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Abstract
In this paper, we focus on investigating the existence and approximation of periodic so-
lutions for a nonlinear integro-differential system with a piecewise alternately advanced
and retarded argument of generalized type, referred to as DEPCAG. The argument is a
general step function, and we obtain criteria for the existence of periodic solutions for such
equations. Our approach involves converting the given DEPCAG into an equivalent inte-
gral equation and using a new approach for periodic solutions. We construct appropriate
mappings and employ a numerical-analytic method to investigate periodic solutions of the
ordinary differential equation given by A. M. Samoilenko [32]. Additionally, we use the
contraction mapping principle to demonstrate the existence of a unique periodic solution.
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1. Introduction
Within the realm of functional differential equations, Myshkis [26] focused on research-

ing differential equations with piecewise constant arguments, known as DEPCA. The
theory of scalar DEPCA of the type

dx(t)
dt

= f(t, x(t), x(γ(t))), γ(t) = [t] or γ(t) = 2
[
t+ 1

2

]
, (1.1)

where [·] signifies the greatest integer function, was first introduced in [33] and further
developed by various authors [1, 5, 21, 25, 28, 37], including the first book on DEPCA by
Wiener [38]. Applications of DEPCA have been discussed in [6, 12, 16, 29, 35, 38]. These
equations are often referred to as hybrid equations due to their possession of properties
from both continuous systems and discrete equations.

Over the years, significant attention has been dedicated to investigating the existence
of periodic and almost periodic solutions for various types of differential equations. For
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further details and specific references, please see [1,5,6,8–11,13–15,17–20,23,25,37,38]. In
their interesting paper and research monograph [21,22], the authors analyzed the existence
and uniqueness of asymptotically Bloch-periodic solutions for abstract fractional nonlinear
differential inclusions with piecewise constant argument in Banach spaces.

Let Z, N, R and C be the set of all integers, natural, real and complex numbers,
respectively. Denote by | · | a norm in Rn, n ∈ N. Fix two real sequences ti, γi, i ∈ Z, such
that ti < ti+1, ti ≤ γi ≤ ti+1 for all i ∈ Z, ti → ±∞ as i → ±∞.

Let γ : R → R represent a step function defined as γ(t) = γi for t ∈ Ii = [ti, ti+1), and let
us consider the DEPCA (1.1) under this general γ. In this scenario, the argument takes
the form of a piecewise function, alternating between advanced and delayed situations.
Specifically, when γ(t) = [t], it corresponds to a sequence where ti = i ∈ Z, whereas for
γ(t) = 2[ t+1

2 ], it corresponds to a sequence where ti = 2i−1 and γi = 2i, with i ∈ Z. In the
case where γi = ti for all i ∈ Z, it represents a purely delayed situation. Conversely, when
γi = ti+1, it signifies a purely advanced situation. Any other case indicates alternately
advanced and delayed situations, where I+

i = [ti, γi] denotes the advanced intervals, and
I−

i = [γi, ti+1) denotes the delayed intervals.
Applications of DEPCAG are discussed in [6,11,16], and the importance of the advanced

and delayed intervals has been emphasized by M. Pinto in [28]. This decomposition will
be evident in all of our results, as well as in previous works [6, 9, 11, 13–15, 28, 30]. The
integration or solution of a DEPCA, as originally proposed by its pioneers [1,33], relies on
the reduction of the DEPCA to discrete equations. In our study of nonlinear DEPCAGs,
we will utilize an innovative approach, which involves constructing an equivalent integral
equation. However, we also emphasize the profound impact of the discrete component
and its associated difference equations, which will play a pivotal role in our analysis. For
further details, please refer to [6, 7, 28].

In the year 2010, Chiu and Pinto [6] derived sufficient conditions for the existence
and uniqueness of periodic (or harmonic) and subharmonic solutions for a quasilinear
differential equation with a general piecewise constant argument, defined as:

y′(t) = A(t)y(t) + f(t, y(t), y(γ(t))),

where t ∈ R, y ∈ Cp, A(t) is a p × p matrix for p ∈ N, and f is continuous in the first
argument, γ(t) = γi, if ti ≤ t < ti+1, i ∈ Z. Within this research paper, the authors
compare three inequalities of Gronwall type for DEPCAG and emphasize the introduction
of a novel Gronwall’s Lemma. This new lemma not only imposes less stringent conditions
than the other existing Gronwall’s Lemmas but also provides better estimation.

It is widely recognized that mathematical methods play a crucial role in many fields of
physics and technology, particularly in the study of linear and nonlinear integro-differential
equations. In recent years, the problem of determining the existence of periodic solutions
and their algorithmic structure has gained increased importance.

Numerous studies and research, such as those by Butris et al. [2–4], Dorociakova et
al. [18], Guerfi et al. [19], Mitropolsky et al. [24], Perestyuk [27], Ronto et al. [31],
Shslapk [34], and Vakhobov [36], have focused on the treatment of both autonomous and
non-autonomous periodic systems using integral and differential equations, encompassing
both linear and nonlinear cases. These studies generally delve into the theory of periodic
solutions and modern methodologies for addressing periodic differential equations with
high precision.

A. M. Samoilenko [32] developed a numerical-analytic method for studying the algo-
rithmic structure and periodic solutions of ordinary differential equations. This method
involves sequences of periodic functions that uniformly converge, and its results have
found applications in various fields, including new process industries and technology. In
his work, Samoilenko investigated the existence and approximation of periodic solutions
for nonlinear systems of integro-differential equations, which take the following form:
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x′(t) = f

(
t, x(t),

∫ t+T

t
g(s, x(s))ds

)
.

Here, x ∈ D ⊂ Rn, where D is a closed and bounded domain. The vector functions
f(t, x, y) and g(t, x) are continuous in t, x, and y, and periodic in t with a period of T .

R. N. Butris [3] investigated the periodic solutions of a nonlinear system of integro-
differential equations that depend on the gamma distribution. In this study, a numerical-
analytic method was employed, and the system is given by:

x′(t) = f

(
t, ϑ(t, α), x(t),

∫ t+T

t
g(s, ϑ(s, α), x(s))ds

)
, t ∈ R.

Here, x ∈ D ⊂ Rn, where D represents a closed and bounded domain. The vector
functions f(t, ϑ(t, α), x) and g(t, ϑ(t, α), x) are defined within the domain: (t, ϑ(t, α), x) ∈
R × [0, T ] ×D ×D.

In this current paper, we investigate the existence of periodic solutions in a nonlinear
integro-differential system with a piecewise alternately advanced and retarded argument
of generalized type, described by the following equation:

z′(t) = f

(
t, z(t), z(γ(t)),

∫ t+ω

t
g(s, z(s), z(γ(s)))ds

)
, t ∈ R, (1.2)

where f : R×Rn ×Rn ×Rn → Rn and g : R×Rn ×Rn → Rn are continuous functions in
their respective arguments.

In our analysis, we employ a novel approach to determine periodic solutions. We trans-
form the nonlinear integro-differential system with the DEPCAG (1.2) into an equivalent
integral equation. To investigate the periodic solutions, we utilize a numerical-analytic
method, as proposed by A. M. Samoilenko in [32]. We demonstrate the existence of pe-
riodic solutions for the nonlinear integro-differential system with the DEPCAG (1.2) in
Theorems 3.1 and 4.3. Additionally, in Theorem 4.6, we establish the existence of a unique
periodic solution using the contraction mapping principle as our fundamental mathemat-
ical method.

In our paper, we assume that the solutions of the nonlinear integro-differential systems
with DEPCAG (1.2) are continuous functions, while the deviating argument γ(t) is discon-
tinuous. Consequently, in general, the right-hand side of the nonlinear DEPCAG system
(1.2) has discontinuities at points ti ∈ R, i ∈ Z. Therefore, we consider the solutions of the
DEPCAG system as functions that are continuous and continuously differentiable within
intervals [ti, ti+1), i ∈ Z. In other words, when we refer to a solution z(t) of the nonlinear
DEPCAG system (1.2), we mean a continuous function on R such that the derivative z′(t)
exists at each point t ∈ R, except possibly at points ti ∈ R, i ∈ Z, where a one-sided de-
rivative exists. Additionally, the nonlinear integro-differential systems with the DEPCAG
(1.2) are satisfied by z(t) on each interval (ti, ti+1), i ∈ Z.

The paper is structured as follows. In the next section, some definitions and preliminary
results are introduced. In Section 3, we establish criteria for the existence and uniqueness
of periodic approximate solutions for the nonlinear DEPCAG system (1.2). In Section 4,
we investigate the existence of periodic solutions for the nonlinear DEPCAG system (1.2).
Additionally, we provide suitable examples in Section 5 to demonstrate the feasibility of
our results.

2. Preliminaries and definition
In this section, our focus is on presenting some preliminary results that will be used to

establish the existence of periodic solutions for the nonlinear integro-differential system
with a piecewise alternately advanced and retarded argument (1.2).
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In the subsequent analysis, we assume that for each t ∈ R, there exists a unique integer
i = i(t) ∈ Z such that t belongs to the interval Ii = [ti, ti+1).

The following assumptions will be necessary from this point onward:
Continuous condition:

(C) The vector functions f(t, x, y, z) and g(t, x, y) are continuous functions and defined
on the domain:

f(t, x, y, z) ∈ R ×D ×D ×D, g(t, x, y) ∈ R ×D ×D, (2.1)

where D is a non-empty compact set in Rn.
Lipschitz conditions:

(Lf ) For t ∈ R, x1, y1, z1, x2, y2, z2 ∈ D ⊂ Rn, there exist positive constants L
f
i , i =

1, 2, 3, such that

|f(t, x1, y1, z1) − f(t, x2, y2, z2)| ≤ L
f
1 |x1 − x2| + L

f
2 |y1 − y2| + L

f
3 |z1 − z2| . (2.2)

(Lg) For t ∈ R and x1, y1, x2, y2 ∈ D ⊂ Rn, there exist positive constants L
g
i , i = 1, 2,

such that

|g(t, x1, y1) − g(t, x2, y2)| ≤ L
g
1 |x1 − x2| + L

g
2 |y1 − y2| . (2.3)

Estimation condition:
(Mf ) For all t ∈ R and x, y, z ∈ D, where D is a non-empty compact set in Rn, there

exists a positive constant Mf such that

|f(t, x, y, z)| ≤ Mf . (2.4)

Periodic conditions:
(P) There exists ω > 0 such that:

1) f(t, x1, y1, z1) and g(t, x2, y2) are periodic functions in t with a period ω for all
t ≥ τ .

2) There exists p ∈ Z+, for which the sequences {ti}i∈Z, {γi}i∈Z, satisfy the (ω, p)
condition, that is

ti+p = ti + ω, γi+p = γi + ω, for i ∈ Z. (2.5)

Now, we solve the nonlinear DEPCAG system (1.2) on Ii(τ) = [ti(τ), ti(τ)+1):

z′(t) = f

(
t, z(t), z(γi(τ)),

∫ t+ω

t
g(s, z(s), z(γ(s)))ds

)
, t ∈ [ti(τ), ti(τ)+1),

which has the solution given by:

z(t) = z(τ) +
∫ t

τ

[
f

(
s, z(s), z(γi(τ)),

∫ ti(τ)+1

s
g(u, z(u), z(γi(τ)))du

+
∑i(s+ω)−1

k=i(τ)+1

∫ tk+1

tk

g(u, z(u), z(γk))du +
∫ s+ω

ti(s+ω)

g(u, z(u), z(γi(s+ω)))du
)]

ds.

(2.6)

For t → ti(τ)+1 in (2.6), we have

z(ti(τ)+1) = z(τ) +
∫ ti(τ)+1

τ

[
f

(
s, z(s), z(γi(τ)),

∫ ti(τ)+1

s
g(u, z(u), z(γi(τ)))du

+
∑i(s+ω)−1

k=i(τ)+1

∫ tk+1

tk

g(u, z(u), z(γk))du +
∫ s+ω

ti(s+ω)

g(u, z(u), z(γi(s+ω)))du
)]

ds
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and in general, by induction, for any i(t) ≥ i(τ):

z(t) = z(τ) +
∫ ti(τ)+1

τ

[
f

(
s, z(s), z(γi(τ)),

∫ ti(τ)+1

s
g(u, z(u), z(γi(τ)))du

+
∑i(s+ω)−1

k=i(τ)+1

∫ tk+1

tk

g(u, z(u), z(γk))du +
∫ s+ω

ti(s+ω)

g(u, z(u), z(γi(s+ω)))du
)]

ds

+
∑i(t)−1

j=i(τ)+1

∫ tj+1

tj

[
f

(
s, z(s), z(γj),

∫ tj+1

s
g(u, z(u), z(γj))du

+
∑i(s+ω)−1

k=j+1

∫ tk+1

tk

g(u, z(u), z(γk))du +
∫ s+ω

ti(s+ω)

g(u, z(u), z(γi(s+ω)))du
)]

ds

+
∫ t

ti(t)

[
f

(
s, z(s), z(γi(t))

∫ ti(t)+1

s
g(u, z(u), z(γi(t)))du

+
∑i(s+ω)−1

k=i(t)+1

∫ tk+1

tk

g(u, z(u), z(γk))du +
∫ s+ω

ti(s+ω)

g(u, z(u), z(γi(s+ω)))du
)]

ds.

On the other hand, it is evident that∫ t

τ
g(u, z(u), z(γ(u)))du =

∫ ti(τ)+1

τ
g(u, z(u), z(γi(τ)))du

+
∑i(t)−1

j=i(τ)+1

∫ tj+1

tj

g(u, z(u), z(γj))du+
∫ t

ti(t)

g(u, z(u), z(γi(t)))du.

Therefore, any solution to the nonlinear DEPCAG system (1.2) with the initial condition
z(τ) = z0 can be expressed as:

z(t) = z0 +
∫ t

τ

[
f

(
s, z(s), z(γ(s)),

∫ s+ω

s
g(u, z(u), z(γ(u)))du

)]
ds, τ ∈ R. (2.7)

Among these solutions, the one that is ω-periodic is characterized by the property that
z(τ) = z0 = z(τ + ω). Using (2.7), we obtain:

z(t) = z0 +
∫ t

τ
f

(
s, z(s), z(γ(s)),

∫ s+ω

s
g(u, z(u), z(γ(u)))du

)
ds

− t− τ

ω

∫ τ+ω

τ
f

(
s, z(s), z(γ(s)),

∫ s+ω

s
g(u, z(u), z(γ(u)))du

)
ds, τ ∈ R.

(2.8)

It follows that

z(t) = z0 +
(

1 − t− τ

ω

)∫ t

τ
f

(
s, z(s), z(γ(s)),

∫ s+ω

s
g(u, z(u), z(γ(u)))du

)
ds

− t− τ

ω

∫ τ+ω

t
f

(
s, z(s), z(γ(s)),

∫ s+ω

s
g(u, z(u), z(γ(u)))du

)
ds.

(2.9)

In such a case, the nonlinear DEPCAG system (1.2) has an ω-periodic solution z(t) given
by the integral equation (2.9). Before we delve into studying the existence of a periodic
approximate solution for integral equation (2.9) in the next section, we first present the
following lemma, which will be used to establish the existence and uniqueness of a peri-
odic approximate solution for the nonlinear integro-differential system with a piecewise
alternately advanced and retarded argument (1.2).

Lemma 2.1. Let f(t) be a continuous vector function defined on the interval [τ, τ + ω].
Then, ∣∣∣∣∫ t

τ

(
f(s) − 1

ω

∫ τ+ω

τ
f(u)du

)
ds

∣∣∣∣ ≤ α(t) max
t∈[τ,τ+ω]

|f(t)|, (2.10)

where α(t) = 2(t− τ)
(
1 − t−τ

ω

)
.
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Proof. It is clear that∫ t

τ

(
f(s) − 1

ω

∫ τ+ω

τ
f(u)du

)
ds =

∫ t

τ
f(s)ds− t− τ

ω

∫ t

τ
f(u)du− t− τ

ω

∫ τ+ω

t
f(u)du.

Therefore,∣∣∣∣ ∫ t

τ

(
f(s) − 1

ω

∫ τ+ω

τ
f(u)du

)
ds

∣∣∣∣ ≤
(

1 − t− τ

ω

)∫ t

τ
|f(s)|ds+ t− τ

ω

∫ τ+ω

t
|f(s)|ds

≤
(

1 − t− τ

ω

)
(t− τ) max

t∈[τ,τ+ω]
|f(t)| + t− τ

ω
(τ + ω − t) max

t∈[τ,τ+ω]
|f(t)|

= α(t) max
t∈[τ,τ+ω]

|f(t)|,

(2.11)

where α(t) = 2(t − τ)
(
1 − t−τ

ω

)
. Moreover, it can be noted that |α(t)| ≤ ω

2 , for t ∈
[τ, τ + ω]. �

3. The periodic approximate solution for the DEPCAG system
The approach for investigating periodic solutions proposed by Samoilenko in [32] has

been referred to as the numerical-analytic method or the approach of periodic successive
approximations. The method is described in a form suitable for our purposes by Theorem
3.1 below, and deals with the investigation of the equation:

z(t, z0) = z0 +
∫ t

τ
f

(
s, z(s, z0), z(γ(s), z0),

∫ s+ω

s
g(u, z(u, z0), z(γ(u), z0))du

)
ds

− t− τ

ω

∫ τ+ω

τ
f

(
s, z(s, z0), z(γ(s), z0),

∫ s+ω

s
g(u, z(u, z0), z(γ(u), z0))du

)
ds,

for τ ∈ R. In accordance with [31], we will now outline the original, unmodified periodic
successive approximations scheme for the ω-periodic problem (1.2). Subsequently, we will
modify this scheme as needed. Given the ω-periodic problem (1.2), we define the sequence
of functions zn(·, z0), n ≥ 1, according to the following rule:

z0(t, z0) = z0

zn(t, z0) = z0 +
∫ t

τ
f

(
s, zn−1(s, z0), zn−1(γ(s), z0),∫ s+ω

s g(u, zn−1(u, z0), zn−1(γ(u), z0))du

)
ds

− t− τ

ω

∫ τ+ω

τ
f

(
s, zn−1(s, z0), zn−1(γ(s), z0),∫ s+ω

s g(u, zn−1(u, z0), zn−1(γ(u), z0))du

)
ds,

(3.1)

for τ, t ∈ R.
We define a d-neighborhood of a point z ∈ Rn as the set of points satisfying ||z−z0|| ≤ d.

For the nonlinear DEPCAG system (1.2) and the region D, we consider a subset DMf ω/2

of Rn consisting of points in D and their Mf ω
2 -neighborhoods.

The investigation of periodic approximate solutions for the nonlinear DEPCAG system
(1.2) is presented in the following theorem.

Theorem 3.1. Let (C), (Mf ), (P), and the functions f and g satisfy the Lipschitz con-
ditions (Lf ) and (Lg) with a constant β, such that the inequality:

β := ω

2
(
L

f
1 + L

f
2 + L

f
3(Lg

1 + L
g
2)ω

)
< 1 (3.2)

holds, and furthermore:
(t, z0) ∈ R ×DMf ω/2. (3.3)

Then,
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(i) the sequence (3.1) is uniformly convergent:
z(t, z0) = lim

n→∞
zn(t, z0). (3.4)

Moreover,
|zn(t, z0) − z0| ≤ Mfα(t), (3.5)

and
|z(t, z0) − zn(t, z0)| ≤ βn

1 − β
Mfα(t). (3.6)

(ii) the function z(t, z0) is the unique ω-periodic solution of the integral equation

z(t, z0) = z0 +
∫ t

τ
f

(
s, z(s, z0), z(γ(s), z0),∫ s+ω

s g(u, z(u, z0), z(γ(u), z0))du

)
ds

− t− τ

ω

∫ τ+ω

τ
f

(
s, z(s, z0), z(γ(s), z0),∫ s+ω

s g(u, z(u, z0), z(γ(u), z0))du

)
ds,

(3.7)

on the domain (3.3).

Proof. Consider the sequence of functions z1(t, z0), z2(t, z0), . . ., zn(t, z0), . . ., defined by
the recurrence relation (3.1). Each function in the sequence is continuous and ω-periodic
on the domain (2.1).
Now, by applying Lemma 2.1 and using (3.1) with n = 1, we obtain:

|z1(t, z0) − z0|

≤
(

1 − t− τ

ω

)∫ t

τ

∣∣∣∣f (s, z0(s, z0), z0(γ(s), z0),
∫ s+ω

s
g(u, z0(u, z0), z0(γ(u), z0))du

)∣∣∣∣ds
+ t− τ

ω

∫ τ+ω

t

∣∣∣∣f (s, z0(s, z0), z0(γ(s), z0),
∫ s+ω

s
g(u, z0(u, z0), z0(γ(u), z0))du

)∣∣∣∣ ds
≤
(

1 − t− τ

ω

)
Mf · (t− τ) + t− τ

ω
Mf · (τ + ω − t)

= 2(t− τ)
(

1 − t− τ

ω

)
Mf = Mfα(t).

Then,
|z1(t, z0) − z0| ≤ Mfα(t) ≤ Mfω

2 , (3.8)

i.e. z1(t, z0) ∈ D, for all t ∈ R, z0 ∈ DMf ω/2.
Also from (3.8), we have:∣∣∣∣∫ s+ω

s
g(u, z1(u, z0), z1(γ(u), z0))du−

∫ s+ω

s
g(u, z0(u, z0), z0(γ(u), z0))du

∣∣∣∣
≤
∫ s+ω

s
|g(u, z1(u, z0), z1(γ(u), z0)) − g(u, z0(u, z0), z0(γ(u), z0))| du

≤
∫ s+ω

s
[Lg

1 |z1(u, z0) − z0(u, z0)| + L
g
2 |z1(γ(u), z0) − z0(γ(u), z0)|]du

≤
∫ s+ω

s
[Lg

1α(u)Mf + L
g
2α(γ(u))Mf ]du

≤ 1
2 (Lg

1 + L
g
2)Mfω

2.

Hence, ∣∣∣∣∫ s+ω

s
g(u, z1(u, z0), z1(γ(u), z0))du−

∫ s+ω

s
g(u, z0(u, z0), z0(γ(u), z0))du

∣∣∣∣
≤ 1

2 (Lg
1 + L

g
2)Mfω

2.

(3.9)
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Hence, by mathematical induction, we find that:

|zn(t, z0) − z0| ≤ Mfα(t), n ∈ N. (3.10)

For all t ∈ R and z0 ∈ DMf ω/2. Furthermore, from (3.10), we have:

∣∣∣∣∫ s+ω

s
g(u, zn(u, z0), z1(γ(u), z0))du−

∫ s+ω

s
g(u, z0(u, z0), z0(γ(u), z0))du

∣∣∣∣
≤ 1

2 (Lg
1 + L

g
2)Mfω

2,

(3.11)

for all t ∈ R and z0 ∈ DMf ω/2. We assert that the sequence of functions (3.1) is uniformly
convergent on the domain (3.3). By applying Lemma 2.1 and setting n = 1 in (3.1), we
obtain:

|z2(t, z0) − z1(t, z0)|

=
∣∣∣∣∣
[
z0 +

∫ t

τ
f

(
s, z1(s, z0), z1(γ(s), z0),

∫ s+ω

s
g(u, z1(u, z0), z1(γ(u), z0))du

)
ds

− t− τ

ω

∫ τ+ω

τ
f

(
s, z1(s, z0), z1(γ(s), z0),

∫ s+ω

s
g(u, z1(u, z0), z1(γ(u), z0))du

)
ds

]

−
[
z0 +

∫ t

τ
f

(
s, z0(s, z0), z0(γ(s), z0),

∫ s+ω

s
g(u, z0(u, z0), z0(γ(u), z0))du

)
ds

− t− τ

ω

∫ τ+ω

τ
f

(
s, z0(s, z0), z0(γ(s), z0),

∫ s+ω

s
g(u, z0(u, z0), z0(γ(u), z0))du

)
ds

]∣∣∣∣∣
≤
(

1 − t− τ

ω

)∫ t

τ

∣∣∣∣∣f
(
s, z1(s, z0), z1(γ(s), z0),

∫ s+ω

s
g(u, z1(u, z0), z1(γ(u), z0))du

)

− f

(
s, z0(s, z0), z0(γ(s), z0),

∫ s+ω

s
g(u, z0(u, z0), z0(γ(u), z0))du

) ∣∣∣∣∣ds
+ t− τ

ω

∫ τ+ω

t

∣∣∣∣∣f
(
s, z1(s, z0), z1(γ(s), z0),

∫ s+ω

s
g(u, z1(u, z0), z1(γ(u), z0))du

)

− f

(
s, z0(s, z0), z0(γ(s), z0),

∫ s+ω

s
g(u, z0(u, z0), z0(γ(u), z0))du

) ∣∣∣∣∣ds
≤
(

1 − t− τ

ω

)∫ t

τ

(
L

f
1 |z1(s, z0) − z0| + L

f
2 |z1(γ(s), z0) − z0|

+ L
f
3

∣∣∣∣∣
∫ s+ω

s
g(u, z1(u, z0), z1(γ(u), z0))du−

∫ s+ω

s
g(u, z0(u, z0), z0(γ(u), z0))du

∣∣∣∣∣
)
ds

+ t− τ

ω

∫ τ+ω

t

(
L

f
1 |z1(s, z0) − z0| + L

f
2 |z1(γ(s), z0) − z0|

+ L
f
3

∣∣∣∣∣
∫ s+ω

s
g(u, z1(u, z0), z1(γ(u), z0))du−

∫ s+ω

s
g(u, z0(u, z0), z0(γ(u), z0))du

∣∣∣∣∣
)
ds
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≤
(

1 − t− τ

ω

)∫ t

τ

(
L

f
1α(s)Mf + L

f
2α(γ(s))Mf + L

f
3

∫ s+ω

s
[Lg

1α(u)Mf + L
g
2α(γ(u))Mf ]du

)
ds

+ t− τ

ω

∫ τ+ω

t

(
L

f
1α(s)Mf + L

f
2α(γ(s))Mf + L

f
3

∫ s+ω

s
[Lg

1α(u)Mf + L
g
2α(γ(u))Mf ]du

)
ds

≤
(

1 − t− τ

ω

)∫ t

τ

[
L

f
1 + L

f
2

2 ωMf + L
f
3

2 (Lg
1 + L

g
2)ω2Mf

]
ds

+ t− τ

ω

∫ τ+ω

t

[
L

f
1 + L

f
2

2 ωMf + L
f
3

2 (Lg
1 + L

g
2)ω2Mf

]
ds

= ω

2
(
L

f
1 + L

f
2 + L

f
3(Lg

1 + L
g
2)ω

)
Mfα(t).

Let β := ω
2

(
L

f
1 + L

f
2 + L

f
3(Lg

1 + L
g
2)ω

)
. Then, the inequality

|z2(t, z0) − z1(t, z0)| ≤ βMfα(t) (3.12)
is true. We assume the following inequality holds:

|zn(t, z0) − zn−1(t, z0)| ≤ βn−1Mfα(t), (3.13)
for all n ≥ 1. Now, we shall prove the following:

|zn+1(t, z0) − zn(t, z0)|

≤
(

1 − t− τ

ω

)∫ t

τ

[
L

f
1 |zn(s, z0) − zn−1(s, z0)| + L

f
2 |zn(γ(s), z0) − zn−1(γ(s), z0)|

+ L
f
3

∫ s+ω

s
L

g
1|zn(u, z0) − zn−1(s, z0)| + L

g
2|zn(γ(u), z0) − zn−1(γ(s), z0)|du

]
ds

+ t− τ

ω

∫ τ+ω

t

[
L

f
1 |zn(s, z0) − zn−1(s, z0)| + L

f
2 |zn(γ(s), z0) − zn−1(γ(s), z0)|

+ L
f
3

∫ s+ω

s
L

g
1|zn(u, z0) − zn−1(s, z0)| + L

g
2|zn(γ(u), z0) − zn−1(γ(s), z0)|du

]
ds

≤
(

1 − t− τ

ω

)∫ t

τ

[
L

f
1β

n−1Mfα(s) + L
f
2β

n−1Mfα(γ(s))

+ L
f
3

∫ s+ω

s
L

g
1β

n−1Mfα(u) + L
g
2β

n−1Mfα(γ(u))du
]
ds

+ t− τ

ω

∫ τ+ω

t

[
L

f
1β

n−1Mfα(s) + L
f
2β

n−1Mfα(γ(s))

+ L
f
3

∫ s+ω

s
L

g
1β

n−1Mfα(u) + L
g
2β

n−1Mfα(γ(u))du
]
ds

≤
(

1 − t− τ

ω

)[
ω

2
(
L

f
1 + L

f
2 + L

f
3 (Lg

1 + L
g
2)ω

)
βn−1Mf

]
+ t− τ

ω

[
ω

2
(
L

f
1 + L

f
2 + L

f
3 (Lg

1 + L
g
2)ω

)
βn−1Mf

]
≤ ω

2
(
L

f
1 + L

f
2 + L

f
3 (Lg

1 + L
g
2)ω

)
βn−1Mfα(t) = βnMfα(t).

And hence
|zn+1(t, z0) − zn(t, z0)| ≤ βnMfα(t), (3.14)

for all n ≥ 0. Based on (3.14), it can be concluded that for k ≥ 1, the following holds:

|zn+k(t, z0) − zn(t, z0)| ≤
k−1∑
i=0

βn+iMfα(t), (3.15)
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such that

|zn+k(t, z0) − zn(t, z0)| ≤
∞∑

i=0
|zn+1+i(t, z0) − zn+i(t, z0)|

≤
∞∑

i=0
βn+iMfα(t) ≤ βn

1 − β
Mfα(t),

(3.16)

whence, taking the limit as k → ∞, we obtain

|z(t, z0) − zn(t, z0)| ≤ βn

1 − β
Mfα(t). (3.17)

By the hypothesis (3.2) and (3.17), we can establish the uniform convergence of the se-
quence of functions (3.1) on the domain (3.3). Let

lim
n→∞

zn(t, z0) = z(t, z0). (3.18)

Since the sequence of functions (3.1) is ω-periodic, the limit function z(t, z0) is also ω-
periodic.
In addition, by the Lemma 2.1 and inequality (3.17), inequalities (3.5) and (3.6) hold.
Finally, we must demonstrate that z(t, z0) is the unique solution to the nonlinear DEPCAG
system (1.2). Assume that y(t, z0) is another solution of the nonlinear DEPCAG system

y(t, z0) = z0 +
∫ t

τ
f

(
s, y(s, z0), y(γ(s), z0),∫ s+ω

s g(u, y(u, z0), y(γ(u), z0))du

)
ds

− t− τ

ω

∫ τ+ω

τ
f

(
s, y(s, z0), y(γ(s), z0),∫ s+ω

s g(u, y(u, z0), y(γ(u), z0))du

)
ds,

(3.19)

Now, we will prove that z(t, z0) = y(t, z0) for all z0 ∈ DMf ω/2. To achieve this, we need
to establish the following inequality:

|y(t, z0) − zn(t, z0)| ≤ βn

1 − β
M∗

fα(t), (3.20)

where M∗
f = max

n∈N

{
f
(
t, zn(t, z0), zn(γ(t), z0),

∫ t+ω
t g(s, zn(s, z0), zn(γ(s), z0))ds

)
,

f
(
t, y(t, z0), y(γ(t), z0),

∫ t+ω
t g(s, y(s, z0), y(γ(s), z0))ds

)}
.

Suppose that (3.20) is true for n = k, i.e.,

|y(t, z0) − zk(t, z0)| ≤ βk

1 − β
M∗

fα(t). (3.21)
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Then,
|y(t, z0) − zk+1(t, z0)|

≤
(

1 − t− τ

ω

)∫ t

τ

[
L

f
1 |y(s, z0) − zk(s, z0)| + L

f
2 |y(γ(s), z0) − zk(γ(s), z0)|

+ L
f
3

∫ s+ω

s
|g(u, z(u, z0), z(γ(u), z0)) − g(u, y(u, z0), y(γ(u), z0))|du

]
ds

+ t− τ

ω

∫ τ+ω

t

[
L

f
1 |y(s, z0) − zk(s, z0)| + L

f
2 |y(γ(s), z0) − zk(γ(s), z0)|

+ L
f
3

∫ s+ω

s
|g(u, z(u, z0), z(γ(u), z0)) − g(u, y(u, z0), y(γ(u), z0))|du

]
ds

≤
(

1 − t− τ

ω

)∫ t

τ

[
L

f
1 |y(s, z0) − zk(s, z0)| + L

f
2 |y(γ(s), z0) − zk(γ(s), z0)|

+ L
f
3

∫ s+ω

s
[Lg

1|y(u, z0) − zk(u, z0)| + L
g
2|y(γ(u), z0) − zk(γ(u), z0)|]du

]
ds

+ t− τ

ω

∫ τ+ω

t

[
L

f
1 |y(s, z0) − zk(s, z0)| + L

f
2 |y(γ(s), z0) − zk(γ(s), z0)|

+ L
f
3

∫ s+ω

s
[Lg

1|y(u, z0) − zk(u, z0)| + L
g
2|y(γ(u), z0) − zk(γ(u), z0)|du

]
ds

≤
(

1 − t− τ

ω

)∫ t

τ

[
L

f
1
βk

1 − β
M∗

fα(s) + L
f
2
βk

1 − β
M∗

fα(γ(s))

+ L
f
3

∫ s+ω

s
[Lg

1
βk

1 − β
M∗

fα(u) + L
g
2
βk

1 − β
M∗

fα(γ(u))]du
]
ds

+ t− τ

ω

∫ τ+ω

t

[
L

f
1
βk

1 − β
M∗

fα(s) + L
f
2
βk

1 − β
M∗

fα(γ(s))

+ L
f
3

∫ s+ω

s
[Lg

1
βk

1 − β
M∗

fα(u) + L
g
2
βk

1 − β
M∗

fα(γ(u))]du
]
ds

≤
(

1 − t− τ

ω

)
ω

2
[
L

f
1 + L

f
2 + L

f
3 (Lg

1 + L
g
2)ω

] βk

1 − β
M∗

f · (t− τ)

+ t− τ

ω

ω

2
[
L

f
1 + L

f
2 + L

f
3 (Lg

1 + L
g
2)ω

] βk

1 − β
M∗

f · (τ + ω − t)

≤ βk+1

1 − β
M∗

fα(t).

By induction, inequality (3.20) holds for k = 0, 1, 2, . . .. Therefore, using (3.18) and (3.20),
we obtain:

lim
n→∞

|y(t, z0) − zn(t, z0)| = 0.
As a result,

lim
n→∞

zn(t, z0) = y(t, z0).

Utilizing the relation (3.18), we conclude that z(t, z0) = y(t, z0), which implies that z(t, z0)
is a unique solution of the nonlinear DEPCAG system (1.2) on the domain (3.3). �
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4. Existence of Periodic Solutions
The problem of existence of an ω-periodic solution of the nonlinear DEPCAG system

(1.2) is closely related to the existence of zeros of a function given by the form:

∆(z0) = 1
ω

∫ τ+ω

τ
f

(
s, z(s, z0), z(γ(s), z0),

∫ s+ω

s
g(u, z(u, z0), z(γ(u), z0))du

)
ds, (4.1)

where z(t, z0) is the limiting function of the sequence of functions (3.1).
The function (4.1) can only be approximated, for example, by computing the following

functions:

∆n(z0) = 1
ω

∫ τ+ω

τ
f

(
s, zn(s, z0), zn(γ(s), z0),

∫ s+ω

s
g(u, zn(u, z0), zn(γ(u), z0))du

)
ds

(4.2)
and n = 0, 1, 2, .... Now, we prove the following theorem.
Theorem 4.1. Under the assumptions of Theorem 3.1, the following inequality will hold
for all n ≥ 0 and z0 ∈ DMf ω/2:

|∆(z0) − ∆n(z0)| ≤ βn+1

1 − β
Mf . (4.3)

Proof. From equations (3.6), (4.1), and (4.2), we can derive the following estimate:
|∆(z0) − ∆n(z0)|

≤ 1
ω

∫ τ+ω

τ

∣∣∣∣∣f
(
s, z(s, z0), z(γ(s), z0),

∫ s+ω

s
g(u, z(u, z0), z(γ(u), z0))du

)

− f

(
s, zn(s, z0), zn(γ(s), z0),

∫ s+ω

s
g(u, zn(u, z0), zn(γ(u), z0))du

) ∣∣∣∣∣ds
≤ 1
ω

∫ τ+ω

τ

[
L

f
1 |z(s, z0) − zn(s, z0)| + L

f
2 |z(γ(s), z0) − zn(γ(s), z0)|

+ L
f
3

∫ s+ω

s
[Lg

1|z(u, z0) − zn(u, z0)| + L
g
2|z(γ(u), z0) − zn(γ(u), z0)|]du

]
ds

≤ 1
ω

∫ τ+ω

τ

[
L

f
1
βn

1 − β
Mfα(s) + L

f
2
βn

1 − β
Mfα(γ(s))

+ L
f
3

∫ s+ω

s

[
L

g
1
βn

1 − β
Mfα(u) + L

g
2
βn

1 − β
Mfα(γ(u))

]
du

]
ds

≤ ω

2
[
L

f
1 + L

f
2 + L

f
3 (Lg

1 + L
g
2)ω

] βn

1 − β
Mf = βn+1

1 − β
Mf .

Thus, the inequality (4.2) holds for all n ≥ 0. �

Remark 4.2. When Rn = R, which means that z0 is a scalar, the requirement for the
singular point to be isolated can be relaxed in order to strengthen the existence of solutions,
as shown in [32]. Therefore, we have the following result.
Theorem 4.3. Let the nonlinear DEPCAG (1.2) be defined on the interval [a, b]. Suppose
that for n ≥ 0, the function ∆n(z0) defined according to (4.2) satisfies the following
inequalities: 

min
a+h≤z0≤b−h

∆n(z0) ≤ −
(
L

f
1 + L

f
2 + L

f
3(Lg

1 + L
g
2)ω

)
βn

1−βMf ,

max
a+h≤z0≤b−h

∆n(z0) ≥
(
L

f
1 + L

f
2 + L

f
3(Lg

1 + L
g
2)ω

)
βn

1−βMf .
(4.4)
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Then there exists an ω-periodic solution z = z(t, z0) of the nonlinear DEPCAG (1.2) for
which z0 ∈ [a+ h, b− h], where h = ω

2Mf .

Proof. Let z1 and z2 be any two points in the interval [a, b] such that:∆n(z1) = min
a+h≤z0≤b−h

∆n(z0),
∆n(z2) = max

a+h≤z0≤b−h
∆n(z0), (4.5)

where h = ω
2Mf .

By using the inequalities (4.3) and (4.4), we obtain:{
∆(z1) = ∆n(z1) + (∆(z1) − ∆n(z1)) < 0,
∆(z2) = ∆n(z2) + (∆(z2) − ∆n(z2)) > 0. (4.6)

It follows from the inequalities (4.6) and the continuity of the function ∆(z0) that there
exists an isolated singular point z0 in the interval [z1, z2] for which ∆(z0) ≡ 0. This
implies that the nonlinear DEPCAG (1.2) has an ω-periodic solution z = z(t, z0) with z0
belonging to the interval [a+ h, b− h]. �

Theorem 4.4. If the function ∆(z0) is defined as ∆ : DMf ω/2 → Rn,

∆(z0) = 1
ω

∫ τ+ω

τ
f

(
s, z(s, z0), z(γ(s), z0),

∫ s+ω

s
g(u, z(u, z0), z(γ(u), z0))du

)
ds, (4.7)

where z(t, z0) represents the limiting function of the sequence of functions (3.1). The
following inequalities then hold:

|∆(z0)| ≤ Mf , (4.8)
and

|∆(z1
0) − ∆(z2

0)| ≤ 2
ω

β

1 − β
|z1

0 − z2
0 |, (4.9)

for z0, z1
0, z2

0 ∈ DMf ω/2.

Proof. From the properties of the function z(t, z0) established in Theorem 3.1, it follows
that the function ∆(z0) is continuous and bounded by Mf on the domain DMf ω/2. Using
(4.7), we can derive:

|∆(z1
0) − ∆(z2

0)|

=
∣∣∣∣∣ 1ω
∫ τ+ω

τ
f

(
s, z(s, z1

0), z(γ(s), z1
0),
∫ s+ω

s
g(u, z(u, z1

0), z(γ(u), z1
0))du

)
ds

− 1
ω

∫ τ+ω

τ
f

(
s, z(s, z2

0), z(γ(s), z2
0),
∫ s+ω

s
g(u, z(u, z2

0), z(γ(u), z2
0))du

)
ds

∣∣∣∣∣
≤ 1
ω

∫ τ+ω

τ

∣∣∣∣∣f
(
s, z(s, z1

0), z(γ(s), z1
0),
∫ s+ω

s
g(u, z(u, z1

0), z(γ(u), z1
0))du

)

− f

(
s, z(s, z2

0), z(γ(s), z2
0),
∫ s+ω

s
g(u, z(u, z2

0), z(γ(u), z2
0))du

) ∣∣∣∣∣ds
≤ 1
ω

∫ τ+ω

τ

[
L

f
1 |z(s, z1

0) − z(s, z2
0)| + L

f
2 |z(γ(s), z1

0) − z(γ(s), z2
0)|

+ L
f
3

∫ s+ω

s

[
L

g
1

∣∣∣z1(u, z1
0) − z0(u, z2

0)
∣∣∣+ L

g
2

∣∣∣z1(γ(u), z1
0) − z0(γ(u), z2

0)
∣∣∣ ]du]ds

≤
(
L

f
1 + L

f
2 + L

f
3(Lg

1 + L
g
2)ω

)
||z(·, z1

0) − z(·, z2
0)|| = 2

ω
β||z(·, z1

0) − z(·, z2
0)||,

(4.10)
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where z(t, z1
0) and z(t, z2

0) are the solutions of the integral equations:

z(t, zk
0 ) = zk

0 +
∫ t

τ
f

(
s, z(s, z0), z(γ(s), zk

0 ),
∫ s+ω

s
g(u, z(u, zk

0 ), z(γ(u), zk
0 ))du

)
ds

− t− τ

ω

∫ τ+ω

τ
f

(
s, z(s, zk

0 ), z(γ(s), zk
0 ),
∫ s+ω

s
g(u, z(u, zk

0 ), z(γ(u), zk
0 ))du

)
ds,

(4.11)

with z(τ, zk
0 ) = zk

0 , k = 1, 2.
The equation (4.11) yields:

|z(t, z1
0) − z(t, z2

0)|

≤ |z1
0 − z2

0 | +
(

1 − t− τ

ω

)∫ t

τ

(
L

f
1 |z(s, z1

0) − z(s, z2
0)| + L

f
2 |z(γ(s), z1

0) − z(γ(s), z2
0)|

+ L
f
3

∫ s+ω

s
L

g
1|z(u, z1

0) − z(u, z2
0)| + L

g
2|z(γ(u), z1

0) − z(γ(u), z2
0)|du

)
ds

+ t− τ

ω

∫ τ+ω

t

(
L

f
1 |z(s, z1

0) − z(s, z2
0)| + L

f
2 |z(γ(s), z1

0) − z(γ(s), z2
0)|

+ L
f
3

∫ s+ω

s
L

g
1|z(u, z1

0) − z(u, z2
0)| + L

g
2|z(γ(u), z1

0) − z(γ(u), z2
0)|du

)
ds.

Then,

||z(·, z1
0) − z(·, z2

0)||

≤ |z1
0 − z2

0 | +
(

1 − t− τ

ω

)
(t− τ)

(
L

f
1 + L

f
2 + L

f
3 (Lg

1 + L
g
2)ω

)
||z(·, z1

0) − z(·, z2
0)||

+ t− τ

ω
(τ + ω − t)

(
L

f
1 + L

f
2 + L

f
3 (Lg

1 + L
g
2)ω

)
||z(·, z1

0) − z(·, z2
0)||

≤ |z1
0 − z2

0 | + α(t)
(
L

f
1 + L

f
2 + L

f
3 (Lg

1 + L
g
2)ω

)
||z(·, z1

0) − z(·, z2
0)||

≤ |z1
0 − z2

0 | + β||z(·, z1
0) − z(·, z2

0)||.

Thus,

|z(t, z1
0) − z(t, z2

0)| ≤ 1
1 − β

|z1
0 − z2

0 |. (4.12)

Substituting the inequality (4.12) into (4.10), we obtain the desired result (4.9). �

Remark 4.5. Theorem 4.4 confirms the stability of the solutions of the nonlinear DE-
PCAGs system (1.2), specifically, it shows that a small change in the point z0 results in a
correspondingly small change in the function ∆(z0). This property is also noted in [24].

The following theorem introduces the Banach method for investigating the existence of
ω-periodic solutions.

Theorem 4.6. Under the conditions (C), (Lf ), (Lg), and (3.2), the nonlinear DEPCAG
system (1.2) has a unique ω-periodic solution.

Proof. Define the operator T : D → D by

T(z(t), z0) = z0 +
∫ t

τ
f

(
s, z(s), z(γ(s)),

∫ s+ω

s
g(u, z(u), z(γ(u)))du

)
ds

− t− τ

ω

∫ τ+ω

τ
f

(
s, z(s), z(γ(s)),

∫ s+ω

s
g(u, z(u), z(γ(u)))du

)
ds,

(4.13)
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for τ ∈ R. The theorem follows if we prove that T has a fixed point. Let ψ, ϕ be two
functions in D. By using the conditions (C), (Lf ), and (Lg), we can deduce the following:

|T(ψ(t, z0)) − T(ϕ(t, z0))|

=
∣∣∣∣∣
[
z0 +

∫ t

τ
f

(
s, ψ(s, z0), ψ(γ(s), z0),

∫ s+ω

s
g(u, ψ(u, z0), ψ(γ(u), z0))du

)
ds

− t− τ

ω

∫ τ+ω

τ
f

(
s, ψ(s, z0), ψ(γ(s), z0),

∫ s+ω

s
g(u, ψ(u, z0), ψ(γ(u), z0))du

)
ds

]

−
[
z0 +

∫ t

τ
f

(
s, ϕ(s, z0), ϕ(γ(s), z0),

∫ s+ω

s
g(u, ϕ(u, z0), ϕ(γ(u), z0))du

)
ds

− t− τ

ω

∫ τ+ω

τ
f

(
s, ϕ(s, z0), ϕ(γ(s), z0),

∫ s+ω

s
g(u, ϕ(u, z0), ϕ(γ(u), z0))du

)
ds

]∣∣∣∣∣
≤
(

1 − t− τ

ω

)∫ t

τ

(
L

f
1 |ψ(s, z0) − ϕ(s, z0)| + L

f
2 |ψ(γ(s), z0) − ϕ(s, z0)|

+ L
f
3

∣∣∣∣∣
∫ s+ω

s
g(u, ψ(u, z0), ψ(γ(u), z0))du−

∫ s+ω

s
g(u, ϕ(u, z0), ϕ(γ(u), z0))du

∣∣∣∣∣
)
ds

+ t− τ

ω

∫ τ+ω

t

(
L

f
1 |ψ(s, z0) − ϕ(s, z0)| + L

f
2 |ψ(γ(s), z0) − ϕ(s, z0)|

+ L
f
3

∣∣∣∣∣
∫ s+ω

s
g(u, ψ(u, z0), ψ(γ(u), z0))du−

∫ s+ω

s
g(u, ϕ(u, z0), ϕ(γ(u), z0))du

∣∣∣∣∣
)
ds

≤
(

1 − t− τ

ω

)∫ t

τ

(
L

f
1 |ψ(s, ψ0) − ϕ(s, z0)| + L

f
2 |ψ(γ(s), ψ0) − ϕ(γ(s), z0)|

+ L
f
3

∫ s+ω

s
L

g
1|ψ(u, ψ0) − ϕ(u, z0)| + L

g
2|ψ(γ(u), z0) − ϕ(γ(u), z0)|du

)
ds

+ t− τ

ω

∫ τ+ω

t

(
L

f
1 |ψ(s, z0) − ϕ(s, z0)| + L

f
2 |ψ(γ(s), z0) − ϕ(γ(s), z0)|

+ L
f
3

∫ s+ω

s
L

g
1|ψ(u, z0) − ϕ(u, z0)| + L

g
2|ψ(γ(u), z0) − ϕ(γ(u), z0)|du

)
ds.

Then,

|T(ψ(t, z0)) − T(ϕ(t, z0))|

≤
(

1 − t− τ

ω

)
(t− τ)

(
L

f
1 + L

f
2 + L

f
3 (Lg

1 + L
g
2)ω

)
||ψ(·, z0) − ϕ(·, z0)||

+ t− τ

ω
(τ + ω − t)

(
L

f
1 + L

f
2 + L

f
3 (Lg

1 + L
g
2)ω

)
||ψ(·, z0) − ϕ(·, z0)||

≤ α(t)
(
L

f
1 + L

f
2 + L

f
3 (Lg

1 + L
g
2)ω

)
||ψ(·, z0) − ϕ(·, z0)||

≤ β ||ψ(·, z0) − ϕ(·, z0)||.

Thus,

|T(ψ(t, z0)) − T(ϕ(t, z0))| ≤ β ||ψ(·, z0) − ϕ(·, z0)||. (4.14)
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Based on (3.2) and (4.14), the mapping T is a contraction. Therefore, the mapping T

has a unique fixed point ϕ∗ ∈ D, such that Tϕ∗ = ϕ∗. The proof of Theorem 4.6 is now
complete. �

5. Examples
We will introduce appropriate examples in this section. These examples will show the

feasibility of our theory.

Example 5.1. Consider the following integro-differential equation with piecewise alter-
nately advanced and retarded argument of generalized type:

z′(t) = az(t) + b(sin 4t)z(γ(t)) + (1 + cos2 4t) + λ

∫ t+ π
2

t
z(γ(s))ds, (5.1)

where, a, b, λ ∈ R and the sequences {ti}i∈Z and {γi}i∈Z, satisfy the
(

π
2 , 1

)
condition.

The conditions of Theorem 3.1 are fulfilled. Indeed,
i) f(t, x, y, z) satisfies (Lf ) with L

f
1 = |a|, Lf

2 = |b|, and L
f
3 = 1.

ii) g(t, x, y) = λy satisfies (Lg) with L
g
2 = |λ|.

iii) For every R > 0, t ∈ R, |x|, |y|, |z| ≤ R, the functions f(t, x, y, z) and g(t, x, y) are
continuous functions.

iv) For all t ∈ R and |x|, |y|, |z| ≤ R, there exists a positive constant Mf such that

|f(t, x, y, z)| ≤ Mf := |a|R+ |b|R+ |λ|πR
2 + 2.

Furthermore, there exists β such that β := π
4

(
|a| + |b| + |λ|π

2

)
< 1.

Then, by Theorem 3.1, the DEPCAG system (5.1) has a π
2 -periodic solution.

Here, in particular, we choose the parameters a = 0.13, b = −0.25, and λ = 0.5, such that
β ≈ 0.9153 < 1. In this case, the integro-differential equation

z′(t) = 0.13z(t) − 0.25(sin 4t)z(γ(t)) + (1 + cos2 4t) + 0.5
∫ t+ π

2

t
z(γ(s))ds,

has a π
2 -periodic solution.

Example 5.2. Let Λ : R → Rn×n and µ : R → Rn be two functions satisfying

sup
t∈R

∫ t+ω

t
|Λ(s)|ds = Λ̂ < ∞, sup

t∈R

∫ t+ω

t
|µ(t− s)|ds = µ̂ < ∞.

Now, consider the integro-differential system with piecewise alternately advanced and
retarded argument of generalized type:

z′(t) = h(z(t), z(γ(t))) +
∫ t+ω

t
[Λ(s)κ(z(γ(s))) + µ(t− s)] ds, (5.2)

where the sequences {ti}i∈Z and {γi}i∈Z, satisfy the (ω, p) condition, h, Λ, κ and µ are
ω-periodic continuous functions and

i) h : Rn × Rn → Rn is a continuous function and there exist positive constants Lh
1 ,

Lh
2 such that

|h(x1, y1) − h(x2, y2)| ≤ Lh
1 |x1 − y1| + Lh

2 |x2 − y2| .

ii) κ is a continuous function and there exists positive constant Lκ
2 such that

|κ(x) − κ(y)| ≤ Lκ
2 |x− y|.
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The hypotheses of Theorem 4.6 are fulfilled. Therefore, if there exists a β such that

β := ω

2
(
Lh

1 + Lh
2 + Λ̂Lκ

2

)
< 1,

Theorem 4.6 implies the existence of a unique ω-periodic solution of the DEPCAG system
(5.2).
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