

16

 DOI:10.53608/estudambilisim.1297052

(ReceivedDate: 14.05.2023, AcceptedDate: 05.06.2023)

(Research Article)

Attacks on Availability of IoT Middleware Protocols: A Case Study on MQTT

Muhammed Mustafa SIMSEK1, Emrah ATILGAN*2

1Eskisehir Osmangazi University, Engineering and Architecture Faculty, Department of Computer Engineering, 26040,

Eskisehir, ORCID No: http://orcid.org/0000-0002-2533-4934
2Eskisehir Osmangazi University, Engineering and Architecture Faculty, Department of Computer Engineering, 26040,

Eskisehir, ORCID No: http://orcid.org/0000-0002-0395-9976

Keywords:
Internet of Things,
MQTT,
ESP8266,
MitM Attacks,
DoS Attacks,
Brute Force Attacks

Abstract: The Internet of Things (IoT) encompasses a technological ecosystem that
improves the daily lives of individuals by increasing productivity, safety, comfort, health
and sustainability. In addition, the IoT brings a variety of benefits to many industries,
including increased efficiency, productivity and cost savings. However, the proliferation
of IoT technologies has revealed many security vulnerabilities, especially in the
middleware layer. In this article, we presented possible attacks on availability of
middleware layer messaging protocols. In the research, a comprehensive case study was
carried out, especially focusing on the MQTT (Message Queuing Telemetry Transport)
protocol. We performed Man-in-the-Middle (MitM), Denial of Service (DoS) and Brute-
Force attacks in our experimental environment. The effects and results of the attacks made
in cases where the connection to the MQTT protocol is made with a user name and
password, and when the user name and password are not used are examined. The results
of the attacks that emerged in the different scenarios created were evaluated and the
precautions to be taken to protect against the attacks were discussed.

(Araştırma Makalesi)

Nesnelerin İnternetinde Ara Yazılım Protokollerinin Hazır Bulunurluğuna Yapılan
Saldırılar: MQTT Üzerine Bir Vaka Çalışması

Anahtar Kelimeler:
Nesnelerin İnterneti,
MQTT,
ESP8266,
Ortadaki Adam Saldırıları,
Hizmet Reddi Saldırıları,
Kaba Kuvvet Saldırıları

Özet: Nesnelerin İnterneti, üretkenliği, güvenliği, konforu, sağlığı ve sürdürülebilirliği
artırarak bireylerin günlük yaşamlarını iyileştiren teknolojik bir ekosistemi kapsar. Buna
ek olarak, Nesnelerin İnterneti birçok sektöre artan verimlilik, üretkenlik ve maliyet
tasarrufu dahil olmak üzere çeşitli faydalar sağlar. Ancak Nesnelerin İnterneti
teknolojilerinin yaygınlaşması, özellikle arayazılım katmanında birçok güvenlik açığını
ortaya çıkarmıştır. Bu makalede, ara yazılım katmanı mesajlaşma protokollerinin
kullanılabilirliğine yönelik olası saldırıları inceledik. Araştırmada özellikle MQTT
protokolüne odaklanılmış ve kapsamlı bir vaka çalışması yapılmıştır. Deney ortamımızda
Ortadaki Adam, Hizmet Reddi ve Kaba Kuvvet saldırılarını gerçekleştirdik. MQTT
protokolüne bağlantının kullanıcı adı ve şifre ile yapıldığı durumlar ile kullanıcı adı ve
şifre kullanılmadığı durumlarda yapılan saldırıların etkileri ve sonuçları incelenmiştir.
Oluşturulan farklı senaryolarda ortaya çıkan saldırıların sonuçları değerlendirilerek,
saldırılara karşı korunmak için alınması gereken önlemler tartışılmıştır.

1. INTRODUCTION

The term "Internet of Things" was first coined by Kevin
Ashton, Executive Director of MIT's Auto-ID Labs, in
1999 while giving a presentation for Procter & Gamble
[1]. The system that displays the coffee machine and

shares these images over the Internet by academics at
Cambridge University in 1991 is shown as the first
application example of the Internet of Things technology
[2]. The installed system transmitted the image of the
coffee machine over the Internet three times a minute.
Internet of Things applications have developed
continuously since that day and started to be used in

*Corresponding Author: emrah.atılgan@ogu.edu.tr

J ESTUDAM Information, 2023; 4(2); 16-27.

ESTUDAM Bilişim Derg, 2023; 4(2); 16-27.

http://orcid.org/0000-0002-2533-4934
http://orcid.org/0000-0002-0395-9976

M. M. Simsek and E. Atilgan / Attacks on Availability of IoT Middleware Protocols: A Case Study on MQTT

17

different areas. Although the Internet of Things has
brought many conveniences to people's lives, it has also
revealed various security threats. The fact that these
systems do not have traditional security mechanisms has
caused attackers to target these systems.

There are many studies on the security of IoT ecosystems
and messaging protocols in the literature. Hintaw et al. [3]
examined security solutions for the MQTT protocol and
presented the most ideal security measures that can be
applied in addition to these solutions. In the study, it was
suggested to use TLS for MQTT security, but it was
emphasized that in some cases, IOT devices would be
insufficient as hardware for TLS. Chen et al.[4] touched
upon the most recent security issues faced by the MQTT
protocol and what needs to be done in the future to deal
with these issues. In this study, it is recommended to use
complex machine learning algorithms for IOT security.
Upadhyay et al. [5] conducted a study examining how
IOT systems used in smart homes can make
communication more secure with MQTT. In the study, the
advantages of the MQTT protocol over other IoT
protocols were emphasized. Assaig et al. [6] aims to
secure the application layer connection between IoT
devices and servers. In this study, they presented a
lightweight security system for security. Firdous et al. [7]
examined DOS attacks against MQTT protocol. In a study
by Andy et al.[8], attack scenarios and security analyzes
on IoT devices were examined. In this study, it is
suggested that besides the use of TLS for security, new
studies should be focused on for restricted devices.

In this article, security vulnerabilities of IoT messaging
protocols were examined. Specifically, we focused on the
MQTT (Message Queuing Telemetry Transport) protocol
[9] because of its wide adoption, and the attacks and
security measures on systems using this protocol were
discussed. We aimed to provide solutions to the problems
encountered in this field by examining the studies in the
literature within the scope of the measures taken for cyber
attacks against IoT devices.

Rest of the paper was organized as follows. In the 2nd
section, IOT messaging protocols are briefly mentioned
and a detailed literature review for MQTT is given. In the
3rd section, the methodology of the article and the tools
used in practice are given. Evaluations about the findings
and the application were discussed in the 4th section. In
the 5th section, the conclusion and suggestions for future
work are given.

2. IOT MESSAGING PROTOCOLS

IoT devices are specialized systems designed to perform
specific tasks. Different IoT systems use different
messaging protocols according to their own requirements
and constraints. Each messaging protocol has its strengths
and weaknesses, making it more suitable for certain use
cases. For example, some IoT systems target low-latency
real-time communication, while others prioritize low
power consumption or high security. In some systems,
because of limited processing power and memory usage,
appropriate protocols should be selected. In addition,

different IoT systems can be built using different
hardware and software components, which can also affect
the choice of messaging protocol. For example, some
protocols may be optimized for use with certain types of
sensors or devices, or for integration with certain cloud
platforms or applications. Shortly, the choice of
messaging protocol for an IoT system depends on a
number of factors, including the specific use case,
hardware and software requirements, and the goals of the
system developers [10].

The most commonly used messaging protocols in IoT
systems are MQTT, CoAP, AMQP, HTTP and DDS. In
this study, we will focus on the MQTT protocol. On the
other hand, brief information will be given about other
protocols, and their strengths and weaknesses and which
systems they work on will be briefly mentioned.

2.1 COAP (Constrained Application Protocol)

CoAP is a lightweight messaging protocol designed for
constrained environments, such as low-power, low-
memory devices [11]. It is based on the REST
architectural style and can operate over UDP (User
Datagram Protocol) or TCP (Transmission Control
Protocol) [12]. CoAP uses the request/response
communication model designed to work on IoT devices
with constrained hardware and generally limited
bandwidth. Each IoT object running CoAP also acts as a
CoAP server. CoAP clients send request packets with
GET, POST commands to access the service on the server.
The server also responds to incoming messages by
sending response packets.

Pros:
• Specially designed for use in low bandwidth and

power IoT systems
• Easy to integrate with Web services as it uses REST

architecture
• Supports multiple transport protocols including UDP

and TCP
Cons:
• Limited support for service quality options
• Low message reliability
• May require the implementation of additional

security measures

CoAP protocol is used in smart home systems to control
and monitor household appliances, and to communicate in
lighting and HVAC (Heating, Ventilation, and Air
Conditioning) systems [13]. It is also a preferred protocol
in smart agriculture, systems that require real-time and
precise tracking, and IoT systems used for instant
monitoring of soil, weather and crop growth [14].
Moreover, CoAP is used for real-time inventory tracking
and supply chain management in retail systems [15].
Finally, there are Smart City IoT systems where CoAP is
preferred for real-time monitoring and control of traffic,
parking and other infrastructure [16].

M. M. Simsek and E. Atilgan / Attacks on Availability of IoT Middleware Protocols: A Case Study on MQTT

18

2.2 AMQP(Advanced Message Queuing Protocol)

AMQP was developed by John O'Hara in 2003 to meet
the need for high durability, high volume and high degree
of interoperability [17]. The improved version AMQP 1.0
was standardized by OASIS (Organization for the
Advancement of Structured Information Standards) in
August 2011 [18].

AMQP is a reliable and feature-rich messaging protocol
that can handle a wide variety of use cases, enabling both
simple point-to-point messaging and communication
across complex distributed systems. Although it may
seem like an advantage to have many features if needed,
it includes many features and capabilities that may not be
necessary or relevant for all applications. Therefore,
AMQP is not generally considered a lightweight protocol,
although its performance and resource usage can be
optimized in certain configurations. For example, AMQP
can be configured to use a small number of simple
message brokers and can be optimized for low-latency
messaging in high-performance applications.

AMQP is a messaging protocol that supports both
publish/subscribe and request/respond communication
models. It is designed to work together across different
platforms and programming languages [19]. AMQP is
designed to operate over TCP, a transport layer that
provides features such as reliable message delivery,
congestion control, and flow control [20]. When AMQP
is used over TCP, a connection is established between the
AMQP client and server, and messages are exchanged
over that connection. The connection is managed by the
AMQP protocol, which handles tasks such as establishing
and terminating the connection, negotiating parameters,
and ensuring reliable delivery of messages [21].

Pros:
• Supports both publish/subscribe and request/respond

communication models
• Designed to be interoperable across different

platforms
• Provides strong authentication and encryption

features which ensures message secure transfer
• Provides message reliability by message

acknowledgement, persistence, and transactional
support.

Cons:
• More complex than some other messaging protocols,

which may make it harder to implement and maintain
• May require additional resources to operate

efficiently
• May not be well suited for mobile devices

As a security-focused messaging protocol, AMQP is
mostly used in healthcare applications for patient
monitoring and data exchange between medical devices
[22]. In addition, in Financial services, AMQP is used for
real-time data exchange, transaction processing, and
messaging between financial institutions, traders, and
market data providers [23]. Besides, it is used to provide
instant data communication in various sectors such as

Logistics and Supply Chain Management, Gaming,
Energy Management [24].

2.3 HTTP (HyperText Transfer Protocol)

Although HTTP is not a protocol designed for IoT, it is a
widely used protocol for data communication, especially
between web servers and clients. HTTP uses a
request/response model [25]. In this model, the client
(such as a web browser) sends a request to the server for
a resource (such as a webpage), and the server responds
with the requested resource, along with any necessary
status codes or headers. This protocol is not preferred in
constrained-IoT devices as it sends many packets during
the communication, which causes resource usage delays
and traffic overload [26].

On the other hand, HTTP is a protocol used on the TCP/IP
stack, TCP provides a reliable communication channel
between client and server that HTTP can use to send and
receive data. When a client sends an HTTP request to a
server, a TCP connection is established with the server
and the request is sent over that connection. The server
responses over the same connection. This TCP connection
ensures reliable and orderly transmission of data, even
when sent in multiple packets [27].

Pros:
• Easy to integrate with web-based services since it is

widely used and familiar
• Supports a variety of data formats, including JSON

and XML
• For additional security, HTTP can be operated over

SSL/TLS, which provides secure communication
between devices

• Supports caching and other performance
optimizations

Cons:
• HTTP has a high overhead which leads to increased

latency and reduced performance, especially in low-
power devices

• Lack of real-time communication capabilities

2.4 DDS (Data Distribution Service)

DDS is a standard that was developed by the Object
Management Group (OMG) to address the need for a
messaging protocol that could provide efficient and
reliable data communication in distributed systems [28].

DDS utilizes a publish-subscribe messaging model to
enable multiple subscribers to access data published by
one or more publishers. This model is designed to separate
publishers and subscribers from each other, which means
that they don't need to be aware of each other's identity or
location. Essentially, publishers publish data to topics,
which subscribers can access based on their interest in
those topics. DDS utilizes a system based on topics to
facilitate communication between publishers and
subscribers. Topics are named objects that signify a
particular data stream, and publishers and subscribers can
indicate their interest in specific topics. Additionally,

M. M. Simsek and E. Atilgan / Attacks on Availability of IoT Middleware Protocols: A Case Study on MQTT

19

DDS offers various Quality of Service (QoS) policies that
permit publishers and subscribers to define the preferred
method of data transfer, including aspects like reliability,
response time, and throughput.

DDS is used as the messaging protocol in variety of IoT
systems such as Industrial automation systems,
healthcare, smart grid systems, autonomous vehicles and
unmanned aerial vehicles (UAVs) [29].

Pros:
• DDS is designed to provide high performance, with

low latency and high throughput, making it well-
suited for real-time applications in IoT systems.

• DDS is a reliable messaging protocol equipped with
built-in mechanisms for data integrity control, flow
control and error correction.

• DDS is a messaging protocol that provides a flexible
and powerful Quality of Service (QoS) that can be
tailored to the specific needs of an IoT system.

• DDS is highly scalable, capable of handling large
volumes of data, and also supports communication
between many different devices and components.

Cons:
• DDS requires special knowledge and expertise to

configure and manage, which can be a hurdle for end
users.

• DDS is not an open-source protocol and can be
expensive for some IoT systems.

• DDS may require more network bandwidth and
processing power compared to some other messaging
protocols, resulting in a higher overhead. As a
consequence, it may be necessary to use more
expensive network infrastructure or hardware to
support the DDS system.

2.5 MQTT (Message Queuing Telemetry Transport)

MQTT is a lightweight messaging protocol developed by
Andy Stanford-Clark and Arlen Nipper from IBM in 1999
and is the most widely used in IoT systems [20]. This
protocol first emerged with the need for a protocol with
minimum bandwidth and minimum battery consumption
to observe oil pipelines from satellite.

MQTT v3.1.1, the improved and standardized version of
MQTT, was released in 2014 by the OASIS technical
committee [30]. The latest enhanced version of the
protocol is MQTT v5.0, which includes improvements for
scalability and large-scale systems, and was released in
2019 [9]. Originally designed for lightweight IoT devices,
the MQTT protocol is also used by major network service
providers such as Facebook Messenger and Amazon. In
addition, the availability of MQTT protocol libraries
written in popular programming languages such as
Arduino, Javascript, Python increases the popularity of
MQTT and provides ease of use.

MQTT, which is designed to be used in constrained-
devices, is also used effectively in machine-to-machine
communication (M2M) between devices located at long
distances [31]. Unlike the request-response structure of

the HTTP protocol, it has been developed in publish-
subscribe model [32].

The MQTT protocol has the publisher as the source of the
data. The publisher undertakes the task of obtaining the
data in the IoT systems and transmitting it to the
subscribers. In this protocol, the client that wants to
receive data from a particular source is called a subscriber.
The intermediary server that provides the connection
between the publisher and the subscriber in the system is
called a broker. Specifically, an MQTT broker receives
messages published by clients, filters the messages by
topic, and distributes them to subscribers who subscribe
to that topic [33] (Figure 1).

Figure 1. An example of MQTT Protocol Structure

A system must have at least one of each of the Broker,
Publisher, and Subscriber to be able to perform messaging
with the MQTT protocol. However, systems usually have
more than one publisher and subscriber. In order for the
message sent by the publisher to be transmitted to the
subscriber via the broker, the subscriber must be
connected to the broker. The subscriber is connected to
the broker by socket. For TCP sockets, the subscriber and
publisher use port 1883 by default on devices that work
with the MQTT protocol. This port is used for
unencrypted connections, which is the default feature of
the MQTT protocol. For encrypted connections, port 8883
is used [34].

2.5.1 MQTT QoS Levels:

In the MQTT protocol, the control of whether the data
reaches the receiver is made with three different quality
of service (QoS) levels [35]. The QoS level is defined as
the reliability and integrity of the communication between
the publisher and the subscriber. Three different services
are provided for this two-step process, which consists of
sending the message from the publisher to the broker and
transferring it from the broker to the client.

QoS_0:The publisher sends the message to the broker at
most once (Figure 2). The sent message may be lost as a
result of disconnection and may not reach the subscriber.
QoS_0 does not control whether the message reaches the
subscriber. For this reason, it is known as the most unsafe
level of service quality. The message is not stored on the
publisher and broker. The message is deleted after it is

M. M. Simsek and E. Atilgan / Attacks on Availability of IoT Middleware Protocols: A Case Study on MQTT

20

sent. Another feature of QoS_0 is the service quality level
with the lowest traffic.

Figure 2. QoS Level 0

QoS_1: The publisher sends the message to the broker at
least once (Figure 3). The publisher keeps a copy of the
message it sends until it receives acknowledgment of
receipt, and transmits it more than once. The publisher
deletes the message when it receives this confirmation. If
the publisher does not receive acknowledgment of receipt
for a certain period of time, the message is sent again. This
cycle continues until the publisher receives
acknowledgment. In this case, duplicate messages may
occur. Messages are stored on the publisher and broker.
Therefore, no message is lost.

Figure 3. QoS Level 1

QoS_2: The publisher sends the message to the broker
strictly once (Figure 4). Therefore, duplicate messages do
not occur. Messages are stored on the publisher and
broker, so no messages are lost. At this level of service
quality, a kind of handshake takes place to confirm that
the message has been sent and acknowledgment received.
This handshake uses four packets transmitted in a specific
order. After the handshake is complete, the publisher and
the broker ensure that the message is sent exactly once.
For this reason, it is accepted as the safest level of service
quality. QoS_2 is the level of service quality with the most
traffic.

Figure 4. QoS Level 2

2.5.2 MQTT Brokers

The MQTT broker is an essential messaging server that
serves as the central hub for message exchange among

various MQTT clients, such as IoT devices, sensors, and
actuators. Its main function is to enable reliable and
efficient communication between these clients.

The broker uses topics to route messages, with each topic
representing a specific data stream or subject of interest.
It also maintains a message queue, allowing clients to
publish messages even if the intended recipient is not
available to receive them. This ensures that data is not lost
and can be delivered as soon as the recipient is available.
MQTT Broker is also responsible for managing the QoS
of messages, ensuring that each message is delivered with
the desired level of reliability. The QoS can be configured
by the publisher, subscriber, or broker, depending on the
requirements of the IoT system. Even though it is not
default, MQTT broker provides security features, such as
authentication and encryption, to protect the messages and
ensure that only authorized clients can access them.

MQTT brokers can generally be categorized into two
main classes: those designed for cloud systems and those
designed for local systems. Cloud-based MQTT brokers
are generally hosted in the cloud, and they can be accessed
from any location that has an internet connection. Their
primary function is to handle large volumes of traffic and
can be easily scaled up or down based on the needs of the
application. Several examples of cloud-based MQTT
brokers include AWS IoT, Microsoft Azure IoT Hub, and
Google Cloud IoT. In contrast, local MQTT brokers are
designed to be deployed on-premises, and they facilitate
local communication between IoT devices within a
network. They are mainly used in situations where there
is limited or no internet connectivity or when data needs
to be kept within a private network. Some examples of
local MQTT brokers are Mosquitto, HiveMQ, EMQX,
RabbitMQ, Apache ActiveMQ [36].

2.5.3 MQTT Security

Although the MQTT protocol is a widely preferred
protocol, it is the user's responsibility to solve the security
problems in the MQTT protocol [37]. Many of the MQTT
brokers do not require a password by default. This creates
an essential vulnerability where anyone can subscribe and
see the published data. This can cause hackers to spy on
and even control devices in IoT systems. If a user wishes,
they can authenticate through the connection package.
However, sending your credentials in clear text, just like
telnet, is a vulnerability. If an attacker eavesdrops on
network traffic, they can see the username and password
used in plain text.

Authentication is not a default feature in MQTT because
the protocol was designed to be a lightweight and simple
messaging protocol that minimizes the amount of data
transmitted over the network. This means that MQTT was
not intended to handle complex security mechanisms by
default, as it could increase the overhead and complexity
of the protocol [38].

For added security, some MQTT agents use SSL
encryption mechanism when transmitting data.
Authentication and Authorization can be done between

M. M. Simsek and E. Atilgan / Attacks on Availability of IoT Middleware Protocols: A Case Study on MQTT

21

clients and the agent using SSL certificates and
passwords. The MQTT agent authenticates subscribers
using passwords as well as unique subscriber identifiers,
which it typically assigns to each subscriber. In some
applications, the subscriber verifies the publisher with
DNS lookups. However, it may not be appropriate to use
SSL for IoT systems with insufficient hardware. Instead,
it has been suggested to use AES (Advanced Encryption
Standard) to secure data [39]. In addition, some
lightweight encryption mechanisms have also been
developed to ensure MQTT messaging security in IoT
systems consisting of devices with limited processing
power and battery life [40][41].

In systems where security is vital, MQTTS (MQTT
Secure) may be preferred over the MQTT. MQTTS is a
modified version of the typical MQTT protocol that
applies TLS (Transport Layer Security) encryption. TLS
is more advanced than SSL and offers enhanced security
features. The MQTTS requires clients to create a secure
connection with the broker by exchanging certificates to
guarantee the authenticity of both the server and client.
This procedure helps to prevent unauthorized access and
sustain data confidentiality in IoT systems.

Another problem is that there are no access restrictions in
the MQTT protocol that prevent a client from subscribing
or broadcasting to the topics they want. This may pose a
problem in terms of data security. As a solution to this
problem, it is suggested to use Access Control List (ACL)
[5].

3. METHOD

In this study, an experimental environment consisting of
agents, clients and sensors using the MQTT messaging
protocol was established and the security of the MQTT
protocol was tested. For different scenarios, MitM, DoS
and Brute Force attacks were performed and the results
were shared in detail. Appropriate measures have been
proposed for security vulnerabilities in systems using
MQTT protocol. In the experimental environment, the
ESP8266 development board and a potentiometer were
used as a sensor because it has the ability to generate and
send instant data. Network traffic was carried out over
WiFi.

3.1 Hardware

Esp8266 NodeMCU: ESP8266 is a high-performance,
small-size and low-power IOT module developed by
EspressifSystems that can enable Wi-Fi connectivity.
ESP8266 is a module that can provide internet access in
IoT systems, send and receive data, and control the system
over the internet. It offers I/O units, PWM outputs and
communication support.

3.2 Software

Tcpdump [42], a packet analysis program that runs on the
command line in Linux operating systems, was used to
capture and inspect TCP/IP packets or other packets
transmitted or received over the network. It supports

supporting many protocol format including MQTT.
Wireshark [43] is an open source network monitoring tool
widely used by network professionals for debugging
network problems. It utilizes Tcpdump library and
provide a user friendly graphical interface. Kali Linux
[44], a Debian GNU/Linux based Linux distribution used
for security purposes, was also utilized in this study for
advanced penetration tests. Nmap [45], an open source
tool for network scanning, was used to identify which
computers on the network are using which services and
applications.

3.3. Attack Tools

In this study, LOIC (Low Orbit Ion Cannon), Hping3
were used for DDoS attacks. Ettercap tool was used for
MitM attack. Metasploit Framework is used for brute
force attack.

LOIC (Low Orbit IonCannon): It is an open source
Denial of Service (DoS) attack tool written in C#. LOIC
is used to interrupt the service of a particular device. It can
perform a DoS or DDoS attack on a target device by
filling the target server with TCP, UDP or HTTP etc
packets [46].

Hping3: Hping3 is an open source application for TCP/IP
packet processing and analysis that can be used on the
command line that comes ready on Kali Linux [47]. The
difference of this tool from the ping command is that it
not only sends ICMP echo requests, but also supports
protocols such as TCP, UDP. It is a widely used tool for
penetration testing of firewalls and networks, DoS and
DDoS attacks.

Ettercap: It is an advanced tool for MitM attacks,
eavesdropping and DoS attacks on local networks. In this
study, it is used to perform a MitM attack between the
publisher and the broker server in the local network.
Ettercap is a tool that enables MitM attacks by allowing
the target machine to use its MAC address to receive
incoming packets on that machine.

Metasploit Framework: Metasploit is an open source
penetration testing tool developed in the Ruby language
[48]. It is a platform developed by Rapid7 company,
where users can run exploits, and also has many network
discovery and attack tools on it. This tool, which reveals
the security vulnerabilities of services or applications
running on the systems, comes preinstalled on Kali Linux.
In this study, a brute force attack was carried out with the
MQTT exploit tool on the Metasploit Framework.

4. TEST SCENARIOS and EXPERIMENTAL
SETUP

4.1 Attack Scenarios

Man in the Middle, Denial of Service and Brute Force
attacks were carried out in the test environment designed
within the scope of this study.

M. M. Simsek and E. Atilgan / Attacks on Availability of IoT Middleware Protocols: A Case Study on MQTT

22

4.1.1 Man in the Middle Attack

The attacker, who aims to get between two
communicating devices and pass the network traffic over
himself, can see and change the data in the
communication and send the fake data to the devices if it
is successful.

In the test environment established in our study, the
attacker tried to capture the sensor data and MQTT
session information by interfering between the IoT device
and the subscriber, as shown in Figure 5. Man-in-the-
middle attacks are handled in two different situations
where username and password are used and not used in
communication with MQTT protocol.

Figure 5. Man in the Middle Attack Scenario

4.1.2 Denial of Service (DoS)

DoS attacks are a type of attack that tries to weaken the
connection between two devices in communication or to
make users who use the system inaccessible to the system
[49]. The purpose of these attacks is to damage the system
by making the target unreachable.

In the test environment established in our study, as shown
in Figure 6, the attacker sends packets to the IoT device
that will keep the device busy with DoS attack tools and
tries to weaken the data sent from the IoT device to the
MQTT broker. Thus, it is tried to prevent data loss to the
subscriber using the system.

Figure 6. Denial of Service attack scenario

4.1.3 Brute Force Attack

Brute force attack is a type of attack that tries to obtain
passwords used in systems. Since it is difficult to decipher
passwords manually using trial and error method,
automated tools using dictionaries are used to obtain
passwords.

Figure 7. Brute force attack scenario

In the test environment established in our study, the
attacker tries to capture user passwords with brute force
attack tools as shown in Figure 7. If the attack is
successful, malicious operations such as eavesdropping
can now be performed with this information.

5. RESULTS

Authentication is not performed by default in the MQTT
protocol. However, if desired, authentication mechanism
with username and password can be used as shown in
Figure 8. After authentication, the password information
can be hidden.

Figure 8. Authentication Mechanism in Mosquitto

In cases where MQTT is used in public networks or
security is a concern, it is advised to activate
authentication and other security measures to ensure that
the transmitted data is protected from unauthorized access
and maintain its confidentiality and integrity. It is the
responsibility of the MQTT application developer to
implement suitable security measures based on the
specific use case and the type of threats they might face.

As shown in Figure 9, the authentication mechanism
prevents attackers from publishing unauthorized data.

Figure 9. MQTT Authentication

M. M. Simsek and E. Atilgan / Attacks on Availability of IoT Middleware Protocols: A Case Study on MQTT

23

However, since username and passwords are sent in plain
text in MQTT, an attacker can intercept the packets with
Wireshark-like tools after listening for the identity data
and then modify them to send them to the MQTT server
(Figure 10). This can potentially compromise the security
and confidentiality of the data being transmitted, as well
as the overall integrity of the system. To protect from such
risks TLS encryption can be used. TLS can provide end-
to-end encryption of MQTT messages, including the
username and password. This can prevent eavesdropping
and tampering by attackers who may attempt to intercept
and modify MQTT packets. Another prevention could be
using a more secure authentication mechanism. Instead of
using usernames and passwords, an authentication
mechanism such as JSON Web Tokens (JWT) or OAuth
can be used. These mechanisms can provide more secure
and robust authentication and authorization, and can
prevent attackers from intercepting and modifying login
credentials. Which of these methods to use may vary
depending on the resource limitations of the relevant IoT
device.

Figure 10. Listening with Wireshark

5.1 Man in the Middle (MitM) Attack

Network traffic of an IoT device working with the MQTT
protocol is exposed to ARP poisoning, which is one of the
MitM types. As seen in Figure 11, the attacker captures
the data sent from the ESP8266 Sensor to the MQTT
Broker, directs it to itself and reaches the data.

Figure 11. Experiment environment for MitM attack

As seen in Figure 12, it was determined that the device is
an IOT device from the MAC addresses found by
scanning the network with the Ettercap tool.

Figure 12. IoT device identification by MAC address

As shown in Figure 13, the attack phase was started after
the IP address of our IOT device was found by following
the connections in the Ettercap tool.

Figure 13. MQTT broker detection by following links

In our study, an attack was made with ARP poisoning, one
of the MitM attack types found in the Ettercap tool. ARP
(Address Resolution Protocol) [50] is a communication
protocol used in computer networks to translate a network
address into a physical address and store them in the ARP
table. In ARP poisoning, the attacker manipulates this
table and maps its own MAC address instead of the target
device's MAC address. Then, the attacker intercepts and
modifies the network traffic, and potentially gains access
to sensitive information such as usernames, passwords,
and other confidential data. With control over the network
traffic, an attacker can inject malicious code or
commands, and execute other malicious activities.

As shown in Figure 14, after the MitM attack started, the
Wireshark tool captured the broker information that the
IOT device sent data to.

Figure 14. MQTT broker detection by following links

After the broker information was learned, the data sent
from the IOT device to the broker was followed with the
Wireshark tool and MQTT subject and message
information was captured as shown in Figure 15.

M. M. Simsek and E. Atilgan / Attacks on Availability of IoT Middleware Protocols: A Case Study on MQTT

24

Figure 15. Listening to topics and messages with Wireshark

When the attacker captures the MQTT Topic and host
information by listening to the network traffic, it can now
replace the Broker (Figure 16). In tis attack, the attacker
can easily change MQTT message and mislead the
subscriber. Although MitM attack mainly targets the
integrity of messages, it can be used to read the messages
when MQTT system use encrypted communication.

Figure 16. Fake data sent by the attacker

To reduce the risk of ARP poisoning attacks, network
administrators can implement various security measures
such as using encryption to protect network traffic,
monitoring network traffic for suspicious behavior, and
using tools such as Intrusion Detection Systems (IDS) to
detect and prevent ARP poisoning attacks. Transport
Layer Security (TLS) is recommended to secure
confidentiality of MQTT traffic. Another countermeasure
against MitM attacks is using MAC filtering to specify
and limit known devices that can communicate with the
MQTT broker. This can prevent unauthorized devices or
users from accessing the MQTT broker and other devices
on the network.

5.2 Denial of Service (DoS) Attacks

After the IP address of the ESP8266 device was detected
with the Ettercap tool, the DoS attack was carried out with
the LOIC tool.

The transmission times of the ping packets before the
LOIC DoS attack on the 192.168.1.74 device is shown in
Figure 17/a. Ping packet transmission times after the
attack is started are shown in Figure 17/b. As seen in
Figure 17, 50 packets reached the target in 49054 ms
before the attack. It has been determined that there is no
packet loss while sending ping packets.

Figure 17. Ping packets tracking before and during DoS attack

When the DoS attack was started with the LOIC tool, 91%
of the packets were lost on the way in the same time as
seen in Figure 17/b.

To prevent the DoS attacks on IoT system, MQTT broker
may limit the number of connections from each subscriber
to prevent a single subscriber from overloading the system
with requests. It is also recommended to use firewalls and
IDS to monitor the MQTT network for suspicious traffic
and activity. This can help to detect and prevent DoS
attacks and other types of attacks.

5.3 Brute Force Attacks

In Brute Force attacks on MQTT protocol, the attacker
tries all possible combinations of usernames and
passwords to gain unauthorized access to an MQTT
broker or subscribed topics. Attackers use automated
software tools to generate a large number of username and
password guesses and try each one until the correct
combination is found. This type of attack can lead to
unauthorized access, data theft, or disruption of the
MQTT connection. In addition, the connection
information such as client’s IP address, port number and
the version of the MQTT protocol, and the topics that the
clients subscribed to can be revealed. In our study,
Metasploit Framework tool was used to capture MQTT
credentials with a brute force attack.

Before starting a brute-force attack, the Nmap tool
inquires whether the target server uses authentication. The
target IP is 172.20.10.13. From the scan, it is understood
that we are not authorized to subscribe to any topic. This
means that the target server is using authentication. Then
MQTT Metasploit module is started in the Kali Linux
terminal and the necessary parameters are set to find the
user credentials. The Brute Force attack as shown in
Figure 18 was initiated and the MQTT session
information was captured.

Figure 18. Capturing MQTT credentials

M. M. Simsek and E. Atilgan / Attacks on Availability of IoT Middleware Protocols: A Case Study on MQTT

25

MQTT uses port 1883 for unencrypted communication.
For encrypted communication, port 8883 is used by using
Secure Sockets Layer (SSL). During SSL handshake, the
client validates the server certificate and authenticates the
server. As shown in Figure 19, although data was sent
from port 8883, the user name and password information
was captured by the Wireshark tool.

Figure 19. SSL protocol listening with Wireshark

To protect MQTT protocols from brute force attacks,
implementing strong authentication and password
policies should be the first line of defense. This may
include implementing password complexity rules, and
limiting the number of login attempts.

6. CONCLUSION

The study presented examines IoT middleware messaging
protocols, beginning with an analysis of their benefits and
drawbacks. The most frequently used messaging protocol,
MQTT, is scrutinized in detail, including its operational
principles, service quality, and security weaknesses.
Additionally, various attack methods and tools that could
be used against MQTT are analyzed, and their impacts are
discussed. To demonstrate the risks, three attack types,
including Man-in-the-Middle Attack, Denial of Service
Attack, and Brute Force Attack, are selected, and attack
scenarios are developed. The focus is on the availability
of IoT devices that employ the MQTT protocol, and the
tests are conducted using an ESP8266 device with both
username and password authentication and without it. The
study exposes security vulnerabilities in IoT devices
utilizing MQTT and proposes ways to address these
weaknesses and prevent such attacks.

Ethical Considerations
There are no ethical concerns associated with this article,
and obtaining ethical permission was deemed
unnecessary.

Funding

No funding related to this study has been received from
any non-profit organization

Conflict of Interest

We, as authors, confirm that there is no conflict of interest
with any person or institution related to this study.

REFERENCES

[1] Kevin, A. 2009, That 'Internet of Things' Thing,

RFiD Journal, 22(7), 97-114.
[2] Oral, O., Çakır, M. 2017. Nesnelerin İnterneti

Kavramı ve Örnek Bir Prototipin Oluşturulması.
Mehmet Akif Ersoy Üniversitesi Fen Bilimleri
Enstitüsü Dergisi, Özel Sayı 1, 172-177

[3] Hintaw, A. J., Manickam, S., Karuppayah, S., and
Aboalmaaly, M. F. 2019. A brief review on
MQTT’s security issues within the internet of
things (IoT), Journal of Communication, 14(6),
463–469, doi: 10.12720/jcm.14.6.463-469.

[4] Chen, F., Huo, Y., Zhu, J., and Fan, D. 2020. A
Review on the Study on MQTT Security
Challenge, In 2020 IEEE Int. Conf. Smart Cloud,
SmartCloud, 128–133,
doi: 10.1109/SmartCloud49737.2020.00032.

[5] Upadhyay, Y., Borole, A., and Dileepan, D. 2016.
MQTT based secured home automation system,
2016 Symp. Colossal Data Anal. Networking,
CDAN 2016, 14–17, doi:
10.1109/CDAN.2016.7570945.

[6] Assaig, F. A. A., Khalifa, O. O., Gunawan, T. S.,
Halbouni, A. H., Hamidi, E. A. Z., and Ismail, N.
2022. Development of A Lightweight IoT
Security System, In 8th Int. Conf. Wirel. Telemat.
ICWT 2022, doi:
10.1109/ICWT55831.2022.9935476.

[7] Firdous, S. N., Baig, Z., Valli, C., and Ibrahim, A.
2017. Modelling and evaluation of malicious
attacks against the IoT MQTT protocol, In IEEE
Int. Conf. Internet Things, IEEE Green Comput.
Commun. IEEE Cyber, Phys. Soc. Comput. IEEE
Smart Data, iThings-GreenCom-CPSCom-
SmartData, 748–755. doi: 10.1109/iThings-
GreenCom-CPSCom-SmartData.2017.115.

[8] Andy, S., Rahardjo, B., and Hanindhito, B. 2017.
Attack scenarios and security analysis of MQTT
communication protocol in IoT system. In 4th Int.
Conf. Electr. Eng. Comput. Sci. Informatics. 19–
21, doi: 10.1109/EECSI.2017.8239179.

[9] OASIS, MQTT Version 5.0. 2019. OASIS
Standard.

[10] Florea, I., Rughinis, R., Ruse, L., and Dragomir,
D. 2017. Survey of Standardized Protocols for the
Internet of Things. In 21st International
Conference on Control Systems and Computer,
CSCS 2017, 190–196. doi:
10.1109/CSCS.2017.33.

[11] Shelby, Z., Hartke, K., and Bormann, C. 2014.
The constrained application protocol
(CoAP). No. rfc7252.

[12] Dürkop, L., Czybik, B., and Jasperneite, J. 2015.
Performance evaluation of M2M protocols over
cellular networks in a lab environment. In 2015
18th International Conference on Intelligence in
Next Generation Networks, ICIN 2015. 70–75.
doi: 10.1109/ICIN.2015.7073809.

[13] Prayogo, S. S., Mukhlis, Y., and Yakti, B. K.
2019. The Use and Performance of MQTT and
CoAP as Internet of Things Application Protocol
using NodeMCU ESP8266. In 4th Int. Conf.
Informatics Comput. ICIC 2019. doi:
10.1109/ICIC47613.2019.8985850.

[14] Farooq, M. S., Riaz, S., Abid, A., Abid, K., and
Naeem, M. A. 2019. A Survey on the Role of IoT
in Agriculture for the Implementation of Smart

M. M. Simsek and E. Atilgan / Attacks on Availability of IoT Middleware Protocols: A Case Study on MQTT

26

Farming. IEEE Access, 7, 156237–156271, doi:
10.1109/ACCESS.2019.2949703.

[15] Kuladinithi, K., Bergmann, O., Thomas Pötsch,
Becker, M., and Görg, C. 2011. Implementation
of coap and its application in transport logistics.
In Extending Internet to Low Power Lossy
Networks, 1–7.

[16] Krimmling, J., and Peter, S. 2014. Integration and
evaluation of intrusion detection for CoAP in
smart city applications. In IEEE Conf. Commun.
Netw. Secur., CNS 2014. 73–78, doi:
10.1109/CNS.2014.6997468.

[17] Uy, N. Q., and Nam, V. H. 2019. A comparison
of AMQP and MQTT protocols for Internet of
Things. In 6th NAFOSTED Conference on
Information and Computer Science, NICS 2019.
292–297. doi:
10.1109/NICS48868.2019.9023812.

[18] McAteer, I. N., Malik, M. I., Baig, Z., and
Hannay, P. 2017. Security vulnerabilities and
cyber threat analysis of the amqp protocol for the
internet of things. In 15th Aust. Inf. Secur.
Manag. Conf. AISM 2017, 70–80, doi:
10.4225/75/5a84f4a695b4c.

[19] Keophilavong, T., Widyawan, and Rizal, M. N.
2019. Data transmission in machine to machine
communication protocols for internet of things
application: A review. In International
Conference on Information and Communications
Technology, ICOIACT 2019, IEEE, 899–904.
doi: 10.1109/ICOIACT46704.2019.8938420.

[20] Naik, N. 2017. Choice of effective messaging
protocols for IoT systems: MQTT, CoAP, AMQP
and HTTP. In IEEE Int. Symp. Syst. Eng. ISSE
2017. 1–7. doi: 10.1109/SysEng.2017.8088251.

[21] Luzuriaga, J. E., Perez, M., Boronat, P., Cano, J.
C., Calafate, C., and Manzoni, P. 2014. Testing
amqp protocol on unstable and mobile networks.
Lect. Notes Comput. Sci. (including Subser. Lect.
Notes Artif. Intell. Lect. Notes Bioinformatics),
8729, 250–260. doi: 10.1007/978-3-319-11692-
1_22.

[22] Krishna, C. S., and Sasikala, T. 2019. Healthcare
Monitoring System Based on IoT Using AMQP
Protocol. Lecture Notes on Data Engineering and
Communications Technologies, 15, 305–319.
doi: 10.1007/978-981-10-8681-6_29.

[23] Ramana, S. 2022. A Three - Level Gateway
protocol for secure M - Commerce Transactions
using Encrypted OTP, no. Icaaic, 1408–1416.

[24] Javied, T., Huprich, S., and Franke, J. 2019.
Cloud based Energy Management System
Compatible with the Industry 4.0 Requirements,
IFAC-PapersOnLine, 52(10), 171–175. doi:
10.1016/j.ifacol.2019.10.018.

[25] Bartolomeo, G., and Kovacikova, T. 1996.
Hypertext Transfer Protocol, Identif. Manag.
Distrib. Data, 31–48. doi: 10.1201/b14966-5.

[26] Wukkadada, B., and Wankhede, K. 2018.
Comparison with HTTP and MQTT In Internet of
Things (IoT). In International Conference on
Inventive Research in Computing Applications
(ICIRCA 2018), IEEE, 249–253.

[27] Jaafar, G. A., Abdullah, S. M., and Ismail, S.
2019. Review of Recent Detection Methods for
HTTP DDoS Attack. Journal of Computer
Networks and Communications, 2019, Article ID
1283472.

[28] Pardo-Castellote, G. 2003. OMG Data-
Distribution Service: Architectural Overview. In
23rd International Conference on Distributed
Computing Systems Workshops, 200-206. doi:
https://doi.org/10.1109/ICDCSW.2003.1203555.

[29] Du, J., Gao, C., and Feng, T. 2023. Formal Safety
Assessment and Improvement of DDS Protocol
for Industrial Data Distribution Service. Futur.
Internet, 15(1). doi: 10.3390/fi15010024.

[30] MQTT Version 3.1.1. http://docs.oasis-
open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.pdf
(accessed Mar. 19, 2023).

[31] Bandyopadhyay, S., and Bhattacharyya, A. 2013.
Lightweight Internet protocols for web
enablement of sensors using constrained gateway
devices. In Int. Conf. Comput. Netw. Commun.
ICNC 2013, 334–340. doi:
10.1109/ICCNC.2013.6504105.

[32] Mishra, B., and Kertesz, A. 2020. The use of
MQTT in M2M and IoT systems: A survey. IEEE
Access, 8, 201071–201086. doi:
10.1109/ACCESS.2020.3035849.

[33] Soni, D., and Makwana, A. 2017. A Survey on
MQTT: a protocol of internet of things (IoT). In
International Conference on Telecommunication,
Power Analysis and Computing Techniques
(Ictpact - 2017), 173–177.

[34] Kant, D., Johannsen, A., and Creutzburg, R. 2021.
Analysis of IoT security risks based on the
exposure of the MQTT Protocol. Electronic
Imaging, 2021(3), 96-1. doi: 10.2352/ISSN.2470-
1173.2021.3.MOBMU-096.

[35] Chen, D., and Varshney, P. K. 2004. QoS support
in wireless sensor networks: A survey. In Int.
Conf. Wirel. Networks, ICWN’04. 233, 1–7.

[36] Bender, M., Kirdan, E., Pahl, M. O., and Carle, G.
2021. Open-source MQTT evaluation. IEEE 18th
Annu. Consum. Commun. Netw. Conf. 1-4. doi:
10.1109/CCNC49032.2021.9369499.

[37] Ugalde, D. S. 2018. Security analysis for MQTT
in Internet of Things. Master Thesis. 53p.
Stockholm.

[38] Atilgan, E., Ozcelik, I., and Yolacan, E. N.,
MQTT Security at a Glance. 2021. In 14th
International Conference on Information Security
and Cryptology, ISCTURKEY 2021, Ankara,
138–142. doi:
10.1109/ISCTURKEY53027.2021.9654337.

[39] Setiawan, F. B. 2021. Securing Data
Communication Through MQTT Protocol with
AES-256 Encryption Algorithm CBC Mode on
ESP32-Based Smart Homes. In Int. Conf.
Comput. Syst. Inf. Technol. Electr. Eng.
(COSITE). 166–170. doi:
10.1109/COSITE52651.2021.9649577.

[40] Manullang, I. T. 2021. The Implementation of
XChaCha20-Poly1305 in MQTT Protocol, no.
13517044.

M. M. Simsek and E. Atilgan / Attacks on Availability of IoT Middleware Protocols: A Case Study on MQTT

27

[41] Sadio, O., Ngom, I., and Lishou, C. 2019.
Lightweight Security Scheme for MQTT/MQTT-
SN Protocol. In 6th Int. Conf. Internet Things
Syst. Manag. Secur. IOTSMS 2019, 119–123.
doi: 10.1109/IOTSMS48152.2019.8939177.

[42] Pallavi, A., and Hemlata, P. 2012. Network
Traffic Analysis Using Packet Sniffer. Int. J. Eng.
Res. Appl. 2(3), 854–856.

[43] Wireshark. https://www.wireshark.org/ (accessed
Mar. 25, 2023).

[44] Hertzog, R., O’Gorman, J., and Aharoni, M.
2017. Kali Linux Revealed. Mastering the
Penetration Testing Distribution

[45] Shah, M., Ahmed, S., Saeed, K., Junaid, M.,
Khan, H., and Ata-Ur-Rehman. 2019. Penetration
testing active reconnaissance phase - Optimized
port scanning with nmap tool. In 2nd Int. Conf.
Comput. Math. Eng. Technol. iCoMET 2019. doi:
10.1109/ICOMET.2019.8673520.

[46] Nagpal, B., Sharma, P., Chauhan, N., and
Panesar, A. 2015. DDoS tools: Classification,
analysis and comparison. In 2nd Int. Conf.
Comput. Sustain. Glob. Dev. INDIACom 2015,
342–346.

[47] Hping3, 2023. https://www.kali.org/tools/hping3/
(accessed Apr. 16, 2023).

[48] Valea, O., and Oprisa, C., Towards Pentesting
Automation Using the Metasploit Framework.
2020. In IEEE 16th Int. Conf. Intell. Comput.
Commun. Process. ICCP 2020, 171–178. doi:
10.1109/ICCP51029.2020.9266234.

[49] Özdemir, D., and Çavşi Zaim, H., Investigation of
Attack Types in Android Operation System. 2021
J. Sci. Reports - A, no. 46, 34–58.

[50] Nachreiner, C. 2003. Anatomy of an ARP
Poisoning Attack. (Accessed July 6, 2023).

	1. Introductıon
	2.5.2 MQTT Brokers
	2.5.3 MQTT Security

	3. MetHod
	3.3. Attack Tools
	LOIC (Low Orbit IonCannon): It is an open source Denial of Service (DoS) attack tool written in C#. LOIC is used to interrupt the service of a particular device. It can perform a DoS or DDoS attack on a target device by filling the target server with ...
	Metasploit Framework: Metasploit is an open source penetration testing tool developed in the Ruby language [48]. It is a platform developed by Rapid7 company, where users can run exploits, and also has many network discovery and attack tools on it. Th...

	REFERENCES

