ E91) — V(FE11) — Y(E12) — V(FE>1). On one hand, we have
U([il o Py, Bvy + Ero+ Enl.) = [U(I)o Py, Erq+ Ero+ Eatls
+[il o U(Py), By + E12 + Ea1l«
+[ZI<>P2, (E11+E12+E21)]*.
On the other hand, invoking Lemma 2.3 and using [i ¢ Py, E11]. = 0, we have
U([il o Pay E11+ E12+ Eals) = Y([il o P2, E11]s) + V([il © Po, F12)y)
+U([il © Py, Eols)
= [V(l) o Po, Enn]« + [il o ¥(P), E11]«
+[il o Po, W(E11)]x + [Y(i]) o Pa, Er2]«
+[il © U(Py), E12)s + [il © Po, U(E12)]«
H[W(I) 0 Py, Ealy + [il 0 U(Ps), Eals
+[il o Po, W(E21)l.

From the last two relations, we infer that [i[oP,, K], = 0, i.e., 2iPs K+2iK P, = 0. Solving
this, we obtain P,KP; = P,KP, = PLKP, = 0. Now, again since [I ¢ i{(P; — P»), Fa1]«
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=0=[Io (P — P2), E12]+«, where 7 is the imaginary unit, invoking Lemma 2.2,
we have
\I/([IO ’L(Pl - PQ),EH + E12 + Egl]*) = \I/([IO Z(Pl — PQ) EH] ) + \I/([IO Z(Pl
—P), Ero]e) + V([ 0 i(Py — Py), Ea1]s)
\I/(I)OZ(Pl ) EH] [IO\IJ((Pl

—

—P,)), B« + [0 i(P1 — Ps), ¥ (En)]x

H[U(I) 0 i(Py — Py), Eva]s + [T o U(i( P,

—P,)), Exals + [ 0 i(P1 — P2), V(Er2)].

H[U(I) 0 i(Py — Py), Ea]e + [T o U(i( P,
),

PQ)) EQl] [IO l(Pl (EQl)]*

On the other way, we have

U([Ioi(Py — P2),E11 + Era + Eo1]s) = [Y(I)oi(Pr — P2),E11 + Erp + Eoils
+[L o W(i( P — %)), E11 + Er2 + Eails
+[ o (P — P), ¥ (E1 + Ei2 + Ea1)ls.
From the last two relations, we obtain [I ¢ (P, — P), K] =0, i.e., 2iPi K — 2iPo K
+ 2iK P} — 2iK P, = 0. Multiplying the previous relation by P; from both left and right,
we get PPKP; = 0. Hence, K =0, i.e., V(E1; + E1a+ E91) = V(E11) + V(E12) + V(E9).
In the similar way, we can prove other part also. ]
Lemma 2.5. For any E;j € B;;,1 <1, <2, we have

2

2
U(> Ey) = W(Ey).

ij=1 ij=1
Proof. Let K = U(Eyy + Eio + Ey + Ex) — U(Ey) — U(Ero) — U(Ea1) — U(Eas).
On one hand, we have
V([ 0 iPy, Ev1 + Eia + Eo1 + Exnly) = [Y(I)oiPa, Ei+ E2+ Ea + Exls
+[I o V(iPy), By + Ei2 + Eo + Eg)«
+[I ¢ iP, ¥(E11 + Ei2 + E21 + E»)ls.
On the other hand, since [I ¢ iP5, E11]. = 0, invoking Lemmas 2.2 and 2.4, we have
U([I <o iPs, E11 + E1g + Eo1 4+ Eoly) = ([ 0 iPa, Enls) + ¥ ([ 0 iPa, Ei2]+)
+U([I ¢ iPy, E91)s) + V([I ¢ iPy, E92)4)
= [U(I)oiPy, E11]« + [I 0 V(iP), E11]«
+[L 0 iPy, U(E11)]« + [V(I) ¢ iPy, E19)
+[I 0 V(iPy), E12]s + [I ¢ iPs, U(E12)]x
+[U(I) 0 iPy, Eo1]s + [I 0 U(iPy), Ea]
+[I 0 P2, U(Ea1)]« + [¥(I) © iPy, Bl
+[I o W (iPy), Eoals + [I © Py, ¥(Fa2)]x.
From the last two relations, we get [ ¢ iP5, K|, = 0. Hence PLKPy = P,KP) = P,KP, =
0. Analogously, we can show that PiK P, = 0. Thus K =0, i.e., ¥(E11 + E12+ E21 + E92)
= VU(E1) + Y (E2) + V(E2) + ¥ (Ea). 0
Lemma 2.6. For any E;j, Nij; € B,; with i # j,1 <i,j < 2,U(E;; + Ny;) = V(Ey;) +

*

++++
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Proof. Let N = \I’(EZ] + NU) — \IJ(EZ) — \I/(NZ]) Since

1 * *
[5 o (B + Eij), Bj + Nigle = Nij + Eij — Ejj — Nij 5

Invoking Lemma 2.5, we get

U(Nij + Ey) + U (-Ej;)+ Y(-N;E;;)

I

= \D([i & (PZ + Eij), PJ + NZ]]*)
I

= [‘11(5) o (P; + Eij), Pj+ Nyjl«

I
+ [5 o W(P; + Eij), Pj+ Nijlx

I
+ [5 o (P + Eij), Y(Pj+ Nij)ls

2
= [‘I’(g) o (Pi+ Eij), Pj+ Nijls
+ [ o (U(P) + W(By), P+ Ny,
+ [g o (P + Eij), W(Pj) + ¥(Nij)]«
= \p([g o P, Pili) + \I/([g o P, Nijli)

+ W([é o Eij, Pjls) + ‘1’(% o Eij, Nijl)
= U(Ny) + W(Ey; — E) + V(=N E)
= U(Ny) + U(Ey;) + U(-E5;) + U(~NyE).
Solving this, we arrive at U(E;; + N;j) = V(E;;) + U(Nyj).
Lemma 2.7. For any E;;, Ni; € By, 1 <1 <2, we have
V(Ei; + Nii) = W (Ei;) + VU(Nig).

Proof. Let T = V¥ (E;;+ Ny;) — ¥ (E;;) —W¥(Ny;). Since [iPjol, Eyl. = 0 for i # j, invoking
Lemma 2.2, we have
\I’([ZPJ ol, (E” + Nu)]*) = \I/([Zf)] o1, E”]*) -+ \I’([Z]DJ ol, Nu]*)

+ [\I’(ZPJ) ol, Nu]* + [in <o \II(I), Nu]* + [in o1, \IJ(N“)]*

On the other hand, we have

U([iPjo I, (Ei+ Nig)ls) = [W(iPj) oI, (Ey+ Ni)l + [iPj o ¥(I), (Ei + Nii)lx
—i—[ZPJ ol, \I’(Eu + Nu)]*
From the last two relations, we conclude that [iP; o I,T], = 0. It follows that
P/TP; = P;TP; = P,TP; =0,
Next, for any X;; € B;; with ¢ # j, we have
U([Io(Eiyi+ Ni), Xijle) = [W)o (Eiu~+ Nig), Xijle + [ o V(Ei + Nig), Xijl«
+[I o (E;; + Nyi), \IJ(XU)]*
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On the other hand, using Lemma 2.6, we have
U([Io(Ei+ Nii), Xigl) = W([2(Ei + Nii), Xijls)
V([2E; + 2N, Xijl«)
= U(2E;X;; +2N;iXi;)
U([2Es, Xijl« + [2Ni, Xijle)
(
(

U([2Eii, Xijle) + V([2Nii, Xijl«)

V(1o Eii, Xijl«)+¥([L o Nii, Xijl«)

(W(I) o By, Xijls + [L 0V (Ey), Xijle + [ o By, U(X55)]«
+[W(I) o Nig, Xijls + [L 0 U (Nii), Xijls + [ 0 Nig, U (X45) ]«
From the last two relations, we obtain that [I o T, X;;]. = 0. Now solving this, we get

TX;; — X;;T* = 0, which implies T};X;; = 0 and it follows from conditions (2.1) and (2.2)
that T;; = 0. Thus T' = 0. ]

Lemma 2.8. ¥ is additive .

Proof. For any E, N € B, we write £ = E11 + F13 + Fo1 + Eog and N = N1 + Nig
+ N1 + Nao. Invoking Lemmas 2.5 - 2.7, we get
V(E+N) = V(B + Eia+ B+ Eao + Nip + Ni2 + Nag + Nog)
= V(Ei + Nip) + V(B2 + Nig) + ¥ (Eay + Noy) + ¥ (Lo + Nao)
= Y(En)+ ¥ (Ni)+ ¥ (Ei2) + ¥ (Ni2) + ¥ (E21) + ¥(Nap)
+W(Ea2) + U(Na2)
= V(Ey + B2+ Eo + Eg) + W(Ni1 + Nig + Nop + Nao)
= W(E)+ U(N).
Hence the additivity of ¥ follows from the above lemmas. O
Now in the rest of the paper, we show that W is a *-derivation.

Lemma 2.9. Y(I) is a central element of B, i.e., V(I)L = LY(I) for all L € ‘B.

Proof. We have [I oI, L], = 0. Now applying Lemma 2.2, we have
0 = Y([IoI,L)
= [Y(I)oI,Llx+[Io¥(I),Llx+[IoI, V(L)
= [29()", L}« + [29(]), L]« + [21, W(L)].
= 2U(I)*L — 2LU(I) + 2U(I)L — 2L (I)*.
Using given hypothesis, we get
0 = 2U(I)L —2LU(I)+2U(I)L — 2LY(I).
Which implies that W(I)L = LWY(I) for all L € B. O
Lemma 2.10. (i) PyY(P,)P; = —PyU(P2)Ps.

(ii) Py W(P) Py = —PyU(Py)Py.
(iii) PLU(Py) Py = PyU(P)Py = 0.

Proof. (i) We have [I ¢ Py, P;], = 0. Using given hypothesis, Lemmas 2.2 and 2.9, we get
0 = V(o P,
= [YI)o P, Pl +[IoVU(P)), s+ [I o P, ¥ (P).
= [2U()P1, Po)s + [2U(Py), Pol« + [2P1, ¥ (P2)]«
= 2U(P)Py — 2P,V (P1)" + 2P ¥ (P,) — 2V () P;.
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Multiplying the previous relation by P; from left and by P, from right, we get
PV (P) P, = —P\Y(P)P;,.

(73) Since [Py ¢ I, Py], = 0, using given hypothesis and applying Lemmas 2.2 and 2.9, we
get

0 = Y([Piol,P].)
= [U(P)ol, P+ [ProV(]),Pols+ [PLol,V(P).
= 2U(P)"P, — 2P,V (P) + 2P,V (Py) — 2V (Py) Py
Multiplying the previous relation by P, from left and by P; from right, we get
PV (P) P = —PY(P)Py.

(t3i) For 1 <1 # j < 2, we have [iP; o I, Pj], = 0. Now utilizing given hypothesis and
Lemmas 2.2, 2.9, we have

0 = U([iP,o1,Pjl.)
— [W(iR) o I, Pyl + [iP, o W(I), Pyl + [Py o I, W(Py).
= [290R)", Pyl +[2(iF), ¥ (P))]«
= 2U(iP)*P; — 2P, U(iP;) — 2iP;U(P;) — 2iU(P;) P;.
Multiplying above relation by P; from both right and left, we get P;W(P;)P; = 0. Thus
PyU(Py) P, = PyU(P) P, = 0. O

Lemma 2.11. PiV(P))P = P,V (P,) P, = 0.
Proof. For every Fo1 € Bo91, applying Lemma 2.8, we have

U([L o Py, Eals) =2¥(Eg).
On the other hand from given hypothesis and Lemma 2.9, we have
U([Io Py, Eols) = [Y(I)o Py, Eorlx + [I0oV(P), Eo)s + [I 0 Py, ¥(E91)]«

= [2U(I)P, Eails + [2U(P), Eals + 2P, V(Ear)l.
= 2U([)Ey + 2V(Py)Ey — 2E91V(Pa)" 4+ 2P,V (Ey ) — 2V (E ) Ps.
Using the last two relations, we infer that
2U(I)Es + 2V (Py)Eo; — 2BV (P)* + 2P,V (E9;) — 2U(FE9; )Py — 2¥(E9) = 0.
Multiplying above relation by P; from the right and by P, from the left, we get
2P,V (I)Es + 2P,V (Py)E9y — 2E9,¥(P)* Py = 0.

Using Lemmas 2.9 and 2.10, we get

U(I)E9 + P,V (Py)E9 = 0. (2.3)
Similarly, for every Fo1 € 891, we have

[Pyol, Eoi|e =2F9.

Applying Lemma 2.8, we get

U([Peol, Faly) =2¥(Ea).
Similarly as above, invoking Lemmas 2.9 and 2.10, we have

U(I)E2 + P,V (Py)* Ey = 0. (2.4)
Also for any E91 € Bo1, we have

[P o Pa, Eo1]y = 2E5.

Applying Lemma 2.8, we get

U([P2 ¢ Py, Eo1]s) = 2V (E9).
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Similarly as above, using Lemma 2.10, we get

PyU(Py)" Eoy + PoV(P)E9 = 0. (2.5)
Solving (2.3), (2.4) and (2.5), we get Po¥(P,)FE>; = 0. Now using (2.1) and (2.2), we get
P,V (P;)P, = 0. Similarly, we can show that P;W(P;)P, = 0. O

Lemma 2.12. (Z) \I/(Pl) = Pl\IJ(Pl)PQ + PQ\I/(Pl)Pl, \I’(PQ) = Plllf(Pg)PQ + PQ\I’(PQ)Pl
(i5) (1) = 0.

Proof. (i) By Peirce decomposition, we have
‘IJ(Pl) = Pl\If(Pl)Pl + Pl\I}(Pl)PQ + PQ‘I’(Pl)Pl + Pg‘l’(Pl)PQ

In view of Lemmas 2.10 and 2.11, it follows that W(P) = PyU(P) P> + PV (P)P;.
Analogously, we can show that W(Py) = PyU(Pe)Po + PV () Py
(77) Invoking Lemmas 2.8, 2.10 and 2.11, we have
V() =V (+P) = Y(R)+VY(P)
Pl\I/(PQ)PQ + PQ\I/(PQ)P;[ + Pl\I/(Pl)Pz + PQ\I/(Pl)Pl

0.
O
Lemma 2.13. U preserves '«’, i.e., V(E*) = U(E)* for all E € *B.
Proof. By Lemma 2.8, we have
U([IoE,I,) =¥V (2E —2E*) =2V(F) — 2U(E").
On the other hand, using Lemma 2.12, we have
U([IoEI,) =[Io¥Y(E),I]. =2V(E) —2V(E)".
Comparing the above two relations, we get
U(E*) = ¥(E)* for all E € *B.
O

Lemma 2.14. (:)U (i) = 0.
(13)¥(—iI) = 0, where i is the imaginary unit.

Proof. (i) Since [I ¢ il,il], = —4I, applying Lemmas 2.8 and 2.12, we have
W([ o4, il],) =0,
which implies that
[ o (i), ], + [I o il, U (il)], = 0.

Now using Lemmas 2.8 and 2.13, we have 8:W(il) = 0, thus (i) = 0.
(77) Analogously, we can show that ¥(—iI) = 0. O

Lemma 2.15. (i) ¥(—iF) = —i¥(E)
(13) W(iE) = ¥ (E), where i is the imaginary unit.

Proof. (i) Since [(—iE) o I, I, = [E o i, Il].. Therefore,
U([(—iE) oI, I],) = V([Eo i, I]).
Invoking Lemmas 2.12 and 2.14, we have
U(—iE)* — U(—iE) = iU (E)* + i (E).
Also, since [—iE ¢ —il, I|, =[] ¢ E, I]. Therefore,
U([(—iE) o —il, I],) =V([-I<oE, I],).
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Now by Lemmas 2.12 and 2.14, we have
— iU (—iE)" — W (—iF) = ¥(E)" — U(E).
Multiplying both sides of the above relation by I, we get
U(—iE)* + V¥ (—iF) = V(E)" — iV (FE).

Solving the above two relations, we get ¥(—iE) = —i¥(FE) for all E € B.
(73) Analogously, we can show that ¥(iE) = i¥(E). O

Lemma 2.16. VU is a derivation.

Proof. For every E, K € 9B, we have [ o E, K], = 2(EK — KE*). So, applying Lemmas
2.8 and 2.12, we have

2U(EK — KE*) = Y([IoFE,K],)
= [{oV(E),K].+[[oE, V(K).
2U(E)K — 2KV (E)* +2EY(K) —2U(K)E".
Therefore,
V(EK — KE*) = VY(E)K — KVY(E)"+ EVY(K) - V(K)E". (2.6)

Also, we have [ ¢ (—iE), iK]. = 2(FK + KE*). So, invoking Lemmas 2.8, 2.12, 2.13 and
2.15, we have

2U(EK + KE*) = Y([Io(—iFE),iK]:)
= [ToVU(—iE),iK].+ [I o (—iF), V(iK)]«
= 2U(E)K 4+ 2KV(E)" +2¥(K)E* + 2EY(K).
Therefore
V(EK+ KE*) =VY(E)K + KV(E)"+ V(K)E* + EV(K). (2.7)

Adding (2.6) and (2.7), we get
V(EK) = U(E)K + EV(K).

Hence V¥ is a derivation. This completes the proof of Theorem 2.1. O

3. Corollaries

Let B be an algebra, we say that it is prime if for each E, K € B, FBK = 0, implies
either £ = 0 or K = 0. So, it is very simple to see that every prime x-algebra satisfies
conditions (2.1) and (2.2) in the Theorem 2.1. So we have the following corollary.

Corollary 3.1. Suppose B is a unital prime *-algebra with a non-trivial projection. If
U B — B satisfies

U([Fo K,D],) =[VY(E)o K,D]x+ [EoV(K),Dl].+ [Eo K, U(D)].

for all E,K, D € B. Then V¥ is additive. Moreover, if W(I) is self-adjoint, then ¥ is a
x-derivation.

Consider H, as a complex Hilbert space. Let B(H) denotes the algebra of all bounded
linear operators and let T(JH) be its subalgebra consisting of finite rank operators. It is
well known that T () forms a *-closed ideal of B(H). A subalgebra F of B(H) is called
a standard operator algebra if T(H) C F. As a result, we have the following immediate
corollary.



10 M. A. Siddeeque, R. A. Bhat, M. S. Alam

Corollary 3.2. Let H be an infinite dimensional complex Hilbert space and let F be a
unital standard operator algebra on H such that F is closed under adjoint operation.
Suppose that ¥ : F — F is a map satisfying

U([E o K, Dl,) = [U(E) o K, D], + [E o ¥(K), D], + |Eo K, ¥(D)],

for all E;K,D € . Then V¥ is additive. Moreover, if W(I) is self-adjoint, then ¥ is a
x-derivation.

A von Neumann algebra Z is a weakly closed, self-adjoint algebra of operators on a
Hilbert space J containing the identity operator. Also, it is well known that if a von
Neumann algebra Z has no central summands of type I, then Z satisfies conditions (2.1)
and (2.2) of Theorem 2.1. As a result, we have the following immediate corollary.

Corollary 3.3. Let Z be a von Neumann algebra with no central summands of type Iy. If
the map ¥ : Z — Z satisfies

U([EFoK,D],)=[¥(E)oK,D|,+[Eo¥(K),D], +[E oK, V(D).

for all E,K,D € Z, then ¥ is additive. Moreover, if V(I) is self-adjoint, then ¥ is a
x-derivation.

O
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