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Abstract
Let B be a ∗-algebra with the unity and a nontrivial projection. In the present paper,
we show under certain restrictions that if a map Ψ : B →B satisfies Ψ([E ⋄ K, D]∗) =
[Ψ(E)⋄K, D]∗ +[E ⋄Ψ(K), D]∗ +[E ⋄K, Ψ(D)]∗ for all E, K, D ∈ B, then Ψ is an additive
∗-derivation.
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1. Introduction
Let B be a ∗-algebra with unity over the complex field C. For E, K ∈ B, let E ◦

K = EK + KE, [E, K] = EK − KE, E • K = EK + KE∗, E ⋄ K = E∗K + KE∗

and [E, K]∗ = EK − KE∗ denote Jordan product, Lie product, Jordan ∗-product, bi-
skew Jordan product and skew Lie product of E and K respectively. An additive map
Ψ : B → B is known as an additive derivation if Ψ(EK) = Ψ(E)K + EΨ(K) for all
E, K ∈ B. Moreover, if Ψ(E∗) = Ψ(E)∗ holds for all E ∈ B, then Ψ is termed as an
additive ∗-derivation. Let Ψ : B → B be a mapping (not necessarily additive). Then Ψ
is called a nonlinear skew Lie derivation if

Ψ([E, K]∗) = [Ψ(E), K]∗ + [E, Ψ(K)]∗
holds for all E, K ∈ B. A map (not necessarily additive) Ψ : B → B is said to be a
nonlinear mixed Lie triple derivation if

Ψ([[E, K]∗, D]) = [[Ψ(E), K]∗, D] + [[E, Ψ(K)]∗, D] + [[E, K]∗, Ψ(D)]
holds for all E, K, D ∈ B (for details see [15]). Throughout the text, a map (not necessarily
additive) Ψ : B → B is called a nonlinear mixed skew triple derivation if

Ψ([E ⋄ K, D]∗) = [Ψ(E) ⋄ K, D]∗ + [E ⋄ Ψ(K), D]∗ + [E ⋄ K, Ψ(D)]∗
holds for all E, K, D ∈ B.

From the past few years, the evaluation of Jordan product, Jordan ∗-product, skew
Lie product, bi-skew Jordan product, mixed Lie product in ∗-algebras have attracted the
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attention of many algebraists (see [1, 2, 4–8, 10, 11, 13, 14]). Darvish et al. [3] showed that
if B is a prime ∗-algebra and Ψ : B → B is a map such that

Ψ(E △ K △ D) = Ψ(E) △ K △ D + E △ Ψ(K) △ D + E △ K △ Ψ(D),

for all E, K, D ∈ B, where E △ K = E∗K + K∗E, then Ψ is an additive ∗-derivation.
Taghavi et al. [9] showed that if B is a prime ∗-algebra and Ψ : B → B is a map satisfying

Ψ(E ◁λ K ◁λ D) = Ψ(E) ◁λ K ◁λ D + E ◁λ Ψ(K) ◁λ D + E ◁λ K ◁λ Ψ(D),

for all E, K, D ∈ B and for all λ ∈ C, where E ◁λ K = EK +λKE∗ with |λ| ̸= 0, 1, then Ψ
is additive. Moreover, if Ψ(I) is self-adjoint, then Ψ is an additive ∗-derivation. Yaoxian
et al. [12] studied the structure of nonlinear mixed Lie triple derivation on factor von
Neumann algebras and proved that every nonlinear mixed Lie triple derivation on factor
von Neumann algebra is an additive ∗-derivation. Zhou et al. [15], extended their result
to prime ∗-algebras and obtained the same conclusion.

Inspired by the results mentioned above, in this paper we characterize the form of
nonlinear mixed skew triple derivations on ∗-algebras. Precisely, we show that under
certain conditions, every nonlinear mixed skew triple derivation on ∗-algebra is an additive
∗-derivation.

2. Main result
We begin with our main result.

Theorem 2.1. Let B be a unital ∗-algebra with a non trivial projection P1 satisfying

KBP1 = 0 implies K = 0 (2.1)
and

KB(I − P1) = 0 implies K = 0, (2.2)
where K ∈ B. Suppose that a map Ψ : B → B satisfies

Ψ([E ⋄ K, D]∗) = [Ψ(E) ⋄ K, D]∗ + [E ⋄ Ψ(K), D]∗ + [E ⋄ K, Ψ(D)]∗

for all E, K, D ∈ B. Then Ψ is additive. Moreover, if Ψ(I) is self-adjoint, then Ψ is a
∗-derivation.

Proof. Let P2 = I − P1 and Bij = PiBPj for i, j = 1, 2. By Peirce decomposition of
B, we have B = B11 ⊕ B12 ⊕ B21 ⊕ B22. Note that any E ∈ B can be written as
E = E11 + E12 + E21 + E22, where Eij ∈ Bij for i, j = 1, 2. Now to show the additivity
of Ψ on B, we use the above partition on B and establish some lemmas that will show
that Ψ is additive on each Bij for i, j = 1, 2. Also the following multiplicative relations
are satisfied:

(i) BijBjl ⊆ Bil (i, j, l = 1, 2).
(ii) BijBkl = 0 (k = 1, 2) if j ̸= k.

□

So our main Theorem 2.1 is a consequence of the following lemmas.

Lemma 2.2. Ψ(0) = 0.

Proof. It is trivial that
Ψ(0) = Ψ([0 ⋄ 0, 0]∗) = [Ψ(0) ⋄ 0, 0]∗ + [0 ⋄ Ψ(0), 0]∗ + [0 ⋄ 0, Ψ(0)]∗ = 0. □

Lemma 2.3. Let E12 ∈ B12 and E21 ∈ B21. Then Ψ(E12 + E21) = Ψ(E12) + Ψ(E21).
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Proof. Let K = Ψ(E12+E21)−Ψ(E12)−Ψ(E21). Since [I ⋄E21, P2]∗ = 0, utilizing Lemma
2.2, we have
Ψ([I ⋄ (E12 + E21), P2]∗) = Ψ([I ⋄ E12, P2]∗) + Ψ([I ⋄ E21, P2]∗)

= [Ψ(I) ⋄ E12, P2]∗ + [I ⋄ Ψ(E12), P2]∗ + [I ⋄ E12, Ψ(P2)]∗
+[Ψ(I) ⋄ E21, P2]∗ + [I ⋄ Ψ(E21), P2]∗ + [I ⋄ E21, Ψ(P2)]∗.

On the other hand, we have
Ψ([I ⋄ (E12 + E21), P2]∗) = [Ψ(I) ⋄ (E12 + E21), P2]∗ + [I ⋄ Ψ(E12 + E21), P2]∗

+[I ⋄ (E12 + E21), Ψ(P2)]∗.

From the last two relations, we infer that [I⋄K, P2]∗ = 0, i.e., KP2−P2K∗ = 0. Multiplying
the previous relation by P1 from left, we get P1KP2 = 0. Analogously, we can show
P2KP1 = 0.

Now, again since [I ⋄ i(P1 − P2), E21]∗ = 0, where i is the imaginary unit, invoking
Lemma 2.2, we have
Ψ([I ⋄ i(P1 − P2), E12 + E21]∗) = Ψ([I ⋄ i(P1 − P2), E12]∗) + Ψ([I ⋄ i(P1 − P2), E21]∗)

= [Ψ(I) ⋄ i(P1 − P2), E12]∗ + [I ⋄ Ψ(i(P1 − P2)), E12]∗
+[I ⋄ i(P1 − P2), Ψ(E12)]∗ + [Ψ(I) ⋄ i(P1 − P2), E21]∗
+[I ⋄ Ψ(i(P1 − P2)), E21]∗ + [I ⋄ i(P1 − P2), Ψ(E21)]∗.

On the other hand, we have
Ψ([I ⋄ i(P1 − P2), E12 + E21]∗) = [Ψ(I) ⋄ i(P1 − P2), E12 + E21]∗

+[I ⋄ Ψ(i(P1 − P2)), E12 + E21]∗
+[I ⋄ i(P1 − P2), Ψ(E12 + E21)]∗.

From the previous two relations, we get [I ⋄ i(P1 − P2), K]∗ = 0, i.e., 2iP1K − 2iP2K
+ 2iKP1 − 2iKP2 = 0. Multiplying the previous relation by P1 from both left and right,
we get P1KP1 = 0. Analogously, multiplying the previous relation by P2 from both left
and right, we get P2KP2 = 0. Hence, K = 0, i.e., Ψ(E12 + E21) = Ψ(E12) + Ψ(E21). □
Lemma 2.4. For every E11 ∈ B11, E12 ∈ B12, E21 ∈ B21 and E22 ∈ B22, we have

(i) Ψ(E11 + E12 + E21) = Ψ(E11) + Ψ(E12) + Ψ(E21).
(ii) Ψ(E12 + E21 + E22) = Ψ(E12) + Ψ(E21) + Ψ(E22).

Proof. Let K = Ψ(E11 + E12 + E21) − Ψ(E11) − Ψ(E12) − Ψ(E21). On one hand, we have
Ψ([iI ⋄ P2, E11 + E12 + E21]∗) = [Ψ(iI) ⋄ P2, E11 + E12 + E21]∗

+[iI ⋄ Ψ(P2), E11 + E12 + E21]∗
+[iI ⋄ P2, Ψ(E11 + E12 + E21)]∗.

On the other hand, invoking Lemma 2.3 and using [iI ⋄ P2, E11]∗ = 0, we have
Ψ([iI ⋄ P2, E11 + E12 + E21]∗) = Ψ([iI ⋄ P2, E11]∗) + Ψ([iI ⋄ P2, E12]∗)

+Ψ([iI ⋄ P2, E21]∗)
= [Ψ(iI) ⋄ P2, E11]∗ + [iI ⋄ Ψ(P2), E11]∗

+[iI ⋄ P2, Ψ(E11)]∗ + [Ψ(iI) ⋄ P2, E12]∗
+[iI ⋄ Ψ(P2), E12]∗ + [iI ⋄ P2, Ψ(E12)]∗
+[Ψ(iI) ⋄ P2, E21]∗ + [iI ⋄ Ψ(P2), E21]∗
+[iI ⋄ P2, Ψ(E21)]∗.

From the last two relations, we infer that [iI⋄P2, K]∗ = 0, i.e., 2iP2K+2iKP2 = 0. Solving
this, we obtain P2KP1 = P2KP2 = P1KP2 = 0. Now, again since [I ⋄ i(P1 − P2), E21]∗
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= 0 = [I ⋄ i(P1 − P2), E12]∗, where i is the imaginary unit, invoking Lemma 2.2,
we have

Ψ([I ⋄ i(P1 − P2), E11 + E12 + E21]∗) = Ψ([I ⋄ i(P1 − P2), E11]∗) + Ψ([I ⋄ i(P1

−P2), E12]∗) + Ψ([I ⋄ i(P1 − P2), E21]∗)
= [Ψ(I) ⋄ i(P1 − P2), E11]∗ + [I ⋄ Ψ(i(P1

−P2)), E11]∗ + [I ⋄ i(P1 − P2), Ψ(E11)]∗
+[Ψ(I) ⋄ i(P1 − P2), E12]∗ + [I ⋄ Ψ(i(P1

−P2)), E12]∗ + [I ⋄ i(P1 − P2), Ψ(E12)]∗
+[Ψ(I) ⋄ i(P1 − P2), E21]∗ + [I ⋄ Ψ(i(P1

−P2)), E21]∗ + [I ⋄ i(P1 − P2), Ψ(E21)]∗.

On the other way, we have

Ψ([I ⋄ i(P1 − P2), E11 + E12 + E21]∗) = [Ψ(I) ⋄ i(P1 − P2), E11 + E12 + E21]∗
+[I ⋄ Ψ(i(P1 − P2)), E11 + E12 + E21]∗
+[I ⋄ i(P1 − P2), Ψ(E11 + E12 + E21)]∗.

From the last two relations, we obtain [I ⋄ i(P1 − P2), K]∗ = 0, i.e., 2iP1K − 2iP2K
+ 2iKP1 − 2iKP2 = 0. Multiplying the previous relation by P1 from both left and right,
we get P1KP1 = 0. Hence, K = 0, i.e., Ψ(E11 + E12 + E21) = Ψ(E11) + Ψ(E12) + Ψ(E21).
In the similar way, we can prove other part also. □

Lemma 2.5. For any Eij ∈ Bij , 1 ≤ i, j ≤ 2, we have

Ψ(
2∑

i,j=1
Eij) =

2∑
i,j=1

Ψ(Eij).

Proof. Let K = Ψ(E11 + E12 + E21 + E22) − Ψ(E11) − Ψ(E12) − Ψ(E21) − Ψ(E22).
On one hand, we have

Ψ([I ⋄ iP2, E11 + E12 + E21 + E22]∗) = [Ψ(I) ⋄ iP2, E11 + E12 + E21 + E22]∗
+[I ⋄ Ψ(iP2), E11 + E12 + E21 + E22]∗
+[I ⋄ iP2, Ψ(E11 + E12 + E21 + E22)]∗.

On the other hand, since [I ⋄ iP2, E11]∗ = 0, invoking Lemmas 2.2 and 2.4, we have

Ψ([I ⋄ iP2, E11 + E12 + E21 + E22]∗) = Ψ([I ⋄ iP2, E11]∗) + Ψ([I ⋄ iP2, E12]∗)
+Ψ([I ⋄ iP2, E21]∗) + Ψ([I ⋄ iP2, E22]∗)

= [Ψ(I) ⋄ iP2, E11]∗ + [I ⋄ Ψ(iP2), E11]∗
+[I ⋄ iP2, Ψ(E11)]∗ + [Ψ(I) ⋄ iP2, E12]∗
+[I ⋄ Ψ(iP2), E12]∗ + [I ⋄ iP2, Ψ(E12)]∗
+[Ψ(I) ⋄ iP2, E21]∗ + [I ⋄ Ψ(iP2), E21]∗
+[I ⋄ iP2, Ψ(E21)]∗ + [Ψ(I) ⋄ iP2, E22]∗
+[I ⋄ Ψ(iP2), E22]∗ + [I ⋄ iP2, Ψ(E22)]∗.

From the last two relations, we get [I ⋄ iP2, K]∗ = 0. Hence P1KP2 = P2KP1 = P2KP2 =
0. Analogously, we can show that P1KP1 = 0. Thus K = 0, i.e., Ψ(E11 +E12 +E21 +E22)
= Ψ(E11) + Ψ(E12) + Ψ(E21) + Ψ(E22). □

Lemma 2.6. For any Eij , Nij ∈ Bij with i ̸= j, 1 ≤ i, j ≤ 2, Ψ(Eij + Nij) = Ψ(Eij) +
Ψ(Nij).
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Proof. Let N = Ψ(Eij + Nij) − Ψ(Eij) − Ψ(Nij). Since

[I
2

⋄ (Pi + Eij), Pj + Nij ]∗ = Nij + Eij − E∗
ij − NijE∗

ij

Invoking Lemma 2.5, we get

Ψ(Nij + Eij) + Ψ(−E∗
ij) + Ψ(−NijE∗

ij)

= Ψ([I
2

⋄ (Pi + Eij), Pj + Nij ]∗)

= [Ψ(I

2
) ⋄ (Pi + Eij), Pj + Nij ]∗

+ [I
2

⋄ Ψ(Pi + Eij), Pj + Nij ]∗

+ [I
2

⋄ (Pi + Eij), Ψ(Pj + Nij)]∗

= [Ψ(I

2
) ⋄ (Pi + Eij), Pj + Nij ]∗

+ [I
2

⋄ (Ψ(Pi) + Ψ(Eij)), Pj + Nij ]∗

+ [I
2

⋄ (Pi + Eij), Ψ(Pj) + Ψ(Nij)]∗

= Ψ([I
2

⋄ Pi, Pj ]∗) + Ψ([I
2

⋄ Pi, Nij ]∗)

+ Ψ([I
2

⋄ Eij , Pj ]∗) + Ψ([I
2

⋄ Eij , Nij ]∗)

= Ψ(Nij) + Ψ(Eij − E∗
ij) + Ψ(−NijE∗

ij)
= Ψ(Nij) + Ψ(Eij) + Ψ(−E∗

ij) + Ψ(−NijE∗
ij).

Solving this, we arrive at Ψ(Eij + Nij) = Ψ(Eij) + Ψ(Nij).

Lemma 2.7. For any Eii, Nii ∈ Bii, 1 ≤ i ≤ 2, we have

Ψ(Eii + Nii) = Ψ(Eii) + Ψ(Nii).

Proof. Let T = Ψ(Eii +Nii)−Ψ(Eii)−Ψ(Nii). Since [iPj ⋄I, Eii]∗ = 0 for i ̸= j, invoking
Lemma 2.2, we have

Ψ([iPj ⋄ I, (Eii + Nii)]∗) = Ψ([iPj ⋄ I, Eii]∗) + Ψ([iPj ⋄ I, Nii]∗)
= [Ψ(iPj) ⋄ I, Eii]∗ + [iPj ⋄ Ψ(I), Eii]∗ + [iPj ⋄ I, Ψ(Eii)]∗

+ [Ψ(iPj) ⋄ I, Nii]∗ + [iPj ⋄ Ψ(I), Nii]∗ + [iPj ⋄ I, Ψ(Nii)]∗.

On the other hand, we have

Ψ([iPj ⋄ I, (Eii + Nii)]∗) = [Ψ(iPj) ⋄ I, (Eii + Nii)]∗ + [iPj ⋄ Ψ(I), (Eii + Nii)]∗
+[iPj ⋄ I, Ψ(Eii + Nii)]∗.

From the last two relations, we conclude that [iPj ⋄ I, T ]∗ = 0. It follows that
PjTPj = PjTPi = PiTPj = 0.
Next, for any Xij ∈ Bij with i ̸= j, we have

Ψ([I ⋄ (Eii + Nii), Xij ]∗) = [Ψ(I) ⋄ (Eii + Nii), Xij ]∗ + [I ⋄ Ψ(Eii + Nii), Xij ]∗
+[I ⋄ (Eii + Nii), Ψ(Xij)]∗.



6 M. A. Siddeeque, R. A. Bhat, M. S. Alam

On the other hand, using Lemma 2.6, we have
Ψ([I ⋄ (Eii + Nii), Xij ]∗) = Ψ([2(Eii + Nii), Xij ]∗)

= Ψ([2Eii + 2Nii, Xij ]∗)
= Ψ(2EiiXij + 2NiiXij)
= Ψ([2Eii, Xij ]∗ + [2Nii, Xij ]∗)
= Ψ([2Eii, Xij ]∗) + Ψ([2Nii, Xij ]∗)
= Ψ([I ⋄ Eii, Xij ]∗) + Ψ([I ⋄ Nii, Xij ]∗)
= [Ψ(I) ⋄ Eii, Xij ]∗ + [I ⋄ Ψ(Eii), Xij ]∗ + [I ⋄ Eii, Ψ(Xij)]∗

+[Ψ(I) ⋄ Nii, Xij ]∗ + [I ⋄ Ψ(Nii), Xij ]∗ + [I ⋄ Nii, Ψ(Xij)]∗.

From the last two relations, we obtain that [I ⋄ T, Xij ]∗ = 0. Now solving this, we get
TXij − XijT ∗ = 0, which implies TiiXij = 0 and it follows from conditions (2.1) and (2.2)
that Tii = 0. Thus T = 0. □
Lemma 2.8. Ψ is additive .

Proof. For any E, N ∈ B, we write E = E11 + E12 + E21 + E22 and N = N11 + N12
+ N21 + N22. Invoking Lemmas 2.5 - 2.7, we get

Ψ(E + N) = Ψ(E11 + E12 + E21 + E22 + N11 + N12 + N21 + N22)
= Ψ(E11 + N11) + Ψ(E12 + N12) + Ψ(E21 + N21) + Ψ(E22 + N22)
= Ψ(E11) + Ψ(N11) + Ψ(E12) + Ψ(N12) + Ψ(E21) + Ψ(N21)

+Ψ(E22) + Ψ(N22)
= Ψ(E11 + E12 + E21 + E22) + Ψ(N11 + N12 + N21 + N22)
= Ψ(E) + Ψ(N).

Hence the additivity of Ψ follows from the above lemmas. □

Now in the rest of the paper, we show that Ψ is a ∗-derivation.

Lemma 2.9. Ψ(I) is a central element of B, i.e., Ψ(I)L = LΨ(I) for all L ∈ B.

Proof. We have [I ⋄ I, L]∗ = 0. Now applying Lemma 2.2, we have
0 = Ψ([I ⋄ I, L]∗)

= [Ψ(I) ⋄ I, L]∗ + [I ⋄ Ψ(I), L]∗ + [I ⋄ I, Ψ(L)]∗
= [2Ψ(I)∗, L]∗ + [2Ψ(I), L]∗ + [2I, Ψ(L)]∗
= 2Ψ(I)∗L − 2LΨ(I) + 2Ψ(I)L − 2LΨ(I)∗.

Using given hypothesis, we get
0 = 2Ψ(I)L − 2LΨ(I) + 2Ψ(I)L − 2LΨ(I).

Which implies that Ψ(I)L = LΨ(I) for all L ∈ B. □
Lemma 2.10. (i) P1Ψ(P1)P2 = −P1Ψ(P2)P2.
(ii) P2 Ψ(P1)P1 = −P2Ψ(P2)P1.
(iii) P1Ψ(P2)P1 = P2Ψ(P1)P2 = 0.

Proof. (i) We have [I ⋄ P1, P2]∗ = 0. Using given hypothesis, Lemmas 2.2 and 2.9, we get
0 = Ψ([I ⋄ P1, P2]∗)

= [Ψ(I) ⋄ P1, P2]∗ + [I ⋄ Ψ(P1), P2]∗ + [I ⋄ P1, Ψ(P2)]∗
= [2Ψ(I)P1, P2]∗ + [2Ψ(P1), P2]∗ + [2P1, Ψ(P2)]∗
= 2Ψ(P1)P2 − 2P2Ψ(P1)∗ + 2P1Ψ(P2) − 2Ψ(P2)P1.
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Multiplying the previous relation by P1 from left and by P2 from right, we get
P1Ψ(P1)P2 = −P1Ψ(P2)P2.

(ii) Since [P1 ⋄ I, P2]∗ = 0, using given hypothesis and applying Lemmas 2.2 and 2.9, we
get

0 = Ψ([P1 ⋄ I, P2]∗)
= [Ψ(P1) ⋄ I, P2]∗ + [P1 ⋄ Ψ(I), P2]∗ + [P1 ⋄ I, Ψ(P2)]∗
= 2Ψ(P1)∗P2 − 2P2Ψ(P1) + 2P1Ψ(P2) − 2Ψ(P2)P1.

Multiplying the previous relation by P2 from left and by P1 from right, we get
P2Ψ(P2)P1 = −P2Ψ(P1)P1.

(iii) For 1 ≤ i ̸= j ≤ 2, we have [iPi ⋄ I, Pj ]∗ = 0. Now utilizing given hypothesis and
Lemmas 2.2, 2.9, we have

0 = Ψ([iPi ⋄ I, Pj ]∗)
= [Ψ(iPi) ⋄ I, Pj ]∗ + [iPi ⋄ Ψ(I), Pj ]∗ + [iPi ⋄ I, Ψ(Pj)]∗
= [2Ψ(iPi)∗, Pj ]∗ + [−2(iPi), Ψ(Pj)]∗
= 2Ψ(iPi)∗Pj − 2PjΨ(iPi) − 2iPiΨ(Pj) − 2iΨ(Pj)Pi.

Multiplying above relation by Pi from both right and left, we get PiΨ(Pj)Pi = 0. Thus
P1Ψ(P2)P1 = P2Ψ(P1)P2 = 0. □
Lemma 2.11. P1Ψ(P1)P1 = P2Ψ(P2)P2 = 0.

Proof. For every E21 ∈ B21, applying Lemma 2.8, we have
Ψ([I ⋄ P2, E21]∗) = 2Ψ(E21).

On the other hand from given hypothesis and Lemma 2.9, we have
Ψ([I ⋄ P2, E21]∗) = [Ψ(I) ⋄ P2, E21]∗ + [I ⋄ Ψ(P2), E21]∗ + [I ⋄ P2, Ψ(E21)]∗

= [2Ψ(I)P2, E21]∗ + [2Ψ(P2), E21]∗ + [2P2, Ψ(E21)]∗
= 2Ψ(I)E21 + 2Ψ(P2)E21 − 2E21Ψ(P2)∗ + 2P2Ψ(E21) − 2Ψ(E21)P2.

Using the last two relations, we infer that
2Ψ(I)E21 + 2Ψ(P2)E21 − 2E21Ψ(P2)∗ + 2P2Ψ(E21) − 2Ψ(E21)P2 − 2Ψ(E21) = 0.

Multiplying above relation by P1 from the right and by P2 from the left, we get
2P2Ψ(I)E21 + 2P2Ψ(P2)E21 − 2E21Ψ(P2)∗P1 = 0.

Using Lemmas 2.9 and 2.10, we get
Ψ(I)E21 + P2Ψ(P2)E21 = 0. (2.3)

Similarly, for every E21 ∈ B21, we have
[P2 ⋄ I, E21]∗ = 2E21.

Applying Lemma 2.8, we get
Ψ([P2 ⋄ I, E21]∗) = 2Ψ(E21).

Similarly as above, invoking Lemmas 2.9 and 2.10, we have
Ψ(I)E21 + P2Ψ(P2)∗E21 = 0. (2.4)

Also for any E21 ∈ B21, we have
[P2 ⋄ P2, E21]∗ = 2E21.

Applying Lemma 2.8, we get
Ψ([P2 ⋄ P2, E21]∗) = 2Ψ(E21).
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Similarly as above, using Lemma 2.10, we get
P2Ψ(P2)∗E21 + P2Ψ(P2)E21 = 0. (2.5)

Solving (2.3), (2.4) and (2.5), we get P2Ψ(P2)E21 = 0. Now using (2.1) and (2.2), we get
P2Ψ(P2)P2 = 0. Similarly, we can show that P1Ψ(P1)P1 = 0. □

Lemma 2.12. (i) Ψ(P1) = P1Ψ(P1)P2 + P2Ψ(P1)P1, Ψ(P2) = P1Ψ(P2)P2 + P2Ψ(P2)P1.
(ii) Ψ(I) = 0.

Proof. (i) By Peirce decomposition, we have
Ψ(P1) = P1Ψ(P1)P1 + P1Ψ(P1)P2 + P2Ψ(P1)P1 + P2Ψ(P1)P2.

In view of Lemmas 2.10 and 2.11, it follows that Ψ(P1) = P1Ψ(P1)P2 + P2Ψ(P1)P1.
Analogously, we can show that Ψ(P2) = P1Ψ(P2)P2 + P2Ψ(P2)P1.
(ii) Invoking Lemmas 2.8, 2.10 and 2.11, we have

Ψ(I) = Ψ(P2 + P1) = Ψ(P2) + Ψ(P1)
= P1Ψ(P2)P2 + P2Ψ(P2)P1 + P1Ψ(P1)P2 + P2Ψ(P1)P1

= 0.

□

Lemma 2.13. Ψ preserves ′∗′, i.e., Ψ(E∗) = Ψ(E)∗ for all E ∈ B.

Proof. By Lemma 2.8, we have
Ψ([I ⋄ E, I]∗) = Ψ(2E − 2E∗) = 2Ψ(E) − 2Ψ(E∗).

On the other hand, using Lemma 2.12, we have
Ψ([I ⋄ E, I]∗) = [I ⋄ Ψ(E), I]∗ = 2Ψ(E) − 2Ψ(E)∗.

Comparing the above two relations, we get
Ψ(E∗) = Ψ(E)∗ for all E ∈ B.

□

Lemma 2.14. (i)Ψ(iI) = 0.
(ii)Ψ(−iI) = 0, where i is the imaginary unit.

Proof. (i) Since [I ⋄ iI, iI]∗ = −4I, applying Lemmas 2.8 and 2.12, we have
Ψ([I ⋄ iI, iI]∗) = 0,

which implies that
[I ⋄ Ψ(iI), iI]∗ + [I ⋄ iI, Ψ(iI)]∗ = 0.

Now using Lemmas 2.8 and 2.13, we have 8iΨ(iI) = 0, thus Ψ(iI) = 0.
(ii) Analogously, we can show that Ψ(−iI) = 0. □

Lemma 2.15. (i) Ψ(−iE) = −iΨ(E)
(ii) Ψ(iE) = iΨ(E), where i is the imaginary unit.

Proof. (i) Since [(−iE) ⋄ I, I]∗ = [E ⋄ iI, I]∗. Therefore,
Ψ([(−iE) ⋄ I, I]∗) = Ψ([E ⋄ iI, I]∗).

Invoking Lemmas 2.12 and 2.14, we have
Ψ(−iE)∗ − Ψ(−iE) = iΨ(E)∗ + iΨ(E).

Also, since [−iE ⋄ −iI, I]∗ = [−I ⋄ E, I]∗. Therefore,
Ψ([(−iE) ⋄ −iI, I]∗) = Ψ([−I ⋄ E, I]∗).
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Now by Lemmas 2.12 and 2.14, we have

−iΨ(−iE)∗ − iΨ(−iE) = Ψ(E)∗ − Ψ(E).

Multiplying both sides of the above relation by iI, we get

Ψ(−iE)∗ + Ψ(−iE) = iΨ(E)∗ − iΨ(E).

Solving the above two relations, we get Ψ(−iE) = −iΨ(E) for all E ∈ B.
(ii) Analogously, we can show that Ψ(iE) = iΨ(E). □

Lemma 2.16. Ψ is a derivation.

Proof. For every E, K ∈ B, we have [I ⋄ E, K]∗ = 2(EK − KE∗). So, applying Lemmas
2.8 and 2.12, we have

2Ψ(EK − KE∗) = Ψ([I ⋄ E, K]∗)
= [I ⋄ Ψ(E), K]∗ + [I ⋄ E, Ψ(K)]∗
= 2Ψ(E)K − 2KΨ(E)∗ + 2EΨ(K) − 2Ψ(K)E∗.

Therefore,

Ψ(EK − KE∗) = Ψ(E)K − KΨ(E)∗ + EΨ(K) − Ψ(K)E∗. (2.6)

Also, we have [I ⋄ (−iE), iK]∗ = 2(EK + KE∗). So, invoking Lemmas 2.8, 2.12, 2.13 and
2.15, we have

2Ψ(EK + KE∗) = Ψ([I ⋄ (−iE), iK]∗)
= [I ⋄ Ψ(−iE), iK]∗ + [I ⋄ (−iE), Ψ(iK)]∗
= 2Ψ(E)K + 2KΨ(E)∗ + 2Ψ(K)E∗ + 2EΨ(K).

Therefore

Ψ(EK + KE∗) = Ψ(E)K + KΨ(E)∗ + Ψ(K)E∗ + EΨ(K). (2.7)

Adding (2.6) and (2.7), we get

Ψ(EK) = Ψ(E)K + EΨ(K).

Hence Ψ is a derivation. This completes the proof of Theorem 2.1. □

3. Corollaries
Let B be an algebra, we say that it is prime if for each E, K ∈ B, EBK = 0, implies

either E = 0 or K = 0. So, it is very simple to see that every prime ∗-algebra satisfies
conditions (2.1) and (2.2) in the Theorem 2.1. So we have the following corollary.

Corollary 3.1. Suppose B is a unital prime ∗-algebra with a non-trivial projection. If
Ψ : B → B satisfies

Ψ([E ⋄ K, D]∗) = [Ψ(E) ⋄ K, D]∗ + [E ⋄ Ψ(K), D]∗ + [E ⋄ K, Ψ(D)]∗
for all E, K, D ∈ B. Then Ψ is additive. Moreover, if Ψ(I) is self-adjoint, then Ψ is a
∗-derivation.

Consider H, as a complex Hilbert space. Let B(H) denotes the algebra of all bounded
linear operators and let T(H) be its subalgebra consisting of finite rank operators. It is
well known that T(H) forms a ∗-closed ideal of B(H). A subalgebra F of B(H) is called
a standard operator algebra if T(H) ⊆ F. As a result, we have the following immediate
corollary.
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Corollary 3.2. Let H be an infinite dimensional complex Hilbert space and let F be a
unital standard operator algebra on H such that F is closed under adjoint operation.
Suppose that Ψ : F → F is a map satisfying

Ψ([E ⋄ K, D]∗) = [Ψ(E) ⋄ K, D]∗ + [E ⋄ Ψ(K), D]∗ + [E ⋄ K, Ψ(D)]∗
for all E, K, D ∈ F. Then Ψ is additive. Moreover, if Ψ(I) is self-adjoint, then Ψ is a
∗-derivation.

A von Neumann algebra Z is a weakly closed, self-adjoint algebra of operators on a
Hilbert space H containing the identity operator. Also, it is well known that if a von
Neumann algebra Z has no central summands of type I1, then Z satisfies conditions (2.1)
and (2.2) of Theorem 2.1. As a result, we have the following immediate corollary.

Corollary 3.3. Let Z be a von Neumann algebra with no central summands of type I1. If
the map Ψ : Z → Z satisfies

Ψ([E ⋄ K, D]∗) = [Ψ(E) ⋄ K, D]∗ + [E ⋄ Ψ(K), D]∗ + [E ⋄ K, Ψ(D)]∗
for all E, K, D ∈ Z, then Ψ is additive. Moreover, if Ψ(I) is self-adjoint, then Ψ is a
∗-derivation.

□
Acknowledgment. The authors are thankful to the anonymous referee for his/her
useful suggestions, which have immensely improved the paper.

References
[1] L. Dai and F. Lu, Nonlinear maps preserving Jordan ∗-products, J. Math. Anal. Appl.

409 (1), 180-188.
[2] V. Darvish, H. M. Nazari, H. Rohi and A. Taghavi, Maps preserving η-product E∗K +

ηKE∗ on C∗-algebras, J. Korean Math. Soc. 54 (3), 867-876, 2017.
[3] V. Darvish, M. Nouri and M. Razeghi, Nonlinear triple product E∗K + K∗E for

derivations on ∗-algebras, Math. Notes 108 (1), 179-87, 2020.
[4] C. J. Li, F. F. Zhao and Q. Y. Chen, Nonlinear skew Lie triple derivations between

factors, Acta Math. Sinica (Engl. Ser.) 32 (7), 821830, 2016.
[5] C. J. Li, Y. Zhao and F. F. Zhao, Nonlinear ∗-Jordan-type derivations on ∗-algebras,

Rocky Mountain J. Math. 51 (2), 601-612, 2021.
[6] C. J. Li and D. Zhang, Nonlinear mixed Jordan triple ∗-derivations on ∗-algebras,

Sib. Math. J. 63 (4), 735-742, 2022.
[7] C. Li, F. Lu and X. Fang, Nonlinear ξ-Jordan ∗-derivation on von Neumann algebras,

Linear Multilinear Algebra 64 (4), 466-472, 2014.
[8] N. U. Rehman, J. Nisar and M. Nazim, A note on nonlinear mixed Jordan triple

derivation on ∗-algebras, Comm. Algebra 1-10, 2022.
[9] A. Taghavi, M. Nouri, M. Razeghi and V. Darvish, Nonlinear λ-Jordan triple ∗-

derivation on prime ∗-algebras, Rocky Mountain J. Math. 48 (8), 2705-2716, 2018.
[10] A. Taghavi, H. Rohi and V. Darvish, Nonlinear ∗-Jordan derivation on von Neumann

algebras, Linear Multilinear Algebra 64, 426439, 2016.
[11] Z. J. Yang and J. H. Zhang, Nonlinear maps preserving mixed Lie triple products on

factor von Neumann algebras, Ann. Funct. Anal. 10 (3), 325-336, 2019.
[12] L. Yaoxian and Z. Jianhua, Nonlinear mixed Lie triple derivation on factor von Neu-

mann algebras, Acta Math. Sinica (Chin. Ser.) 62 (1), 13-24, 2019.
[13] F. J. Zhang, Nonlinear skew Jordan derivable maps on factor von Neumann algebras,

Linear Multilinear Algebra, 64 (10), 2090-2103, 2016.
[14] F. F. Zhao and C. J. Li, Nonlinear ∗-Jordan triple derivations on von Neumann

algebras, Math. Slovaca 68 (1), 163-170, 2018.



Nonlinear mixed type product on ∗-algebras 11

[15] Y. Zhou, Z. J. Yang and J. H. Zhang, Nonlinear mixed Lie triple derivations on prime
∗-algebras, Comm. Algebra 47 (1), 4791–4796, 2019.


