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ABSTRACT. In this paper, we study some fractional Dirac-type systems with
the Mittag—Lefller kernel. We extend the basic spectral properties of the ordi-
nary Dirac system to the Dirac-type systems with the Mittag—Leffler kernel.
First, this problem was handled in a continuous form. The self-adjointness
of the operator produced by this system, the reality of its eigenvalues, and
the orthogonality of the eigenfunctions have been investigated. Later, similar
results were obtained by considering the discrete state.

1. INTRODUCTION

In recent years, the subject of fractional differential equations has become very
popular among mathematicians. The investigation of all kinds of problems in the
theory of differential equations under the framework of fractional has revealed a
very wide field of study. The Dirac equation, which is one of the important equa-
tions in the history of physics, should also be investigated. Although fractional
Sturm-Liouville problems have been investigated a lot, research on fractional Dirac
equivalents is less. Contributing to the gap in this area in the literature is the main
motivation of this research.

There are many types of fractional derivatives. One of them is the one based
on the Mittag—Leffler function. Atangana and Baleanu introduced a new fractional
derivative with the Mittag—Leffler kernel [4]. In [1], Abdeljawad and Belanau de-
fined integration with the part formula using the right fractional derivative and
the right fractional integral corresponding to the Mittag—Leffler kernel. In [5], the
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authors studied the discrete versions of these fractional derivatives. In [12], Mert
et al. studied fractional Sturm-Liouville operators with the Mittag—Leffler kernels.
With the help of the Laplace transform, Ercan is obtained the representation of so-
lutions for fractional Dirac system with the Mittag—Leffler kernel ( [§]). Yalginkaya
handled some Dirac systems with exponential kernel in [13]. In [7], the authors
studied a fractional Sturm-Liouville problem with exponential and Mittag-Leffler
kernels.

In this study, we will investigate this type of fractional version of the Dirac
system. Some basic features will be obtained for such systems. In the first chapter,
the basic concepts and theorems that will be used in the study are given. In the
following sections, the Dirac system with the Mittag—Leffler kernel in a continuous
and discrete cases is discussed. This type of fractional Dirac system turns into the
classical Dirac system by taking v — 1. It is transformed into a Riemann-Liouville
type fractional Dirac system with a Laplace transform method. In this way, we
examine these two systems under a single system. According to the knowledge
of the authors, since there is no study on this subject in the literature, it will
contribute to researchers working on this subject.

2. PRELIMINARIES

This section covers the definitions and properties of fractional derivatives with
the Mittag—Leffler kernel.

Definition 1. (/1) Let u € H'(a,b) ( the usual Sobolev space ), a < b, o € [0,1].
Then the definition of the left Caputo fractional derivative with the Mittag—Leffler
kernel is given by

4B pay, (g) = 2@ / 5 E( o <s—t>a)d<u (1), 1)

T l-a 11—«

where B(a) > 0 is a normalization function with B(0) = B(1) = 1;

Bap (1) = kz:;) T (ak +5) (2)

and Eq (t) = Eq,1 (t). The convergence condition of infinite series (3) is Rea > 0
and Re 8 > 0 ( [9]). Similarly, the left Riemann—Liouville fractional derivative with
the Mittag—Leffler kernel has the following form

« ¢ -
ABR oy, (¢) = 13(0)[;2 E. (1 — a(g - t)“) u(t)dt. (3)

The associated fractional integral is given by

_1—a «

13
aPIu(¢) = mu(f) + W/a (€=t u(t)dt.
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The right Caputo fractional derivative with the Mittag—Leffler kernel is given by

ABC Doy (£) = — B(a) /;E ( @ (t—&)~ ) u(t)dt, (4)

l—«a l—«a

and the right Riemann—Liouville derivative with the Mittag—Leffler kernel is defined
by the formula
B(a) d

ABRDZ?U(@ = _md—g : FE, ( @ (t — g)a) u(t)dt.

Proposition 1. ( [1]) Let « >0, p > 1, g > 1, and%—&—% <l+a((p#1and
q#lwhen%—i—l:l—i—a).

(1) f u € Ly(a.b) and v € Ly(a.b), then

/ ABI(¢)de = / AP I u()de.

(2) If u €4B I2(L,) and v €48 1%(L,), then

b
/ u(€)ABR DO (E) de = / w(€)ABRDE F(€)de,

where

ABro(r,) = {u:u =AB [y v € Ly(a.b)},
and

ABI(Lg) = {u:u=5P I*v,v € Ly(ab)}.

Theorem 1. ( [1]) Let u,v € H'(a,b), a <b and « € (0,1). Then we have

)
b b
[ u@aenaeds = [ e P (e
+ 29008, ey u(@l
where

b
B syt (€) = /5 (t— €)™ Bup (w(t— &) ult)dt, € <b.
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b b
/ u(€)ABC D3o(€)de = / o(€)ABR D (€) de

v(b)E,  —a ,+u(b)

I—a?

= av(a)Ea717%7a+u(a),

where
13
o part(€) = / €= By (w(E -t u()dt, €> a.
Let
N, ={a,a+1,a+2,...},

oN={..b—20b—1,0b},

Nep={a,a+1,a+2,...,b},
where a,b € R and b — a is a positive integer.

Definition 2. ( /56,10]) Let v : N, — R and « € (0,1/2). Then the nabla discrete
left Caputo difference with the Mittag—Leffier kernel is defined by

ABC B(a) : . - .
o Vou(§) = 1T-a > viu(i) Ea(m@ = p(1)), € € Nay1,

1=a+1
and the left Riemannn—Liouville one by
B(«) d . —« )
APRVOu(E) = T-o ¢ > uli) Ea(mﬁ —p(i)), § € Nay1,
1=a+1

where p(i) = i — 1; and the discrete the Mittag-Leffler kernel is defined by the
formula

s ) Zia
Ex(\z) =Y Nt
(A 2) 2" Tia+ 1)’

ia—1
where ' = H (t+1), 2Y =1, t € R. Moreover, the associated fractional sum
i=0
function
11—« «
ABo—a
v =

v;au(§)7 5 € Na+17
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where

3
—a 1 a=T . r
va"uld) = 5oy ; (€=p(@)  uli), €€ Naga (see [3[F)).
Definition 3. ( [5]) Let uw ;3 N — R and o € (0,1/2). Then the nabla discrete
right Caputo difference with the Mittag—Leffler kernel is defined by

b—1
BN ) Bal =i 0l€)), € N,
i=¢

APETRu(E) =

1l—a “

and the right Retmann—Liouville one by

b—1
Ae Y uli) Balg——i = plE). § €1 N,
i=¢

—B(a)

1 —«

ABRygu(g) =

Further, the associated fractional sum is defined by

BT ou(E) = Fr5u) + gy Vi u(e), €€t N
where
b—1 o
%) = gy 2 (= o(€)” uli), €€ N ( see [3F).
i=¢

Theorem 2. ( [5]) Let u,v:Ngp = R and o € (0,1/2). Then we have

b—1 b—1
> w(©dPve u(¢ “v(8),
£=a+1 §=a+1
b—1 b—1
v(€)a PRV eu(g) = w(@) PR o(8),
E=a+1 E=a+1
and
b—1 b—1
u(€)g Ve (€ = D)APRVRu(E - 1)
{=a+1 E=a+1
v(b—l)fﬁ(iE;l’ o y-u(b—1)
B
_v(a)l Ea(l i,l,l b?u(a)7
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B wpetul® =S (a—p (&) Epg (w,a— p(€)ulé), € € N.

3. THE CONTINUOUS CASE
Let us consider the below continuous fractional Dirac system

Lu:=Bu+Qu=Mu, a <z <b< o0, (5)

([ p O wm B 0 fBCDO‘
Q<0T>au'(u2>aB(ABRDg¢ 0 )

a€ (0,1), AeC; p,r € Cla,b]; p(z) >0, r(z) >0, Vz € [a,b]. We also consider
the following boundary conditions

where

%11E%7%7b,u1 (a) + 2r12U9 (a) = O, (6)

won B T —a U1 (b) —+ 290U9 (b) =0, (7)

1
a, L, 5

with sf; + »35 # 0 and 23, + 335 # 0.
Now let’s define the inner product suitable for this system. Let L?((a,b); R?) denotes
the Hilbert space with the following inner product

b b
(u,v) :z/ ulvldaj—i—/ UgV2dT, (8)

U = Y v = )
U V2
u; and v; (i = 1,2) are real-valued continuous functions defined on [a, b] .

Theorem 3. The operator L defined by (@)—@ is formally self-adjoint on L? ((a, b) ;RQ) .
Proof. Using , we get

where

b

(Lu,v) — (u, Lv) = / (fBCDauQ +p(z)ur) vide
b

+ / (ABRD?ul +r(x) u2) vodx

b
— / Uy (fBCDo‘vg +p(x) 111) dx
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b
— / Us (ABRD?vl +r(z) 1)2) dx

b b
:/ (fBCDaugvl) dx—|—/ ABRDg“ulvgdx

a a

b b
—/ ul(fBCDavg)dx—/ U9 (ABRD?vl) dz,

where u,v € L? ((a, b) ;RQ) . From Proposition 1 and Theorem 1, we obtain

(LU,”U) - (ua L’U) - [U7U]b - [U,U]a (9)
where
B(a) B(a) .
w0, = 0o (@) S By oy n(2) — wa(0) s Bl o),
By conditions @—7 we get the desired result. [l

Corollary 1. The eigenvalues of Fq. (@ subject to the boundary conditions (@-@
are real. The eigenfunctions corresponding to different eigenvalues of the system

(@—(@ are orthogonal.

Let us define the Wronskian of  and v by

W) @)= (2L @)@ (P2EL 0 @) w o),

o T « T—a

uw= ( Zl ) v = ( Z; ) € L2((a,b); R?).

Theorem 4. Let v1 and vo be two solutions of Eq. (@ Then W (v1,v2) is inde-
pendent of x.

where

Proof. By @[), we obtain
(Avi,v2) — (v1, Ava) = [v1, 2], — [v1,02],, ,
since Lv; = A\v; and Lvs, = A\ve. Hence
[v1,v2], = [v1,v2], = W(v1,v2)(a).

O

Theorem 5. Any two solutions of the Eq. (@ are linearly dependent if and only
if their Wronskian is zero.
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Proof. Assume v; and vs be two linearly dependent solutions of Eq. . Then
there exists a constant n > 0 such that v; = nve. Hence

Wy = | ) T Ea g2
V1,02)(T) = U21(x) %Eli 1)22(50)

— —
a,l,=%,b

B nv21 () U%E;‘—J’&’b,vzz(w) 0
T ws(z) Epe () |

T PaT, £ b V22
On the other hand, if the Wronskian W (v, v2)(z) is zero for some x in [a, b], then
we obtain

U1 = Nu2
i.e., v1 and vy are linearly dependent on [a, b]. |

Let us now give an example to illustrate our results.

Example 1. If we take o — 17 in @, we obtain the ordinary Dirac system ( [11))
defined as

1 0 /) dx
_(p 0 _( wm
Q—(O T)andu.—(u2>.

In fact, for a € (0,1], the ABR and ABC fractional operators become well-defined
due to the Mittag-Leffler kernel (@ doesn’t have a convergence problem.

d
(0 1)U+Qu:)\u7a<m<b<oo,

where

4. THE DISCRETE CASE

Let us consider the nabla discrete fractional Dirac systems

Liu=Cu+ Qu=Mu, €Ngyp_1, (10)

([ p O o wm _ 0 (’;‘BCVO‘
Q_<O T)au'_(u2>7c_<ABRv? 0 ;

where a € (0,1/2), A € C; p and r are real-valued functions on N _1; p(z) >
0,7 (z) >0, Vo € Ny 3_1. We consider the following conditions

B«
an (7095 - POEL Ly Y@ b @ =0 (D)
B(a
721 <ABRV? 1 E LE% 1_‘g,b> uy (b—1) 4 se2uz (b— 1) = 0, (12)

where »3; + 235 # 0 and 335, + 3, # 0.
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Let L% (N, p—1;R?) denotes the Hilbert space with the following inner product

b—1 b—1
(u,v) = Z uy(x)vy(z) + Z ug(z)ve(x),
r=a-+1 r=a+1

where

( " ) ( o )

u = , U= )

(5 (%)

u; and v; (i = 1,2) are real-valued functions defined on Ng ;_.

Theorem 6. The operator Ly defined by (@)-(@ 18 formally self-adjoint on
LQV(Na,bfﬁRQ)'

Proof. Let u,v € L%(Nayb,l;ﬂy). Then we see that

b—1 b—1
(Liu,v) — (u, Lyv) = Z (ABCY%uy + p (x) ur) v1 + Z (ABEGRuy + 7 () u2) v
r=a+1 r=a+1
b—1 b—1
- Z uy (2POVs +p () v1) — Z uy (ABEVY vy + 1 (7) v2)
r=a+1 r=a+1
b—1 b—1 b—1
= Z ABCG a0, + Z p(z)uq (x)v1(x) + Z ABRGO 410y
r=a+1 r=a+1 r=a+1
b—1 b—1 b—1
+ Y r@ua(@)va(e) = Y w(GPO0) = Y pla)u (z)vi ()
r=a+1 r=a+1 r=a+1
b—1 b—1
= > us (MR o) = Y r(@)us(@)va(z)
r=a+1 r=a+1
b—1 b—1
= Z fBCVQUQ v + Z ABRV? U1 V2
r=a+1 r=a+1
b—1 b—1
— Z ul(g‘Bcv%g) _ Z Uy (ABRV? m)
r=a+1 r=a+1
b—1 Bl(a)
=Y wE@-D"PTvy e (@-1)+ : up(z) By o, vi(x)|S!
— T
r=a+1
b—1 b—1
+ Z (ABRV?ul) Vg — Z vy (x — l)CFR Viug (x — 1)
r=a+1 r=a+1
B(a) b—1

- A
vg(m)E;—,L%b,ul(az)\Z 1_ Z uy (APRVY vy)
r=a+1
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= us (a)*PE Vg vy (a) — ug (b= PRV vy (b—1)

+ fﬁao)[ 2o(b—1Eqy o ovi(b—1) = ]_Biao)[u2(a)Eiz,1,1 o y0i(a)

vy (b—1)*PETe uy (b—1) — va (a)*PR VY uy (a)

+f£02 2(a )Ej”ib, 1(a) fﬁao)é 2(b—1)ELL e ym(b—1)
] G o PYCES

oy ( (cmvb - o)zEclv»lu‘L,b—> ab-1)
(ABRva - TR FEL . b) ui(a)

—uy ( (ABRVG - ?(O;)Ea,l’li’b> v1 (a)
It follows from and (12 that
(Lyu,v) — {u, Lyv) = 0.
O

Corollary 2. All eigenvalues of the problem (@—@ are real. FEigenfunctions
corresponding to different eigenvalues are orthogonal.

Theorem 7. Let

B
ABRya _ %E%l o ua (@) us (2)

W (u,v) (z) = e
b B )
ABRgo %Eiﬁ,%,k vy (x) vy ()

where

u v
u= < u; ) v = ( v; > € L% (Nyp_1;R?)

and let 01 and 05 be two solutions of Eq. (@ Then W(01,02) is independent of
x. Moreover, any two linearly independent solutions ¢,y of Eq. (@) are linearly
dependent if and only if W(pq,¢5) =0.



FRACTIONAL DIRAC SYSTEMS WITH MITTAG-LEFFLER KERNEL 11

Proof. The proof is as in Theorem 4 and Theorem 5. O

5. CONCLUSION

In this work, we have considered some fractional Dirac systems with Mittag—
Leffler kernel. Firstly, a continuous fractional Dirac system with Mittag—Leffler
kernel is studied. Its spectral properties are investigated. Later, the nabla discrete
fractional Dirac system with Mittag—Leffler kernel is constructed. Similar proper-
ties are studied. Since Dirac systems have an important place in quantum physics,
the properties of such systems are studied intensively. In this context, investigating
fractional Dirac systems with Mittag—Leffler kernel will contribute to researchers
working in this field. In the future, Green’s function can be created for this system
and eigenfunction expansions can be investigated.
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