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In this paper, we completely classify Ricci bi-conformal vector fields on simply-connected
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1. Introduction

Let (M, g) be an n-dimensional pseudo-Riemannian manifold. A vector field X on a
Riemannian manifold (M, g) is said to be a Killing field [7] if Lxg = 0 where Lx is the
Lie derivative in the direction of X. Recently, various generalizations of Killing vector
fields have been studied. For instance, conformal vector fields [10,17] are generalized of
Killing vector fields and a conformal vector field X on a Riemannian manifold (M, g) is
defined by L£xg = 2¢g for some smooth function . If the potential function 1) = 0 then
X is a Killing vector field. A vector field X on M is called a Kerr-Schild vector field if
Lxg=al®l, Lxl= Bl where [ is a null 1-form field and «, 8 are smooth functions over
M. Also, the generalized Kerr-Schild vector field is determined by

LXg:ozg—l—ﬁlQZ)l, Lxl:’yl,
where «, 3,7 are smooth functions. Coll et al. [8] studied the generalized Kerr-Schild
vector field. A symmetric tensor field h on M is said to be a square root of g if hikhf =
gij- Garcia-Parrado and Senovilla [11] introduced bi-conformal vector fields by using the

concept of square root of g. A vector field X is called a bi-conformal vector field if it
satisfies the following equations:

LXg:ag—i-ﬁh, LXh:ah—i-ﬁg,
where h is a symmetric square root of g and «, 8 are smooth functions. The functions

a and f are called gauges [8,11] of the symmetry and they play a role analogous to the
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factor ¢ appearing in the definition of the conformal vector fields. Also, Ricci soliton is
introduced by Hamilton [12] as follows

Lxg+5=Ag, AeER,

which is a natural generalization of Einstein metric. Wears in [16] studied Lorentzian Ricci
solitons on simply-connected five-dimensional two-step nilpotent Lie groups which are also
connected. For more details, see [1-6,13—-15]. Next, De et al. in [9] applying the metric
tensor field g and the Ricci tensor field S introduced Ricci bi-conformal vector fields as
follows:

Definition 1.1. A vector field X on a Riemannian manifold (M, g) is said to be Ricci
bi-conformal vector field if it satisfies the following equations

(Lx9)(Y,2) = ag(Y, Z) + BS(Y, Z), (1.1)

and
(LxS)Y,Z)=aS(Y,Z)+ Bg(Y, Z), (1.2)

for any vector fields Y, Z and some smooth functions o and 3, where S is the Ricci tensor
of M with respect to the metric g.

Motivated by [9,16], we study the Ricci bi-conformal vector fields on simply-connected

five-dimensional two-step nilpotent Lie groups (G, g) with Lorentzian left invariant metric
g which are also connected.
The paper is organized as follows. In Section 2, we recall some necessary concepts on
simply-connected five-dimensional two-step nilpotent Lie groups with Lorentzian left in-
variant metric which are also connected and will be used throughout this paper. In Section
3, we give the main results and their proofs.

2. Preliminaries

Let g be a five-dimensional Lie algebra with basis vector fields e, - - - , e4 and e5 with the
Lie algebra structure generated by the non-trivial Lie brackets [e1, e5] = e3 and [eg, €3] =
es. The Lie algebra g is a two-step nilpotent with center Z = span{es,es} and contains
a four-dimensional maximal abelian subalgebra h = {ej, e2, e3,e4}. Suppose that G is the
simply-connected five-dimensional two-step nilpotent Lie group with corresponding Lie
algebra g which is also connected. We will identify G’ with R® equipped with coordinates
(z,y,u,v,z). The group operation o on G in coordinates is defined by

(x1,y1,u1,v1, 21) 0 (T2, Y2, U2, V2, 22) = (T1+x2, Y1 +Y2, U1 +us+x122, v1 +v2+y1 22, 21+ 22).

We will identity the Lie algebra g of G with the left invariant vector fields on G by
considering the following basis

0 0 0 0 0 o 0

e _9o _9 _ 9  _ 9. 2.1
€1 81}7 €2 ayv €3 8?,6, €4 8’1)7 €5 x + ( )

au Vo0 T o
The co-frame dual to the left invariant frame (2.1) is determined by
wl =dz, W =dy, WP =du—xdz, W =dv—ydz, W’ =dz.

Identifying T, G with g, the action of Autg on the set of left invariant metrics is described
by
(9,H) — g.H (2.2)

where H € Autg. From [16], we have the following theorem:
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Theorem 2.1. Let gijwi®oﬂ be a left invariant Lorentzian metric on G. Under the action
(2.2) of Autg, the metric g is equivalent to a left invariant Lorentzian metric of one of
the following forms:

g = aw'uw+b?Ruw+w@wd Fuw!@w! —wW ®W®, a,be Ry,
@ = —aw'Quw+b? W+ @wd +uwt @wt+ W ®W, a,be Ry,
3 = aw'@w' +b? W+ W @wd —w @wl + W ®W®, a,b e Ry,
gs = w @ wh +2w? @ w4 aw® ® WP + WP ® WP, a € Ry,

g5 = wRw+2?@wd+awt@wt+u W, ae Ry,

g = aw! @ W +w? @ w? + WP Wi + 2wt WP, a € Ry,

g7 = 20wt @ W’ +w? QW+ wd @ wd +wt @w?, aeRyy.

3. Main results and their proofs

We will now investigate the Ricci bi-conformal vector fields on G with the left invariant
Lorentzian metrics.

3.1. The metrics g1, 9, and g3
We can denote the families of metrics g1, go and g3 as follows.
gu = aw' @ w' + 0? @ W+ cw? @ WP + dw? ® Wt + fu’ ® WP,

where a, b, c,d, f € R. The Levi-Civta connection V of the left invariant Lorentzian metric
gy is described by

0 0 —§65 0 %63
0 0 0 —3%es e
Veej=| —37es 0 0 0 g€l | (3.1)
0 —%65 0 0 2%)62
*%63 *%64 55€1 %62 0
and the Ricci tensor of g, is determined by
—ﬁ 0 0 0 0
0 -5 0 0 0
2
S = 0 0 2CTf dO2 0 ) (3.2)
a C
0 0 0 0 —955*

with respect to the basis {e1,e2,e3,e4,e5}. For left invariant Lorentzian metric g, and
any vector fields X = X'e; where the X* are smooth functions on G, we have

(Lxg)11 = 2a0, X1, (Lxg)12 = b@zXz—l—a@yXl,
(Lx9)13 = c0: X3 + a0, X! + X7, (Lxg)1a = dO.X* + ad, X!,
(Lxg)15 = f0.X? + azd, X' + ayd, X! + ad, X1, (Lxg)22 = 200, X2,
(Lxg)2a = dOy X* + b0, X% + d X5, (Lxg)23 = cO, X3 + b0, X2,
(Lxg)% = fast + bl’auX2 + byaUX2 + bazX2, (LXg)gg = 268UX3,
(Lx9)35 = fOLXD + cx0, X3 + cy0, X3 + 0, X3 — X, (Lxg)34 = dO, X + 0, X3,
(Lx9)15 = fO,X° + dxd, X* + dy0, X1 + d0, X* — dX?, (Lxg)aa = 2dD, X",
(Lx9)s5 = 2f20, X° + 2fy0, X° + 2f0. X°,

(3.3)
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and
(LxS)n =50 X", (LxS)hz2 = —57(dd, X* + cdy X' )
(LxS)13 = 2af(cc9 X3 — ad, X1 +cX5) (LxS)1s = %fa Xt — £0,X7,
(LxS)15 = agj;’ca X5 — 5 (20, X" + y8, X' 4+ 8.X"), (LxS)20 = —$0,X7,
(LxS)as = 55-(9, X" +X5) — 0, X2, (LxS)as = 570, X° — ££0, X2
(Lx )5 = —dthey X5 — (xa X2 +90,X% +0.X?), (LXS) a X3, (34)
(LxS)35 = :gjgca X5+ £ f( 20, X3 + 90, X% 4+ 9, X3 — X1),
(Lx8)31 = 370X + ,mfa X3,
(LxS)a5 ;lgj;’ca X0+ (20, X1 +y0, X1 + 0.X1 - X?),
(LxS)as = 50, X*, (Lx8)55 = — 2L (20, X + y9, X5 + 0. X7),
where (L£x¢)ij = Lxg(ei,e;) and (Lx95)ij = LxS(es,e5) for 1 <i,5 < 5. Applying (3.1),

(3.2), (3.3) and (3.4) in (1.1) and (1.2), we get

2000, X" = aa — 373 b9, X% + a0y X! =0,

€0, X3 + a0, X' + cX® =0, A0, X* + a0, X! =0,
f0, X5 + ax0, X" + agyd, X' 4+ a0, X! =0, 2b0, X? =ba — —ﬁ,

0y X3 + b0, X? =0, doy Xt + b9, X? + dX° =0,
FO,X5 + b2, X2 + bydy X2 + b9. X2 = 0, 200, X% = co+ 7,
fOLXD + cx0, X3 4+ cyd, X3 + 0. X> —cX' =0, do,X*+ c0,X? =0,
fO.X° + dzd, X* + dyd, X* + d0. X" — dX? =0, 2d0,X" = do+ B,
2f20,X° + 2fy0, X° + 2f0.X° = fo — 292Hep,

0,

and

_28 Xl—_ﬁa—l—aﬁ, (da X2+C@X ) =

2af(ci3X — a0, X! +cX%) =0, foa X4 £0,X1 =0,
06211-508 X - (:‘UauX +yavX1 +82X1) = 0, _278 X2 = %O&—FbB?

5570y X4+X5) 570 X2 =0, g0 X? = 0, X2 =0,
— GOy X0 — (wa X2 49, X? +9.X?) =0, £0,X3 = g+
— 95O X5""2f(958 X? +90,X% 4+ 0, X° - X1) =0, 2%2,68 X4+2afaX =0,
— 950, X0 + 2bf($6 X4+ yo, X4 +0.X4 - X?) =0, dza X4 = 2bfo‘+d5:
— 4 (20, X5 + y9, X5 + 0, X°) = — 4t + f5.

By solving the above equations, we obtain

X'=ay, X?=ay, X3 =a3z+ a12+4 ay, X = apz +azy + a5, X°

and o = § = 0 for some constants ai,...,as;. Therefore, we have the following theorem:

Theorem 3.1. The left-invariant Lorentzian metric g, on Lie group G has a Ricci bi-
conformal vector field X if and only if X = aje; +agses + (agx + a1z +aq)es + (agz +asy +

as)eq — ages and o = 3 =0 for some constants a1, az,as,aq, and as.

Now, we consider the vector fields as X = Vh for some smooth function h which are
Ricci bi-conformal vector fields. On a five-dimensional Lorentzian Lie group G with metric

9u, we have

Vh = (8 h)er + b(a h)es + — (8 h)es + — (6 h)es+ — (1’0 h 4+ yO,h +

d f

.h)es

(3.5)



1122 S. Azami, U. C. De

From (3.5) and Theorem 3.1, we obtain

Ozh = aia, (3.6)
d,h = bas, (3.7)
Ouh = clazx + a1z + ay)

Oph = d(agz + azy + as)

x0uh + yo,h + 0.h = —asf.

From equations (3.6) and (3.7), we deduce 0 = 0;0,h = cas. Then, ag = 0. Similarly, we
infer a; = ag = a4 = a5 = 0. Therefore, we get the following corollary:

Corollary 3.2. Any Ricci bi-conformal vector field X with respect to the left-invariant
Lorentzian metric g, is gradient vector field as X = Vh if and only if h = a1, where ay is
a real constant.

3.2. The family of metrics g4

The Levi-Civta connection V of the left invariant Lorentzian metric g4 on G is described
by

0 0 —%aeg, 0 %63
0 —es 0 0 ey
Veej=| —3aes 0 0 0 Zaer |, (3.8)
0 0 0 0 o0
—%63 e4 saer 0 0

and the Ricci tensor of g4 is obtained by

—2a 0 0 0 0
0 0 0 0 0
S = 0 0 3a> 0 0 : (3.9)
0 0 0 0 0
0 0 0 0 —ia

with respect to the basis {e1,e2,e3,e4,e5}. For left invariant Lorentzian metric g4 and
any vector fields X = X'e;, we deduce

Lxg)n =20,X", (Lxg)12 = 0. X + 9, X1,
Lxg)13 = a0, X3 + 0, X + aX®, (Lxg)1a = 0, X%+ 0, X1,
Lxg)15 = 0. X7 + 20, X' + y0, X' + 0. X", (Lxg)2 = 20,X* +2X7,
(£x9)
(£x9)

)

)

(£x9)
(£x9)
(Lxg)
(£x9)23 = a0y X3 + 0, X4, xg)24 = 0, X% + 9, X4,
(Lxg)25 = 0y X° + 20, X* + Y9, X* + 0, X* — X2, Lxg)33 = 2a0, X3,
(LXg)34 = 8UX2 + a8UX37

(Lx9)35 = 0uX® + a0, X3 + ayd, X3 + a0, X3 — aX', (Lxg)as = 20, X%,
(Lx9)a5 = 0 X 4+ 20, X% + y0p, X2 + 9. X2,

(Lx9)55 = 220, X° + 290, X° + 20, X°,

(3.10)
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(LXS)H —a8 Xl, (ﬁxs)lg = —Qac‘)yXl
(LXs)lgz (X5-|-8 X3 — 18 Xl) (LXs)14:—%8UX1,
(LXS)H,:—*(& X+ 20, X1+y8 X'+ 0.X1), (Lx8)22 =0,
(LxS)as = L8, X3, (L£x8)24 =0,
(LxS)25 = —20, X7, (LxS)33 = a?0, X3,
(LxS)35 = 2(—8,X5 — aX' + axd, X3 + ayd, X® + ad.X3), (LxS)3s = L0, X3,
(LxS)aa =0, (Lx8)s5 = —%0,X°
(Lx8)55 = —a(x0, X5 + y0, X° + 9, X°).
(3.11)
Applying (3.8), (3.9), (3.10) and (3.11) in (1.1) and (1.2), we infer

20, X' =a — %aﬁ,

a0, X3 + 0, X' 4+ aX® =0,
0. X° + 20, X' + 90, X' + 9, X! =0,
ady X3+ 9,X* =0,

0y X® + 20, X* + yo,X* + 9. X*

- X?=0,

B, X4 + 9, X1 =0,
0, X2+ 0,X' =0,
20,X* +2X° =0,
0, X2 + 0, X* = a,
200, X3 = aa + %aQB,

8uX2 + a(‘)UX3 =0,
0uX° + a(x0, X3 + yd, X* + 0.X% — X') =0,
200, X° + 290, X5 +20,X° = a — %aﬁ,

20, X4 =0,
O0p X® + 20, X?% +y0,X?> + 0.X%2 =0,

(3.12)
and
—a0, X! = —%aa—i—ﬁ, —%aayXl =0,
(X5 +0,X3 — 19,x1) =0, —29,X' =0,
—2(0: X" + 20, X + y9, X' + 9.X") =0,
< 9,X% =0, 0=2, (3.13)
~20,X° =0, a?0,X3 = La’a + aB,
%(—8UX5 —aX!' 4+ ar0, X3 + ayd, X3 + a0, X3) = 0, ‘12—281,)(3 =0,
—a(20, X5 4+ y0,X° 4+ 0.X°) = —Jaa + 3, —20,X° =0.

By solving the equations systems (3.12) and (3.13), we have the following theorem:

Theorem 3.3. The left-invariant Lorentzian metric g4 on G has a Ricci bi-conformal
vector field X if and only if X = biey +baea + (b1z+ b3z + by)es + (baz + b3y + bs)eq — bzes
and o = 8 =0 for some constants by, ..., bs.

Similar to Corollary 3.2, we have the following result:

Corollary 3.4. Any Ricci bi-conformal vector field X with respect to the left-invariant
Lorentzian metric gy is gradient vector field with potential function h = by + by where
b1, by are arbitrary real constants.

3.3. The family of metrics g5

The Levi-Civta connection V of the left invariant Lorentzian metric g5 is given by

0 —3es 0 0 €3
—%65 0 0 —%aeg, %61 + %64
Ve,ej = 0 0 0 0 0 (3.14)
0 —%aeg, 0 0 %aeg
—des ey —ley 0 lae 0
263 €1 7 ¢4 214€3
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and the Ricci tensor of g5 is represented by

0 0 000
0 ¢ 00 0

S=]0 0 000 (3.15)
0 0 000
0 0 000

with respect to the basis {ej,e2,e3,e4}. For left invariant Lorentzian metric g5 and any
vector fields X = X'e; we obtain

(Lxg)11 = 20, X1,
(Lxg)12 = 0: X3 + 9, X! + X,
(LXg)lg =0, X2+8 )(1 (LXQ)M = aaxX4+8vX1,
(Lxg)15 = 0. X° + 20, X' + y0, X' + 0. X1, (Lxg)2e = 20,X3,
(Lx9)23 = 0, X%+ 9, X3,
(LXg)24_a8X4+3X3+aX5
(Lxg)

(Lxg)

(L£x9)35

(Lx9)4s

(Lxg)

LXg 25—8X5+l’8 X3—i—y8 X3+8X3 Xl, (LXg)33:26uX2,
Lxg 34 = a0y X4+6 X2
Lxg)35 = 0uX? + 20, X2 + y0, X2 + 0.X2, (Lxg)aa = 2a0,X*,
Lxq)as = 0, X5 + ax0, X* + ayd, X* + a0, X* — aX?,
Lx9)s5 = 220y bE ~+ 2y0, X° + 20, X5
(3.16)
and
0 29,X? 0 0 0
(1—a)o,X? IT(% IT@U 1g—“(:UGuXQ + Y0, X2 + 0,X?)
(LxS)ij = 0 0 0
0 0
0
(3.17)
Applying (3.14), (3.15), (3.16) and (3.17) in (1.1) and (1.2), we deduce
20, X! = a, 0: X3+ 9, X'+ X° =0,
0: X2+ 0, X' =0, ad, X* +0,X! =0,
0. X5 + 20, X' + y0, X' + 0, X' =0, 20,X% = 143,
0y X%+ 0,X3 = a, ady Xt + 0, X3 + aX® =0,
0y X% 4+ 20, X3 + y0, X3 + 0, X3 — X' =0, 20,X2% =0,

a0, X* + 0,X? =0,

0uX? + 20, X% + y0, X% + 0.X? =0,

200, X* = aa,

0p X% + ax0, X* 4+ ay0, X* + a0, X* —aX? =0,
220, X° + 290, X% + 20, X° = a,
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and

Solving the above equations, we get the following theorem:

Theorem 3.5. The left-invariant Lorentzian metric gs has a Ricci bi-conformal vector
field X = X'e; if and only if

X' =c¢ysiny + cacosy + 3y + c,

X? =,

X3 = 6T + c3v + 42 + cr,

X' =crsiny + cacosy + (c3 + o)y + c52 + s — %y,

X° = —C1 COsY + cosiny — c3 — cg,
and o = B =0 for some constants cy,--- ,cs.
Therefore, we have the following result:

Corollary 3.6. Any Ricci bi-conformal vector field X with respect to the left-invariant
Lorentzian metric gs is gradient vector field with potential function h = ¢1(x + yz — v) +
C2y + ¢3 where ¢1, ca, 3 are arbitrary real constants.

3.4. The family of metrics gg

The Levi-Civta connection V of the left invariant Lorentzian metric gg is represented
by

0 0 —2es 0 Leg
0 0 0 0 0
Veej=| —2ea 0 0 0 e (3.18)
0 0 0 0 0
—%63 —€4 i@l 0 €2
and the Ricci tensor of g, is given by
0000 O
0000 O
S=10000 O (3.19)
0000 O
0000 —5

with respect to the basis {ej,e2,e3,e4}. For left invariant Lorentzian metric g¢ and any
vector fields X = X'e; we have
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(LXg)n = QCLaxXl, (LXg>12 = 8$X2 + aayXl,
(Lxg)13 = 0, X3 + ad, X' + X5, (Lxg)14 = 0. X° + ad, X!,
(Lxg)15 = 0. X* 4+ a0, X' + ayd, X' + a0, X", (Lxg)oe = 28yX2,
(Lx9)23 = 0, X3 + 0, X2, (£xg)21 = 0y X5 + 0, X2,
(Lx9)os = 0y X* + 20, X2 + Y0, X% + 0. X2+ X°, (Lxg)ss = 20,X3,
(LX9)34 = auXS + 8’UX37 (320>
(LXQ)SE) = auX4 + -TauXS + yavXS + ang - Xla
(Lxg)aa = 20,X5,
(LX9)45 = 8UX4 =+ (IZ@UX5 + y8UX5 + azX57
(Lx9)s5 = 200, X* + 290, X* + 20, X* — 2X?2,
and
0000 — 50, X5
00 0 — 0y X°
(LxS)ij = 00 _ia“X: (3.21)
0 —5=0, X

2a 7V
—é(x8UX5 + Y0, X° + 0.X°)

Applying (3.18), (3.19), (3.20) and (3.21) in

200, X' = aa,

s X3 + a0, X' + X5 =0,

0. X* + az0, X' + ay0, X' + a0, X' =0,
0y X3 + 0, X% =0,

Oy Xt + 20, X% + y0, X2 + 0, X%+ X =0,
Ou X + 20, X3 + 90, X3 + 0.X% — X' =0,
20,X° =0,

and

0=25,

9, X% =0,
9, X% =0,
0, X =0,
9, X° =0,

1
—a(.f]caux5 + Y0y X° + 0,X°) = —

200, X* + 2y0, X* +20.X* — 2X? = — L8,

(1.1) and (1.2), we conclude

0. X2 + a@yX1 =0,
0. X% + a0, X' =0,

26?3,,X2 = q,
0y X% +8,X? =0,
20, X3 = q,

0, X? 4+ 0,X3 =0,
O X+ 20, X° 4+ y0,X° + 0, X% = a,

(3.22)

(3.23)

1
—a.
2a

By solving systems (3.22) and (3.23), we obtain the following theorem:
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Theorem 3.7. The left-invariant Lorentzian metric g, has a Ricci bi-conformal vector
field X = X'e; if and only if « = f =0 and
1
= §dlz2 +doz + ds,
X? = dyz + ds,
1 1
X3 = —de + 6d1Z3 — adlz + §d222 + dgz + d7,

X* = adyu — (dg + dy)y — (d12z + do)azx + %d422 + dsz + ds,
X° = dg,
for some constants dy,--- ,ds.
Therefore, we have the following result:

Corollary 3.8. Any Ricci bi-conformal vector field X with respect to the left-invariant
I:orentziaq metric ge is gradient vector field with potential function h = %(Qy—i-zQ) +daz+
ds where dyi,do, ds are arbitrary real constants.

3.5. The family of metrics g7

The Levi-Civta connection V of the left invariant Lorentzian metric g7 is described by

0 0 —aer 0 le
0 0 0 —2e 2¢4
Veej=| —5e€1 0 0 0 ze5 (3.24)
0 —5-e1 0 0 3e
—%63 fracl2ey ﬁe5 %62 0

and the Ricci tensor of g7 is determined by

00 0 0 &+
00 0 0 0
S=]1 0 0 —55 0 0 (3.25)
00 0 0 0
1 1
=0 0 0 -1

with respect to the basis {e1, ea,e3,e4}. For left invariant Lorentz metric g7 and any vector
fields X = X'e;, we obtain

(’CXg)ll - 2@8 X5 (Lxg)lg = &EXQ + aayX5,
(Lx9)13 = 0: X3 + ad, X° + X5, (Lxg)14 = 0, X* + a0, X,
(Lx9hs = adp X' + azd, X + ayd X° +ad.X°,  (Lxg)as = 20, X7,
(£xg)2s = 0, X7 + 0, X7, (Lxg)2a = 0, X* + 0, X2 + X5,
(Lx9)25 = a0y X' + 20, X? + y9, X? + 0. X2, (Lxg)33 = 20,X3,

(Lx9)3a = 0uX* + 0, X3,

(Lx9)35 = a0, X' + 20, X3 + y0, X3 + 0, X3 — X1,

(ﬁxg)44 = 28 X4

(Lxg)as = adp X' + 20, X* + yd, X* + 8.X4 — X2,

(Lx9)s5 = 2020, X' + 2ay0, X' + 200, X!,

(3.26)
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(3.27)

and

(LxS)n =10, X5,

(LxS)i2 = 20, X5,

(LxS)3 = =52 (X° + 8, X — a0, XP),

(LxS)a = 50,X°,

(LxS)15 = 5 (0, X' — a0, XP + 20, X° + y9, X° + 0.X°),

(Lx8)22 =0,

(Lx8)23 = — 520, X3,

(Lx5)21 =0,

(LxS)25 = 5 (0, X! — a0y XP),

(Lx8)33 = -5, X3,

(Lx8)34 = —5020, X3,

(Lx8)35 = #(aaqu —a20, X% + X! — 20, X3 — y0, X3 — 0.X?),

(LxS)as =0,

(LxS)as5 = 5 (0, X! — a0, X®),

(LxS)55 = (20, X + yd, X' + 0.X1) — (29, X° + y9, X° + 0.X°).
Applying (3.24), (3.25), (3.26), and (3.27) in (1.1) and (1.2), we can write

2010, X° =0,

0, X3 4+ a0, X° + X5 =0,

a0, X' + ax0, X% + ayd, X° + a0, X° = aa + ﬁﬁ,
0y X3 +0,X% =0,

aGyX1 + 20, X?% +y0,X%>+ 0,X%? =0,

a0, X' 4 20, X3 + y0, X3+ 0, X% — X! =0,
a0p X' 4+ 20, X* + y0,X* +0.X* — X? =0,

2020, X! + 2ay0, X' + 2a0. X' = —% ,

and
19, X5 =0,
— 5 (X5 + 0, X3 — a0, X®) = 0,

— 530, X3 =0,
— 50X = —5ha+ B,
(a0, X! — a?0,X°
+ X1 —20,X3 — y0,X3 - 0,X3) =0,
120, X" + yo, X' + 0.X1)
—(20,X° + 0, X5 + 0,X5) = —%a.

1
2a2

0. X2 + aOyX5 =0,
0. X* + a0, X5 =0,
20,X? = a,

Oy Xt +0,X% + X° =0,
20, X% = o — 55,

0y X* 4+ 0,X3 =0,

20,X* = a,
1
%ayX{S - 0,
~0,X° =0,

2 (0, X' — a0, X5 + 20, X° + y9,X° + 0.X%) = £a+aB, 0=,

= (0, X! — a0y X®) =0,
— 530, X3 =0,

= (0 X! — a0, X®) =0,

Solving the above systems implies that in the following theorem:

Theorem 3.9. The left-invariant Lorentzian metric g; has a Ricci bi-conformal vector
field X if and only if X = kiey + kaea + (k12 — ksx + k3)es + (koz — ksy + ka)es + kses

and a = § =0 for some constants ky,--- , k5.

Also, we have the following result:

Corollary 3.10. Any Ricci bi-conformal vector field X with respect to the left-invariant
Lorentzian metric g7 is gradient vector field with potential function h = ki where ky is an

arbitrary real constant.
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Remark 3.11. From Theorems 3.1, 3.3, 3.5, 3.7, and 3.9, we conclude that all Ricci
bi-conformal vector fields on five-dimensional Lorentzian nilpotent Lie groups (G, g;) are
Killing vector fields for i =1,2,...7.
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