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1. Introduction

Let (M, g) be a n-dimensional pseudo-Riemannian manifold, where M is a differentiable manifold and g is a pseudo-
Riemannian metric. A magnetic field on (M, g) is a closed 2-form F. The Lorentz force of the magnetic field F on
manifold (M, g) is a (1, 1)−type tensor field Φ. For any vector fields X,Y ∈ χ(M) , it is expressed as

g(Φ(X),Y) = F(X,Y).

The magnetic curves on the pseudo-Riemannian manifold (M, g) are the trajectories of charged particles moving on M
under the influence of the magnetic field F. The magnetic trajectories of F are the curves of M in the Lorentz equation.
Hence, the Lorentz equation is as follows:

∇γ′γ
′

= Φ(γ
′

),

where the connection ∇ is the Levi-Civita connection of g. The generalized Lorentz equation obtained from the
geodesics of M, that is, ∇γ′γ

′

= 0. Therefore, the magnetic curves generalize geodesics. The magnetic curves have
been studied in different space. The magnetic curves on Kähler magnetic fields in complex space were studied by
Adachi in [1] and were obtained some interesting results. Also, in [2], Corbrerizo obtained some different results when
working on the Sasakian 3-manifold.

The Lorentz force is skew symmetric. Hence, we can write the following equation:

d
dt

g(γ
′

, γ
′

) = 2g(∇γ′γ
′

, γ
′

) = 0.

Therefore, the magnetic curves have a constant speed υ(t) =
∥∥∥γ′∥∥∥

ν
= υ0. When the magnetic curve γ(t) is arc-lenght

parametrized (υ0 = 1), it is called a normal magnetic curve. The arc-lenght parameter of these curves is s.
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The magnetic field is always divergence-free (see [2]). Especially, Killing magnetic fields formed by Killing vector
fields are the most important class of magnetic fields. A vector field V on M is a Killing vector field if and only if it
satisfies the following Killing equation:

g(∇UV,W) + g(∇WV,U) = 0

for each vector field U and W on M, where the connection ∇ is the Levi-Civita connection of g on M (see [2,6,9,12]).
On the vector space E2n

n , the pseudo inner product can be defined in the form

⟨u, v⟩ν = −
n∑

i=1

uivi +

2n∑
i=n+1

uivi

for u = (u1, ..., un,un+1, ..., u2n) and v = (v1, ..., vn, vn+1, ..., v2n) on E2n
n . Since the pseudo inner product is not positive,

the vectors in this space are classified as follows:

∗: If ⟨u, u⟩ν > 0 or u = 0, then the vector u is spacelike.
∗: If ⟨u, u⟩ν < 0, then the vector u is timelike.
∗: If ⟨u, u⟩ν = 0 and u , 0, then the vector u is lightlike (or null),

where u = (u1, ..., un,un+1, ...u2n) is any vector in the space E2n
n [10].

Almost para-Hermitian manifolds consist of a pseudo-Riemannian metric g and an almost product structure K
(K2 = I,K , ±I), where I is the identity map such that

g(KU,KW) = −g(U,W)

for any vector fields U and W on M. An almost para-Hermitian manifold is called a para-Kähler manifold if ∇K = 0.
The para–Kähler manifolds firstly defined and studied by Rashevski in 1948 [16], and then many scientists from past
to present have worked on the para-Kähler manifold. We refer to Rozenfeld, Ruse and Liberman in 1949 [11, 17, 18].
In addition, para–Kähler manifolds have recently been applied to supersymmetric field theories and studied in many
different fields [3–5, 7, 14, 15, 19]

Let (M, g) be a n-dimensional pseudo-Riemannian and a (1, 1)−type tensor field F. A curve γ : A ⊆ R → M is
called F−planar if the velocity of the curve γ, that is, the tangent vector γ

′

satisfies the following equation for each
t ∈ A:

∇γ′γ
′

= µ(t)γ
′

+ ξ(t)Fγ
′

,

where the functions µ and ξ are two differentiable functions depending on t and the connection ∇ is the Levi-Civita
connection of g [8]. In [8] and [13], the F−planar curves studied on different manifolds and obtained different results.
F−planar curves are a curve that represents a planar graph. If the nodes of the planar graph can be located on the curve
without intersecting each other, then this curve is called F−planar. One of the important features of these curves is that
there is at least one F−planar curve corresponding to every planar graph. In addition to the use of F−planar curves in
planar graph drawings, it can also be used in other mathematical problems.

In this study, we will show that F-planar curves are generalized magnetic curves.

2. F-planar Curves on Para-KählerManifolds

Theorem 2.1. Let (M, g) be the pseudo-Riemannian manifold and γ be a unit speed F-planar curve. Under the
condition γ̈ = ∇γ̇γ̇, the equation ∇γ̇γ̇ = µ(s)γ̇(s) + ξ(s)Fγ̇(s) reduces to ∇γ̇γ̇ = ξ(s)Fγ̇(s).

Proof. Let us that γ̈ = ∇γ̇γ̇. Then, the equation ∇γ̇γ̇ = µ(s)γ̇(s) + ξ(s)Fγ̇(s) transforms into

γ̈ = µ(s)γ̇(s) + ξ(s)Fγ̇(s).

Since γ is a unit speed curve, we have

g(γ̈(s), γ̇(s)) = µ(s)g(γ̇(s), γ̇(s)) + ξ(s)g(Fγ̇(s), γ̇(s))
= µ(s),

such that µ(s) = 0. □
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The arc-length of a smooth curve γ is a trajectory of Fq if the following Lorentz equation is satisfied:

∇γ̇γ̇ = ξ(s)Kγ̇(s).

Let (M,K, g) be a para-Kähler manifold and be the two-form ΩK , where

ΩK(U,W) = g(KU,W),

for each U,W ∈ χ(M).
Let γ : A→ M be a smooth curve on M. If the curve γ satisfies the following equation, then it is the magnetic orbitals
corresponding to para-Kähler magnetic field Fq = ξ(s)ΩK :

∇γ̇γ̇ = ξ(s)Kγ̇(s),

where ξ(s) , 0. Since K is skew-symmetric, we can write the following equation:

d
ds

g(γ̇, γ̇) = 2g(∇γ̇γ̇, γ̇) = 2ξ(s)g(Kγ̇, γ̇) = 0,

where γ̇ depends on the s parameter.

3. F-Planar Curves on E2n
n

Let the coordinates E2n
n be (x1, x2, ..., xn; y1, y2, ..., yn). The definition of pseudo-Euclidean metric according to

given coordinates is

g = −
n∑

k=1

dx2
k +

n∑
k=1

dy2
k ,

and the para-complex structure is

K
∂

∂yk
=
∂

∂xk
,K
∂

∂xk
=
∂

∂yk
.

The manifold E2n
n = (R2n,K, g) is a flat para-Kähler manifold. Thus, its fundamental two-form is g(KU,W) =

ΩK(U,W). Assume that the magnetic field is Fq = ξ(s)ΩK , where ξ(s) , 0 and the curve γ : A ⊆ R → E2n
n is

the orbit corresponding to the magnetic field Fq. Then, the Lorentz equation is as follows:

γ̈ = ξ(s)Kγ̇.

Therefore, we have the following result for the spacelike and timelike F-planar curves.

Theorem 3.1. Let γ : I −→ E2n
n be a magnetic curve corresponding to the F-planar curve flat para-Kähler structure

on E2n
n . In the given in the ambient space, the curve γ is ordered as follows:

1.i: γ(s) =
(∫

eφ(s), 0, ..., 0;
∫

eφ(s), 0, ..., 0
)

;

1.ii: γ(s) =
(∫

e−φ(s), 0, ..., 0;
∫

e−φ(s), 0, ..., 0
)

;
2.i: γ(s) = (

∫
sinh(φ (s)), 0, . . . , 0;

∫
cosh(φ (s)), 0, . . . , 0);

2.ii: γ(s) = (
∫

cosh(φ (s)), 0, . . . , 0;
∫

sinh(φ (s)), 0, . . . , 0);

where φ (s) =
∫
ξ(s)ds .

Proof. Let γ : I −→ E2n
n be a magnetic curve. The velocity vector of the curve γ is as follows:

γ̇ =

n∑
k=1

ak
∂

∂xk
+

n∑
k=1

bk
∂

∂yk
,

where the functions ak and bk are smooth functions. Moreover, they satisfy

−

n∑
k=1

a2
k +

n∑
k=1

b2
k = δ,
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where δ ∈ {−1, 0, 1}.
From the Lorentz equation, we have the following differential equations:{

ȧk = ξ(s)bk

ḃk = ξ(s)ak
, k = 1, . . . , n. (3.1)

The general solution of the equation (3.1) is{
ak = αk cosh(

∫
ξ(s)ds) + βk sinh(

∫
ξ(s)ds)

bk = βk cosh(
∫
ξ(s)ds) + αk sinh(

∫
ξ(s)ds)

αk, βk ∈ R, k = 1, . . . , n. (3.2)

Thus, the equation (3.2) satisfies the equation (3.3). Consequently, the velocity vector of curve γ is :

γ̇ = cosh(φ (s))W + sinh(φ (s))KW, (3.3)

where

W =
n∑

k=1

αk
∂

∂xk
+

n∑
k=1

βk
∂

∂yk
, W , 0.

There are two cases according to whether the W and KW vectors are linearly dependent and linearly independent.
Case 1. Assume that the vectors W and KW are linear dependent. This means that the vector W is a constant lightlike
vector of the form W =

∑n
k=1 αk

(
∂
∂xk
+ ε ∂

∂yk

)
, where ε = ±1. Hence, the velocity vector of γ can be expressed as

γ̇ = (cosh(φ (s)) + ε sinh(φ (s))W

and using the velocity vector of this γ , we can write the curve γ as follows:

γ(s) = γ0 + (
∫

cosh(φ (s))ds) + ε
∫

sinh(φ (s))ds)W.

Then, we have the following two cases:
1.i: For ε = 1: {

x(s) = x0 + (
∫

eφ(s), 0, ..., 0)
y(s) = y0 + (

∫
eφ(s), 0, ..., 0).

1.ii: For ε = −1: {
x(s) = x0 + (

∫
e−φ(s), 0, ..., 0)

y(s) = y0 + (
∫

e−φ(s), 0, ..., 0).

Case 2. Assume that the vectors W and KW are linear independent. Thus, these vectors are orthogonal. Hence, we
have the following equation:

δ = g(γ̇, γ̇) = cosh2(φ (s))g(W,W) + sinh2(φ (s))g(KW,KW) = g(W,W).

2.i: For δ = 1: Without breaking the generality, we can get the vectors W and KW as follows: W = ē1 = (0, . . . , 0; 1, 0, . . . , 0) ∈
E2n

n and KW = e1 = (1, 0, . . . , 0; 0, . . . , 0) ∈ E2n
n . If we write the velocity vector of the curve γ in terms of the vectors

W and KW given, we get
γ̇(s) = sinh(φ (s))e1 + cosh(φ (s))ē1,

where the curve γ is a spacelike hyperbola:{
x(s) = x0 + (

∫
sinh(φ (s)), 0, . . . , 0)

y(s) = y0 + (
∫

cosh(φ (s)), 0, . . . , 0).

2.ii: For δ = −1: Assume that W = e1 = (1, 0, . . . , 0; 0, . . . , 0) ∈ E2n
n and KW = ē1 = (0, . . . , 0; 1, 0, . . . , 0) ∈ E2n

n . If we
write the velocity of the curve γ in terms of the vectors W and KW given, we get

γ̇(s) = cosh(φ (s))e1 + sinh(φ (s))ē1,

where the curve γ is a timelike hyperbola:{
x(s) = x0 + (

∫
cosh(φ (s)), 0, . . . , 0)

y(s) = y0 + (
∫

sinh(φ (s)), 0, . . . , 0).
□
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Now, let’s concretize our work with a few examples below:

Example 3.2. If we take it as ξ(s) = 1
s , s , 0, the curve will be as follows:

Case 1. Suppose that the vectors W and KW are linear dependent. Hence, we can express the velocity vector of the
curve γ with the following equation:

γ̇ = cosh(
∫

1
s

ds)W + sinh(
∫

1
s

ds)KW. (3.4)

From the equation (3.4), we have

γ(s) = γ0 + (
∫

cosh(
∫

1
s

ds)ds) + ε
∫

sinh(
∫

1
s

ds)ds)W.

Then, the curve γ is written as follows.
1.i: For ε = 1: {

x(s) = x0 + ( s2

2 , 0, ..., 0)
y(s) = y0 + ( s2

2 , 0, ..., 0).

1.ii: For ε = −1: {
x(s) = x0 + (ln(s), 0, ..., 0)
y(s) = y0 + (ln(s), 0, ..., 0).

Case 2. Suppose that the vectors W and KW are linear independent.
2.i: For δ = 1: We can get the vectors W and KW as follows. W = ē1 = (0, . . . , 0; 1, 0, . . . , 0) ∈ E2n

n and KW = e1 =

(1, 0, . . . , 0; 0, . . . , 0) ∈ E2n
n . If we write the velocity vector of the curve in terms of the vectors W and KW given, we

have
γ̇(s) = sinh(

∫
1
s

ds)e1 + cosh(
∫

1
s

ds)ē1,

where the curve γ is a spacelike hyperbola:{
x(s) = x0 + ( s2

4 −
1
2 ln(s), 0, ..., 0)

y(s) = y0 + ( s2

4 +
1
2 ln(s), 0, ..., 0).

2.ii: For δ = −1: Assume that W = e1 = (1, 0, . . . , 0; 0, . . . , 0) ∈ E2n
n and KW = ē1 = (0, . . . , 0; 1, 0, . . . , 0) ∈ E2n

n . If we
write the velocity vector of the curve γ in terms of the vectors W and KW given, we have

γ̇(s) = cosh(
∫

1
s

ds)e1 + sinh(
∫

1
s

ds)ē1,

where the curve γ is a timelike hyperbola:{
x(s) = x0 + ( s2

4 +
1
2 ln(s), 0, ..., 0)

y(s) = y0 + ( s2

4 −
1
2 ln(s), 0, ..., 0).

Example 3.3. If we take it as ξ(s) = 1
2
√

s , s > 0, the curve will be as follows:

Case 1. Suppose that the vectors W and KW are linear dependent. Hence, we can express the velocity vector of the
curve γ with the following equation:

γ̇ = cosh(
∫

1
2
√

s
ds)W + sinh(

∫
1

2
√

s
ds)KW. (3.5)

From the equation (3.5), we have the following equation:

γ(s) = γ0 + (
∫

cosh(
∫

1
2
√

s
ds)ds) + ε

∫
sinh(

∫
1

2
√

s
ds)ds)W

such that the curve γ is written as follows:
1.i: For ε = 1: {

x(s) = x0 + (2e
√

s √s − 2e
√

s, 0, ..., 0)
y(s) = y0 + (2e

√
s √s − 2e

√
s, 0, ..., 0).
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1.ii: For ε = −1: {
x(s) = x0 + (2e−

√
s √s + 2e

√
s, 0, ..., 0)

y(s) = y0 + (2e−
√

s √s + 2e
√

s, 0, ..., 0).

Case 2. Suppose that the vectors W and KW are linear independent.
2.i: For δ = 1: We can get W and KW as follows. W = ē1 = (0, . . . , 0; 1, 0, . . . , 0) ∈ E2n

n and KW = e1 =

(1, 0, . . . , 0; 0, . . . , 0) ∈ E2n
n . If we write the velocity vector of the curve γ in terms of the vectors W and KW given, we

have

γ̇(s) = sinh(
∫

1
2
√

s
ds)e1 + cosh(

∫
1

2
√

s
ds)ē1,

where the curve γ is a spacelike hyperbola: x(s) = x0 + (e
√

s √s − e−
√

s −
√

s+1
e
√

s , 0, ..., 0)

y(s) = y0 + (e
√

s √s − e
√

s +
√

s+1
e
√

s , 0, ..., 0).

2.ii: For δ = −1: Assume W = e1 = (1, 0, . . . , 0; 0, . . . , 0) ∈ E2n
n and KW = ē1 = (0, . . . , 0; 1, 0, . . . , 0) ∈ E2n

n . If we
write the velocity vector of the curve γ in terms of the vectors W and KW given, it is easily seen that

γ̇(s) = cosh(
∫

1
2
√

s
ds)e1 + sinh(

∫
1

2
√

s
ds)ē1,

where the curve γ is a timelike hyperbola: x(s) = x0 + (e
√

s √s − e−
√

s +
√

s+1
e
√

s , 0, ..., 0)

y(s) = y0 + (e
√

s √s − e−
√

s −
√

s+1
e
√

s , 0, ..., 0).

Example 3.4. If we take ξ(s) = q, where q ∈ R+, then we can obtain the paper [9].
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