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ABSTRACT. Let R be a commutative ring with identity and let M be an R-
module. A proper submodule N of M is said to be an r-submodule if am € N
with (0 :pr a) = 0 implies that m € N for each a € R and m € M. The purpose
of this paper is to introduce and investigate the dual notion of r-submodules
of M.
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1. Introduction

Throughout this paper, R will denote a commutative ring with identity and Z
will denote the ring of integers.

Let Z(R) be the set of all zero divisors of R. A proper ideal P of R is said to be
an r-ideal if whenever ab € P and a € R\ Z(R) for some a,b € R, then b € P [11].

Let M be an R-module. The set of all zero divisors of R on M is Zr(M) = {r €
R | rm =0 for some nonzerom € M}.

The authors of [10] extend the concept of r-ideals to r-modules and they investi-
gate some properties of this class of modules. A proper submodule N of M is said
to be an r-submodule if am € N with (0 :py a) =0 (i.e. a € R\ Zr(M)) implies
that m € N for each a € R and m € M [10].

The authors of [2] and [3], recently defined r-Noetherian and r-Artinian modules.
An R-module M is said to be an r-Noetherian module if every r-submodule of M
is finitely generated [2]. They showed that every finitely generated r-Noetherian
R-module satisfies the ascending chain condition on r-submodules [2, Lemma 2.1].
Also, M is said to be an r-Artinian module if the set of r-submodules of M satisfies
the descending chain condition [3].

In Section 2 of this paper, we define co-r-submodules of an R-module M as a

dual notion of r-submodules and obtain some properties of this class of modules.
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In Section 3, we define and investigate the notions of co-r-Noetherian and co-r-

Artinian modules.

2. Co-r-submodules of R-modules

Let M be an R-module. The subset Wr(M) of R, the set of all cozero divisors
of R (that is the dual notion of Zg(M)), is defined by {r € R | rM # M} [14].

Definition 2.1. We say that a non-zero submodule N of an R-module M is a
co-r-submodule of M if for a € R and submodule K of M, whenever aN C K
and @ € R\ Wr(M), then N C K. This can be regarded as a dual notion of

r-submodules.

Example 2.2. Let V be a vector space over a field F. Then every non-zero

subspace N of V' is a co-r-submodule.

A non-zero submodule S of an R-module M is said to be second if for each

a € R, the homomorphism S % S is either surjective or zero [15].

Remark 2.3. A non-zero submodule N of an R-module M is a co-r-submodule
means that W(N) C W(M). Thus if N is a co-r-submodule of M, then Anng(N) C
W (M). In particular, if N is a second submodule of M, then N is a co-r-submodule
of M if and only if Anng(N) C W(M).

An R-module M is said to be a multiplication module (resp. comultiplication
module) if for every submodule N of M there exists an ideal I of R such that
N =1M [7] (resp. N = (0:7 I) [4]).

Theorem 2.4. (a) Let M be a multiplication R-module. Then every non-zero
submodule N of M is a co-r-submodule.
(b) Let M be a comultiplication R-module. Then every proper submodule N of

M is an r-submodule.

Proof. (a) Let aN C K with aM = M for a € R and a submodule K of M. As
M is a multiplication module, there is an ideal I of R such that N = I'M. Thus
we have N = IM = IaM = alM =aN C K.

(b) Let am € N with a € R\ Zr(M) for m € M. Since M is a comultiplication
R-module, there exists an ideal I of R such that N = (0 :p; I). Therefore, m €
(N:ipya)=0:pal)=(0:pa):pr I)=(0:p I) =N. O

The following example shows that the concepts of r-submodules and co-r-submodules

are different, in general.
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Example 2.5. (a) Every non-zero proper submodule of the Z-module Z is not
an r-submodule but it is a co-r-submodule.
(b) Let p be a prime number. Every non-zero proper submodule of the Z-

module Z,~ is an r-submodule but it is not a co-r-submodule.

Proposition 2.6. Let M be an R-module. Then we have the following.
(a) M is a co-r-submodule of M.

(b) The sum of an arbitrary non-empty set of co-r-submodules of M is a co-r-
submodule of M.

Proof. (a) This is clear.

(b) Let N; be a co-r-submodule of M for every i € I. Assume that a ., N; C
K with aM = M for a € R and submodule K of M. This implies that aN; C K
for every i € I. As N; is a co-r-submodule of M, we conclude that N; C K for
N; C K, as needed. O

every i € I. Hence ), ;

The following example shows that the intersection of two co-r-submodules need

not be a co-r-submodule, in general.

Example 2.7. Consider the Z-module Z,. Then as Z, is a multiplication Z-
module, @Z,, and 9Z,, are co-r-submodules by Theorem 2.4 (a). But if gcd(u,v) = 1,

then uZ, NvZ, = 0 is not a co-r-submodule of Z,,.

If N is a second submodule of an R-module M, then Anng(NN) is a prime ideal
of R by [15]. However, the following example shows that the similar result is not

always correct for a co-r-submodule.

Example 2.8. Consider the Z-module Z,. Then for each positive integer k, kZ,
is a co-r-submodule of Z,, but Anng(kZ,) = tZ, where n = (t)(k) is not an r-ideal
of Z.

Proposition 2.9. Let N be a co-r-submodule of an R-module M and S be a non-
empty subset of R with S € Anng(N). Then SN is a co-r-submodule of M. In
particular, SM is always a co-r-submodule if S € Anng(M).

Proof. Let aSN C K with aM = M for a € R and a submodule K of M. Then
we have asN C K for every s € S. Thus aN C (K :p s). Since N is a co-r-
submodule, sN C K for every s € S and this yields SN C K, as needed. Now the

rest is clear. 0
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Corollary 2.10. Let M be an R-module. If a € R\ Anng(M), then aM is a
co-r-submodule of M. In particular, if M is the only co-r-submodule of M, then

M is a second R-module.

Proposition 2.11. For a non-zero submodule N of an R-module M the following
are equivalent:

(a) N is a co-r-submodule of M;

(b) aN = N for each a € R\ Wgr(M);

(¢) (N :pra)=N+(0:p a) for each a € R\ Wgr(M).

Proof. (a) = (b) Let a € R\ Wr(M). Then by part (a), aN C aN implies that
N C aN. Thus aN = N because the reverse inclusion is clear.

(b) = (a) This is clear.

(b) = (c) For every a € R, the inclusion N + (0 :p; a) C (N :ps a) always holds.
Let @ € R with aM = M and = € (N :p a). Then ax € N = aN. Thus az = an
for some n € N. Therefore, z =z —n+mn € N + (0 :p; a). This implies that
(N :ipra) ©N4(0:p a).

(¢) = (b) Clearly, aN C N for every a € R. Let a € R\ Wr(M) and z € N.
Then aM = M implies that © = am for some m € M. Thus m € (N :p; a) =
N + (0 :ps a). It follows that © = am € aN, as needed. g

A submodule N of an R-module M is said to be copure if (N :ps I) = N+(0 :as I)
for every ideal I of R [5]. By Proposition 2.11, every copure submodule is a co-r-
submodule. However, the following example shows that the converse is not true in

general.

Example 2.12. Consider the Z-module Zs. Then 2Zi¢ is a co-r-submodule of

Z16. But one can see that 2Z;¢ is not a copure submodule of Z1g.

Lemma 2.13. Let N be a submodule of an R-module M and a € R. Then (N :j;
a) =N+ (0:p7 a) if and only if aN = NNaM.

Proof. This follows from the proof of [5, Theorem 2.12 (a)]. O

Recall that an R-module M is said to be Hopfian (resp. co-Hopfian) if every
surjective (resp. injective) endomorphism f of M is an isomorphism.

A submodule N of an R-module M is said to be idempotent if N = (N :p M)*M
[6]. M is said to be fully idempotent if every submodule of M is idempotent [6].

A submodule N of an R-module M is said to be coidempotent if N = (0 :p
Ann%(N)) [6]. Also, an R-module M is said to be fully coidempotent if every

submodule of M is coidempotent [6].
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Remark 2.14. If M is an R-module such that Zgr(M) = Wr(M), then a proper
non-zero submodule N of M is a co-r-submodule of M if and only if N is an -
submodule of M by Lemma 2.13, Proposition 2.11, and [10, Proposition 4]. For
example, if M is a Hopfian and co-Hopfian R-module (in particular, M has finite
length or M is a fully idempotent [6, Proposition 2.7] or M is fully coidempotent [6,
Proposition 3.5 and Theorem 3.9]), then Zr(M) = Wgr(M). It should be note that
every multiplication R-module is Hopfian and every comultiplication R-module is

co-Hopfian.

Recall that a submodule N of an R-module M is small if for any submodule X
of M, X + N = M implies that X = M.

Proposition 2.15. Let N and K be two submodules of an R-module M such that
0# N C K C M. Then we have the following.

(a) If N is a co-r-submodule of M and K/N is a co-r-submodule of M/N, then
K is a co-r-submodule of M.
(b) If N is a small submodule of K and K/N is a co-r-submodule of M/N,

then K is a co-r-submodule of M.

Proof. (a) Let a € R\ Wg(M). Then a € R\ Wr(M/N). Thus by Proposition
2.11, aN = N and a(K/N) = K/N. Hence aN = N and aK + N = K. Therefore,
aK =a(N+ K)=aK 4+ N = K as needed.

(b) Let a € R\ Wr(M). Then a € R\ Wr(M/N). Thus by Proposition 2.11,
a(K/N) = K/N. It follows that aK + N = K. Therefore, aK = K since N is a

small submodule of K. So K is a co-r-submodule of M. O

Theorem 2.16. Let S1, Sa, ..., Sy, be second submodules of an R-module M such
that Anng(S;) s are not comparable. If "', S; is a co-r-submodule of M, then S;
is a co-r-submodule of M for each i € {1,2,...,n}.

Proof. Suppose that Y ., S; is a co-r-submodule of M. Let aS; C K with aM =
M for a € R and submodule K of M. Since Anng(S;) s are not comparable, we
have b € (i, ;; Anng(S;)\ Anng(S;) for some b € R. Then we have ab)_;", S; =
abS; CK andsoad i S; C(K:mb). As Y ! | S;is a co-r-submodule of M, we
have "1 | S; C (K :p b). This implies that S; = bS; C K because S; is a second
submodule of M and b ¢ Ann(S;). Hence, S; is a co-r-submodule of M. O

Definition 2.17. We say that a co-r-submodule N of an R-module M is a minimal
co-r-submodule of M if there does not exist a co-r-submodule T" of M such that
T CN.



THE DUAL NOTION OF r-SUBMODULES OF MODULES 117

Proposition 2.18. If N is a minimal co-r-submodule of an R-module M, then N

is a second submodule.

Proof. Let aN C K and N ¢ K, we show that a € Anngr(N). Assume that
a ¢ Annr(N). Then aN is a co-r-submodule by Proposition 2.9. Since N is a
minimal co-r-submodule, we conclude that aN = N C K, a contradiction. Thus,

we have a € Anng(N), as needed. O

Theorem 2.19. Let M be an R-module. Then every non-zero submodule of M is
a co-r-submodule if and only if for every submodule N of M, (N :p; a) = N for
each a € R\ Wgr(M).

Proof. Suppose that every non-zero submodule of M is a co-r-submodule. Let N
be a submodule and @ € R\ Wgr(M). Assume that N = 0. If (0 :p; a) # 0, then
(0 :pr @) is a co-r-submodule of M. Thus a(0 :p; a) = 0 and aM = M implies
that (0 :ps @) = 0, which is a contradiction. So, (0 :p; a) = 0. Now assume that
N is a non-zero submodule of M. Then 0 # N C (N :pr a) and so (N :p a)
is a co-r-submodule of M. Since a(N :pr a) € N, we get that (N :py a) = N.
Conversely, suppose that (N :p; a) = N for every submodule N of M and every
a € R\ Wgr(M). Let N be a non-zero submodule of M and a € R\ Wr(M).
Then we have (N :p a) = N + (0 :pr a), and so by Proposition 2.11, N is a
co-r-submodule of M. O

Let R; be a commutative ring with identity, M; be an R;-module for each ¢ =
1,2,...,n, and n € N. Assume that M = M; X My X --- X M, and R = Ry X
Ry x --- x R,. Then M is an R-module with componentwise addition and scalar
multiplication. Also, each submodule N of M is of the form N = N1 XNy X+ - X Ny,

where N; is a submodule of M;.

Lemma 2.20. Let R = Ry X Ry and M = My x My, where My is an Ri-module
and My is an Ro-module. Suppose that N = N1 X Ns is a submodule of M. Then

the following are equivalent:

(a) N is a co-r-submodule of M;
(b) N1 =0 and Ny is a co-r-submodule of My or Ny is a co-r-submodule of M,

and No =0 or Ny, Ny are co-r-submodules of My and My, respectively.
Proof. (a) = (b) First note that

WR(N) = Wr, xR, (N1 x N2) = (Wg, (N1) x R2) U (R1 x W, (Na2)).
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Suppose that N is a co-r-submodule of M and assume that Ny = 0. Since N is
a non-zero submodule of M, Ny # 0. Then R; x Wg,(N2) = Wr(N) C Wgr(M)
and so Wg,(N2) C Wg,(Ms). This implies that Nj is a co-r-submodule of M;. In
other cases, a similar argument shows that (a) implies (b).

(b) = (a) Assume that Ny, Ny are co-r-submodules of M7 and Ms, respectively.
Then Wg, (N1) C Wg, (M;) and Wg,(N2) C Wg,(Msz). This implies that

Wr(N) = W, xR, (N1 X Na) = (Wg, (N1) X R2) U (R1 x W, (N2))
C (Wr, (M) x R2) U (R1 x Wg,(Ma)) = Wgr(M),

i.e. N is a co-r-submodule of M. In other cases, one can similarly prove that N is

a co-r-submodule of M. O

Theorem 2.21. Suppose that R = Ry X Ry X -+ X Ry, and M = My x My x...x M,,,
where M; is an R;-module for n > 1. Let N = N1 X Ny X --- x N, be a submodule
of M. Then the following are equivalent:
(a) N is a co-r-submodule of M;
(b) N; =0 fori € {t1,ta,...,tx : k <n} C{1,2,3,...,n} and N; is a co-r-
submodule of M; fori € {1,2,...,n}\ {t1,t2,...,tx}.

Proof. To prove the claim, we use induction on n. If n = 1, then (a) and (b) are
equivalent. If n = 2, by Lemma 2.20, (a) and (b) are equal. Assume that n > 3
and the claim is valid when K = My x My x --- x M, _1. We prove that the claim
is true when M = K x M,,. Then by Lemma 2.20 we get the result that N is a
co-r-submodule if and only if N = 0 x N,, for some co-r-submodule N,, of M, or
N = L x0 for some co-r-submodule L of K or N = L x N,, for some co-r-submodule
L of K and some co-r-submodule N,, of M,,. By induction hypothesis, the result

is valid in three cases. O

Theorem 2.22. For a non-zero submodule N of an R-module M we have the
following.

(a) N is a co-r-submodule of M if and only if whenever I is an ideal of R such
that IN(R\Wg(M)) #0 and K is a submodule of M with IN C K, then
NCK.

(b) If Anng(N) C Wgr(M) and N is not a co-r-submodule of M, then there
exist an ideal I of R and a submodule K of M such that IN(R\Wgr(M)) # 0,
K CN, Anng(N)C I, and IN C K.

Proof. (a) Suppose that N is a co-r-submodule, IN C K for some ideal I of R
with I N (R\ Wgr(M)) # 0, and submodule K of M. Then there exists a € I
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such that aM = M. Since N is a co-r-submodule, N C K. For the converse, let
aN C K, aM = M for a € R, and submodule K of M. We take I = aR. Note
that I N (R\ Wg(M)) # 0. Then by assumption we have N C K, and so N is a
co-r-submodule of M.

(b) Since N is not a co-r-submodule of M, there exist a € R and submodule K
of M such that aN C K with aM = M and N € K. We take I = (K :g N). Note
that @ € I and a ¢ Anng(N) since aM = M. Thus, Anng(N) C I. Now we take
K =1IN. Since N € K, we have K C N. Hence, we get K C N, Anng(N) C I,
and IN=(IN )y I) CK. O

Theorem 2.23. Let K1, Ko, K be submodules of an R-module M and I be an
ideal of R with I N (R\ Wgr(M)) # 0. Then the following hold.
(a) If K1, Ko are co-r-submodules of M with (K1 :pr I) = (Ka :pr I), then
K = K.
(b) If (K :a I) is a co-r-submodule, then (K :pp I) = K. In particular, K is a

co-r-submodule.

Proof. (a) Since IK; C K5 and K is a co-r-submodule, we have K1 C Ky by
Theorem 2.22 (a). Similarly, we have Ky C K7, and so K1 = Ko.
(b) As (K :ps I) is a co-r-submodule and I(K :ps I) C K, we have (K 1y I) C K

by Theorem 2.22 (a). Hence, (K :p; I) = K since the reverse inclusion is clear. O

A proper submodule N of an R-module M is called an n-submodule if for a € R,
m € M, am € N with a ¢ \/Anng(M), then m € N [13].

A non-zero submodule N of an R-module M is a co-n-submodule of M if for
a € R and submodule K of M, whenever aN C K and a ¢ \/Anng(M), then
N C K [8].

Proposition 2.24. Let N be a co-n-submodule of an R-module M. Then N is a

co-r-submodule of M.

Proof. As M is a co-n-submodule of M, N # 0. Let aN C K with aM = M
for a € R and a submodule K of M. If a € \/Anng(M), then there exists a
positive integer ¢ such that a!M = 0 and a*~'M # 0. Now, aM = M implies that
0 =a'M = a'~*M, which is a contradiction. Thus a ¢ \/Anng(M). Now, as M

is a co-n-submodule of M, we have N C K as required. ([

The following example shows that the converse of Proposition 2.24 is not true in

general.
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Example 2.25. The submodule 3Zg of the Z-module Zg is a co-r-submodule but

it is not a co-n-submodule.

Let S be a multiplicatively closed subset of R and P be a submodule of an R-
module M with \/mns = (). Then P is said to be an S-primary submodule
if there exists a fixed s € S and whenever am € P, then either sa € \/m or
sm € P for each a € R and m € M [9].

Let S be a multiplicatively closed subset of R and N be a submodule of an
R-module M with \/Anng(N)N S = 0. Then N is said to be an S-secondary
submodule if there exists a fixed t € S and whenever aN C K, then either ta €

Anng(N) or tN C K for each a € R and a submodule K of M [9].

Remark 2.26. Let S be a multiplicatively closed subset of R and N be a submod-
ule of a finitely generated R-module M. Then we have the following.

(a) If M is a multiplication R-module with \/Anng(M)NS = () and each proper
submodule of M is S-primary, then Zp(M) = /Anng(M) [9, Theorem
4.7]. Thus N is an n-submodule of M if and only if NV is an r-submodule
of M.

(b) If M is a comultiplication R-module with \/Anng(M)N S = 0 and each
non-zero submodule of M is S-secondary, then Wr(M) = \/Anng(M) [9,
Theorem 4.5]. Thus N is a co-n-submodule of M if and only if N is a

co-r-submodule of M.

Lemma 2.27. [9, Lemma 4.2] Let M be an R-module, S a multiplicatively closed
subset of R, and N be a finitely generated submodule of M. If SN C S™'K for
a submodule K of M, then there exists an s € S such that sN C K. In particular,
if S= R\ Wg(M) and N is a co-r-submodule of M, then N C K.

Theorem 2.28. Let N be a finitely generated submodule of a finitely generated
R-module M and S = R\ Wgr(M). Then the following are equivalent:

(a) N is a co-r-submodule of M;
(b) STIN is a co-r-submodule of S~ M.

Proof. (a) = (b) If SN = 0, then Lemma 2.27 implies that N = 0, which is
a contradiction. Thus SN # 0. Now let r/t € STIR\ Wg-1z(S7'M). Then
S=t(rM) = (r/t)(S'M) = S~'M. By using Lemma 2.27, *M = M and so
r € R\ Wr(M). Now as N is a co-r-submodule of M, we have TN = N by
Proposition 2.11. This implies that (r/s)(S™!N) = S™!N, as needed.
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(b) = (a) Let aN C K for some a € R\ Wr(M) and a submodule K of M.
Then (a/1)(S7IN) C S7'K and a/1 € ST'R\ Wg-1(S~1M). Thus by part (b),
S~IN C S7'K. Hence by Lemma 2.27, N C K. Thus N is a co-r-submodule of
M. ([l

3. Ascending and descending chain conditions on co-r-submodules

Definition 3.1. We say that an R-module M is a co-r-Noetherian module if the

set of co-r-submodules of M satisfies the ascending chain condition.

Definition 3.2. We say that an R-module M is a co-r-Artinian module if the set

of co-r-submodules of M satisfies the descending chain condition.

Proposition 3.3. (a) If N is a co-r-submodule of a co-r-Noetherian (resp.
co-r-Artinian) R-module M, then M/N is a co-r-Noetherian (resp. co-r-
Artinian) R-module.

(b) Every Noetherian (resp. Artinian) R-module is a co-r-Noetherian (resp.

co-r-Artinian) R-module.

Proof. (a) This follows from Proposition 2.15 (a).
(b) These are clear. O

The following theorem provides characterizations for co-r-Artinian R-modules

when M is a Noetherian R-module.

Theorem 3.4. Let M be a Noetherian R-module and S = R\ Wgr(M). The
following statements are equivalent:

(a) M is a co-r-Artinian R-module;

(b) S™'M is an Artinian S~'R-module.

Proof. This follows from Lemma 2.27 and Theorem 2.28. O

Let S be a multiplicatively closed subset of R. An R-module M is called S-finite
if sM C F for some finitely generated submodule F' of M and some s € S. The
module M is called S-Noetherian if each submodule of M is S-finite [1].

Definition 3.5. Let S be a multiplicatively closed subset of R. We say that an
R-module M is a strongly S-Noetherian R-module if for any ascending chain of
submodules

Ny SNy ©C--- SN C -

of M, there exist s € S and k € N such that sN,, C Ny for every n > k.
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Let S be a multiplicatively closed subset of R. Clearly, every strongly S-
Noetherian R-module is an S-Noetherian R-module. But Example 3.7 shows that
the converse is not true in general for every multiplicatively closed subset S of R..

Let S be a multiplicatively closed subset of R. An R-module M is said to be an

S-Artinian R-module if for any descending chain of submodules
NiDNy 2D+ DN 2---
of M, there exist s € S and k € N such that sV, C N,, for every n > k [12].

Proposition 3.6. Let S be a multiplicatively closed subset of R such that S N
Wgr(M) = 0. Then every strongly S-Noetherian (resp. S-Artinian) R-module is a

co-r-Noetherian (resp. co-r-Artinian) R-module.

Proof. This follows from the fact that for each co-r-submodule N of M and s € S,
we have sN = N by Proposition 2.11. O

The following is an example of a co-r-Noetherian module that is not S-Noetherian

for every multiplicatively closed subset S of R.

Example 3.7. Let p be a prime number. Consider R := Z and M = Zpe.
Then M is a co-r-Noetherian R-module by Example 2.5 (b). Also, M is an S-
Noetherian R-module. However, M is not a strongly S-Noetherian R-module for
every multiplicatively closed subset S of R. It sufices to verify that M is not a
strongly S-Noetherian R-module, where S = Z\ {0}. Indeed, consider the following

ascending chain of submodules of M
(p+2Z) CQ/p°+Z) P> +2) C---C(A/p" +Z) C---.

If s € S, then s = p™t for some m € NU {0} and ¢t € Z with gcd(t,p) = 1. Now,
we let k € N. Then, s(1/p™+* 1 + Z) ¢ (1/p* + Z) and thus M is not a strongly
S-Noetherian R-module.

Lemma 3.8. Let M be a multiplication R-module with Wr(M) C Z(R). If N is
a non-zero submodule of M, then (N :g M) is an r-ideal of R.

Proof. As M is a multiplication R-module, we have N = (N :g M)M. Let
ab € (N :gp M) with a ¢ Z(R) for some a,b € R. Then by assumption, aM = M.
Thus

BN = b(N :g M)M = b(N :g M)aM = ab(N 5 M)M = abN C M,

as needed. O
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Theorem 3.9. Let M be a multiplication R-module with Wr(M) C Z(R) and
R satisfy ascending chain condition on r-ideals of R. Then M is a Noetherian
R-module.

Proof. Let Ny C Ny C --- C Ni C --- be an ascending chain of submodules of
M. By Lemma 3.8, for each i, (N; :g M) is an r-ideal of R. So

(Ny ;R M) C(No:g M)C -+ C(Np:g M) C -+

is an ascending chain of r-ideals of R. Since R satisfies ascending chain condition
on r-ideals, there exists ¢ € N such that (N; :g M) = (N, :g M) for each i > t.
Therefore, N; = (N; :g M)M = (Ny :rp M)M = Ny for each i > ¢. It follows that
M is a Noetherian module. (|

Lemma 3.10. Let f : M — M be an epimorphism of R-modules. If N is a
co-r-submodule of M and Ker(f) is a co-r-submodule of M, then f~Y(N) is a

co-r-submodule M.

Proof. Since Ker(f) is a co-r-submodule of M, we have Ker(f) # 0. So f~1(N) #
0. Now let a € R\ Wr(M) and af~!(N) C K for some submodule K of M. Then
aKer(f) C K and so by assumption, Ker(f) C K. Clearly a € R\ Wx(M). Thus
aN =aNNM =aNnf(M)= f(f'(aN)) C f(K) implies that N C f(K). Thus
f7YN)C K+ Ker(f) = K, as needed. O

Theorem 3.11. Let 0 — M, 1/’_} Mo ¢—> Ms — 0 be an exact sequence of
R-modules. Then we have the following.
(a) Assume that Wr(My) C Wgr(Ms). If My is a co-r-Noetherian R-module,
then so is Mj.
(b) Suppose that Wr(Ms) C Wr(Ms3). If My is a co-r-Noetherian R-module
and M is a strongly S-Noetherian R-module where S := R\ Wg(Ms), then
M,y is a co-r-Noetherian R-module.
(¢) If My is a co-r-Noetherian R-module and Ker(¢) is a co-r-submodule of

My, then M3 is a co-r-Noetherian R-module.

Proof. (a) As Wgr(M;) C Wgr(Ms), we conclude that 1 (N) is a co-r-submodule of
M for every co-r-submodule N of M;. Hence if M is a co-r-Noetherian module,
then we can easily get M; is a co-r-Noetherian module.
(b) Let
N,CNy,C---CN,, C---
be an ascending chain of co-r-submodules of Ms. Since M; is an S-Noetherian
R-module with S := R\ Wg(Ms), then there exist s € S and k1 € N such that
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st~ H(N,) C =1 (Nk,) for each n > ky. It follows that sN,, N (M;) C Ni,. On

the other hand, we have the ascending chain
P(N1) € p(N2) € -+ C G(Ny) C -+

of co-r-submodules of M3. As M3 is a co-r-Noetherian module, there exists ks € N
such that ¢(Ng,) = ¢(N,,) for each n > ko This implies that Ny, +¢(Mq) = N, +
(M) for each n > ko. Now put k = maax{ki, ka}. Then we have sN,, Np(M;) C
Ny and Ny + (M) = N, + (M) for each n > k. Now since Ny C N,,, we have

SNy, = $(N, N (Np, +9(My))) = s(Np, N (Ng + (M) =

s((Ny N Ng) + (N, N 0(My))) C Ny + (sN,, N p(M7)) € Ni..

Hence N,, € N, since N,, is a co-r-submodule of Ms. Thus M5 is a co-r-Noetherian
R-module.
(¢) This follows from Lemma 3.10. d
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