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Abstract 

 

Interbody fusion is utilized as a treatment for spinal degenerative diseases. Spinal cages, also 

known as intervertebral cages or interbody fusion devices, are implants employed in spinal 

surgery to address these conditions and promote spinal stability. These cages are inserted into 

the intervertebral space between adjacent vertebrae, replacing the damaged or degenerated disc. 

Spinal cages aid in the distribution of loads and stress at the fusion site and often incorporate a 

dedicated area for bone graft material. In this study, a topology optimization approach was 

employed to develop distinct spinal cages featuring a bone graft window. The mechanical 

behavior of the spinal cages under loading conditions was simulated and evaluated using finite 

element analysis. Following optimization, a finite element model analysis estimated the 

maximum stresses and compared them to the initial model. For topology optimization, 

reductions of 30%, 50%, and 70% in mass were defined. Both the 50% and 70% mass-reduced 

designs, featuring an open window, are deemed suitable for bone graft placement and stress 

distribution. 
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1. INTRODUCTION 

 

A crucial component of the human body for 

connecting and supporting weight is the 

spine. The prevalence of spinal degenerative 

disorder has gradually increased with the 

aging of the population. Patients with spinal 

degenerative disorders who do not respond to 

conservative treatment frequently require 

surgical treatment. Spinal degenerative 

disorders can be effectively treated using 

interbody fusion [1]. The insertion of a fusion 

cage between the vertebrae is necessary for 

interbody fusion. The spinal interbody fusion 

cage is a small, porous, hollow implant with a 
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form that can be either cylindrical or almost 

cuboid. It can restore physiological disc 

height by replacing the degenerative disc and 

disengaging the intervertebral body. The 

hollow and porous cage can be filled with 

bone grafts, which will allow bone to grow 

through the cage and lead to bony fusion. 

Additionally, it can boost fusion speed and 

mechanical strength [2]. The interbody fusion 

cage's size, shape, and bone-grafting capacity 

are crucial elements impacting how well the 

fusion will work. However, the majority of 

fusion cages currently in use have a universal 

design and merely vary in size. The use of 

universal interbody fusion cages may 
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decrease the fusion rate and raise the 

likelihood of surgical failure due to 

mismatched sizes, shapes, and volumes of the 

bone graft window because of the wide 

variation in the pathological environments of 

patients. As a result, scientists are now 

concentrating primarily on designing 

interbody fusion cages [3]. 

 

Topology optimization is a computational 

design process used to optimize the material 

distribution within a given design space to 

achieve the best possible performance. It is 

commonly employed in engineering 

disciplines, such as mechanical, structural, 

and aerospace engineering [4, 5]. The goal of 

topology optimization is to determine the 

optimal layout or distribution of material 

within a predefined design domain, subject to 

specified constraints and objectives. The 

process starts with an initial design space, 

which represents the overall shape and 

boundaries of the structure or component 

being optimized [4-6].  

 

 
Figure 1 Topology optimization process 

 

Using numerical methods and algorithms, 

topology optimization iteratively redistributes 

material within the design domain to 

maximize performance while satisfying 

design criteria. During the optimization 

process, regions with excessive material that 

do not contribute significantly to the desired 

performance are systematically removed or 

minimized, resulting in a more efficient 

design. At the same time, material is added or 

reinforced in areas where it is necessary to 

meet the performance requirements. 

Topology optimization considers various 

factors such as loads, boundary conditions, 

material properties, and manufacturing 

constraints. It often utilizes finite element 

analysis (FEA) techniques to simulate and 

evaluate the structural behavior under 

different conditions. As shown in the 

topology optimization process in Figure 1, the 

majority of topology optimization techniques 

are carried out by combining the concepts of 

CAD (Computer Aided Design), FEA, and 

various optimization algorithms in 

consideration of various manufacturing 

techniques [6, 7]. 

 

Topology-optimized structures exhibit 

complicated geometric configurations. Due to 

the difficulty of producing these novel 

structures using traditional methods (such as 

casting or machining), additive 

manufacturing offers a strong opportunity for 

topology optimization [8]. 

 

It has been demonstrated that topology 

optimization of fusion cages effectively 

increases the available area for bone grafts; 

however, stress shielding remains a concern 

[9, 10]. Zhong et al. [11] utilized topology 

optimization to design a new cage and 

investigate stress distribution in the lumbar 

spine. Tovar et al. [12] utilized finite element-

based optimization techniques to achieve an 

optimal design for interbody implants. Chuah 

et al. [13] employed topology optimization to 

reduce the stress-shielding effect in spinal 

interbody cages by removing ineffective 

material from the design domain. The stress 

shielding effect can be minimized by 

designing porous implants that allow bone to 

grow into the implant. However, studies in 

this area are still insufficient and ongoing, so 

further investigation is needed. The aim of 

this study was to design a cage that minimizes 

the stress shielding effect while also 

maintaining its mechanical strength. To 

achieve this, a novel fusion cage with a bone 

graft window was designed using a topology 

optimization approach. The study also aimed 
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to simulate and evaluate the mechanical 

behavior of the spinal cages under loading 

conditions through finite element analysis 

(FEA) and topology optimization methods. 

The specific objectives were to optimize the 

cage design by reducing its mass by 30%, 

50%, and 70%, and to assess the resulting 

stress distribution and deformation. 

 

2. MATERIAL AND METHODS 
 

2.1. Initial Design of Spinal Cage 
 

Spinal cages are typically implantable devices 

that are inserted into the intervertebral space, 

which is the area between two adjacent 

vertebrae in the spine. The primary purpose of 

a spinal cage is to provide stability, 

decompression, and support to the spine while 

promoting proper alignment and fusion of the 

vertebral segments. The spinal cage is a small, 

hollow, or partially hollow structure with a 

form that can be either cylindrical or almost 

cuboid. Key considerations in spinal cage 

design include the choice of materials, 

geometry, and biomechanical properties.  

 

Solid models of the L3-L4 vertebrae and 

spinal cage were created using the CATIA 

V5R20 program. The dimensions of the cage 

rely on the usual distance between the L3-L4 

vertebrae according to the model. As seen in 

Figure 2, the initial spinal cage design was 

created based on the L3-L4 vertebrae model. 

The standard type of XLIF cage has 18 mm of 

width. [14]. The cage height and length were 

chosen to preserve disc space and lordosis 

according to the L3-L4 model.  

 

 
Figure 2 Initial spinal cage design 

 

The materials used for spinal cages are 

usually biocompatible and can include 

titanium, stainless steel, or polymer-based 

composites. These materials should possess 

adequate strength and durability to withstand 

the forces exerted on the spine. In this study, 

stainless steel material was chosen due to its 

strength, durability, biocompatibility, 

radiopacity, and cost-effectiveness [15]. The 

total mass of the initial design was 0.450 kg. 
 

2.2. Finite Element Model 

 

After designing the spinal cage's CAD model, 

geometry was loaded into ANSYS 

Workbench 2022 R2 simulation software to 

build a finite element model. Statistical 

structural analysis was performed. Automatic 

meshing was applied to the model with 

resolution 7. Stainless steel was chosen as a 

material for the analysis and the material 

properties are shown in Table 1. 

 
Table 1 The properties of stainless steel 

Properties Unit 

Young modulus 195 GPa 

Poisson’s Ratio 0.27 

Yield Strength 250 MPa 

Tensile Ultimate Strength 565 MPa 

Density 7969 kg/m3 

 

Ansys was used to define the loads and 

boundary conditions that were applied to the 

spinal cage. A static, axial compressive force 

along the y-axis of 750 N was applied 

uniformly throughout the surface of L3 

vertebrae, fixing L4 vertebrae as shown in 

Figure 3. The highest in vivo force recorded 

in a patient's lumbar spine when they were 

getting up from a chair was used to determine 

the load [16]. 
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Figure 3 Finite element model of the spinal cage 

 

2.3. Topology Optimization for Designing a 

Spinal Cage 

 

The most effective design is produced using 

structural optimization methods using 

ANSYS that take into account several factors, 

such as mass, volume, strength, cost, etc. The 

objective of the structural optimization 

method is to create optimal designs that meet 

specific criteria. This method has the 

advantage of reducing time and money lost 

[17]. 

 

The design space was defined according to 

the dimensions of the spinal cage. The entire 

cage model was chosen as the design region 

and there was no exclusion region. 30%, 50%, 

and 70% mass reduction was defined for 

topology optimization. Minimizing 

compliance was stated as the goal. The 

maximum number of iterations was set at 100. 

The topology-optimized designs are shown in 

Figure 4. 

 

3. RESULTS AND DISCUSSION 

 

A structural analysis was performed to assess 

the effectiveness of the initial spinal cage 

design, revealing a displacement of 1.083 mm 

and a maximum von Mises stress of 3.0157 

MPa. To verify the ability of the topology-

optimized designs to withstand the applied 

load case, another structural analysis was 

conducted, as depicted in Figure 5, Figure 6, 

and Figure 7. The FEA and topology 

optimization results of the spinal cage designs 

are presented in Table 2. According to Table 

2, the 50% mass-reduced spinal cage design 

exhibited the minimum von Mises stress 

 

With a 70% reduction in mass, a weight loss 

of 29.14 g was achieved, but the maximum 

stress value did not decrease as significantly 

as in the 50% mass-reduced spinal cage, 

which had a weight loss of 19.99 g. A stiffer 

structure typically experiences lower 

deformations and displacements under the 

same applied load, while a less stiff structure 

tends to undergo larger deformations (Figure 

5, Figure 6, and Figure 7). The stiffer design 

was created with a 30% mass reduction, while 

the least stiff design was achieved through a 

70% mass reduction. Areas with lower 

stiffness may experience higher stresses due 

to increased deformation or localized load 

concentrations [18]. The findings of Zhong et 

al. [11] align with our results, supporting the 

general understanding that a stiffer structure 

tends to exhibit reduced deformations and 

displacements. 

 

Moreover, an increase in volume can result in 

an increase in stiffness, assuming all other 

factors remain equal. When the volume of a 

structure increases, assuming the material 

properties remain the same, the additional 

material contributes to a higher resistance 

against deformation. This increased material 

volume leads to a higher stiffness or rigidity 

of the structure [19]. Srinivasan et al. [20] 

reported that an increase in the infill 

percentage results in the provision of more 

material, thereby leading to an improvement 

in strength. These findings align with the 

results obtained in our study. 
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Figure 1 Topology-optimized spinal cages with varying levels of mass reduction: a) 30%, b) 50%, and 

c) 70% 

 
Table 2 FEA results of the topology optimized the spinal cage designs 

 

Initial 

design 

70% mass 

reduction 

50% mass 

reduction 

30%mass 

reduction 

Von Mises Stress (MPa) 3.016 0.036 0.013 0.079 

Deformation (mm) 1.082900 0.000054 0.000012 0.000008 

Mass (g) 45.09 15.95 26.10 35.59 

Volume (cm3) 5743.7 2031.5 3324.5 4533.9 

Weight loss (g)  ------ 29.14 18.99 9.5 
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Figure 5 FEA results of 70% mass-reduced 

spinal cages: a) von Mises stress, b) total 

deformation 

 

 

 
Figure 6 FEA results of 50% mass-reduced 

spinal cages: a) von Mises stress, b) total 

deformation 

 

The strength of the topology-optimized spinal 

cage can still be considered acceptable. Under 

the load condition, the maximum von Mises 

stress of the initial design was 3.016 MPa. 

However, after a 50% mass reduction, this 

value decreased to 0.013 MPa. The maximum 

von Mises stress remains below the endurance 

limit of the material, typically ranging 

between 30% and 45% of its ultimate tensile 

strength, as indicated by the study conducted 

by Gültekin and Vahşi [21]. 

 

 

 
Figure 7 FEA results of 30% mass-reduced 

spinal cages: a) von Mises stress, b) total 

deformation 

 

Both the 50% and 70% mass-reduced designs, 

featuring an open window, are considered 

suitable for bone graft placement. These 

designs have achieved a reduction in mass 

while maintaining the necessary structural 

integrity and functionality for their intended 

purpose. The presence of an open window 

indicates that a portion of the design has been 

modified or removed to allow for bone graft 

placement. During a spinal fusion procedure, 

the bone graft is typically inserted inside the 

spinal cage, promoting bone growth and 

facilitating fusion between adjacent 

vertebrae. [3, 9, 10] This modification ensures 

that the bone graft can be properly positioned 

and secured within the design. 
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4. CONCLUSION 

 

This work proposes the design concept of a 

human spinal cage used for people with a 

spinal degenerative disorder. In order to 

determine the best material distribution, the 

spinal cage's topology was optimized. This 

resulted in a mass reduction of around 36 g as 

well as stress and deformation that met 

acceptance criteria. While retaining the 

essential structural integrity and functionality 

for the intended purpose, these designs had 

undergone a mass reduction. The window for 

the bone graft could be obtained through 

topological optimization. This bone graft 

window makes sure that the bone graft may 

be positioned and fixed within the design in 

the appropriate manner. 
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