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SHARP COEFFICIENT ESTIMATES FOR ϑ-SPIRALLIKE

FUNCTIONS INVOLVING GENERALIZED q-INTEGRAL

OPERATOR

Tuğba YAVUZ1 and Şahsene ALTINKAYA2

1,2Department of Mathematics, Istanbul Beykent University, Istanbul, TÜRKİYE

Abstract. The aim of this article is to identify a new subfamily of spirallike
functions and then to demonstrate necessary and sufficient conditions, sharp

coefficients estimates for functions in this subfamily.

1. Introduction

Stand by A the family of functions f(ζ) = ζ+
∑∞

k=2 akζ
k analytic in the open unit

disk D = {ζ ∈ C : |ζ| < 1} with the normalization condition f(0) = 0 = f ′(0) − 1.
A function f ∈ A is named univalent in D provided that it does not take the same
value twice. Stand by S the subfamily of A involving univalent functions. For
analytic functions f1 and f2 in D, we ensure that f1 is subordinate to f2, expressed
by f1 ≺ f2, for a Schwarz function

Λ(ζ) =

∞∑
k=1

κkζ
k (Λ (0) = 0, |Λ (ζ)| < 1) ,

analytic in D such that f1 (ζ) = f2 (Λ (ζ)) (ζ ∈ D).
Now, we shall deal with a subfamily of S which is of special interest in its own

right, namely the spirallike functions.
For −∞ < t < ∞ and ϑ ∈

(
−π

2 ,
π
2

)
, the logarithmic ϑ-spiral curve is expressed

by w = w0 exp(−e−iϑt), where w0 is a nonzero complex number. We must mention
here that 0-spirals are radial half-lines. For an analytic function, we can call it
ϑ-spirallike provided that its range is ϑ-spirallike. Stand by Sϑ the family of ϑ-
spirallike functions. Analytically, f ∈ A belongs to the family Sϑ iff
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ℜ
(
eiϑ ζf ′(ζ)

f(ζ)

)
> 0 [17]. Libera [10] used this approach to ϑ-spirallike functions of

order σ

ℜ
(
eiϑ

ζf ′(ζ)

f(ζ)

)
> σ cosϑ

and asserted by Sϑ(σ). Clearly, Sϑ(σ) ⊂ Sϑ. Further, the general coefficient bounds
for functions in Sϑ(σ) was proved:

|ak| ≤
k−2∏
j=0

(∣∣2 (1− σ) e−iϑ cosϑ+ j
∣∣

j + 1

)
(k ∈ N\ {1} , N = {1, 2, · · · }) .

This result is sharp. Finding sharp results for functions belonging to the differ-
ent families of analytic functions is of special interest because of the geometric
properties of such functions [12], [14], [20], [21].

The age of quantum calculus (q-calculus) is as old as calculus and because of
its applications to wider disciplines from physical sciences to social sciences, it was
revived during the last three decades. The first study on the q-calculus dates back
to 1908 [8]. On the other hand, q-calculus is connection with function theory.
The study of q-calculus in Geometric Function Theory was partially provided by
Srivastava [18]. This application is still among the most popular subject of many
mathematicians today [1], [2], [3], [5], [7], [15], [19].

In the course of the paper, suppose 0 < q < 1 and the definitions deal with the
complex-valued function f .

The q-derivative of f expressed by [8]:

Dqf(ζ) =


f(ζ)− f(qζ)

(1− q)ζ
, ζ ̸= 0

f ′(0), ζ = 0

. (1)

If f is differentiable at ζ, then limq→1− Dqf(ζ) = f ′(ζ).
The q-integral of f expressed by [9]:∫ ζ

0

f(u)dqu = ζ(1− q)

∞∑
k=0

qkf(ζqk),

provided the series converges.
Next, the q-gamma function is expressed by

Γq(u) = (1− q)1−u
∞∏
k=0

1− qk+1

1− qk+u
(u > 0),

which has the following properties

Γq(u+ 1) = [u]qΓq(u), Γq(u+ 1) = [u]q!, (2)
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where u ∈ N and

[u]q! =

{
[u]q[u− 1]q . . . [2]q[1]q, u ≥ 1

1, u = 0.

If we set q → 1−, we find Γq(u) → Γ(u) [8].
The q-beta function

Bq(u, s) =

∫ 1

0

ζu−1(1− qζ)s−1
q dqζ, (u, s > 0) (3)

is the q-analogue of Euler’s formula [9] with

Bq(u, s) =
Γq(u)Γq(s)

Γq(u+ s)
, (4)

Next, the q-binomial coefficients are expressed by [6](
k

n

)
q

=
[k]q!

[n]q![k − n]q!
. (5)

In a recent study [11], the generalized q-integral operator χα
β,qf : A → A is expressed

by

χα
β,qf(ζ) =

(
α+ β

β

)
q

[α]q

ζβ

∫ ζ

0

(
1− qu

ζ

)α−1

q

uβ−1f(u)dqu (α > 0, β > −1). (6)

From (2), (3), (4) and (5), they arrive

χα
β,qf(ζ) = ζ +

∞∑
k=2

Γq(β + n)Γq(α+ β + 1)

Γq(α+ β + n)Γq(β + 1)
akζ

k. (7)

For some special values, we find the following integral operators previously
known.

(i) If α = 1, the q-Bernardi integral operator Jβ,qf is obtained [13]

Jβ,qf(ζ) =
[1 + β]q

ζβ

∫ ζ

0

uβ−1f(u)dqu =

∞∑
k=1

[1 + β]q
[n+ β]q

akζ
k.

(ii) If α = 1, q → 1−, the Bernardi integral operator is obtained [4]

Jβf(ζ) =
1 + β

ζβ

∫ ζ

0

uβ−1f(u)du =

∞∑
k=1

1 + β

n+ β
akζ

k.

(iii) If α = 1, β = 0, q → 1−, the Alexander integral operator is obtained [16]

J0f(ζ) =

∫ ζ

0

f(u)

u
du = ζ +

∞∑
k=2

1

n
akζ

k.
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2. Main Results

Firstly, we introduce the new subfamily SCα
β,q (σ, ν) of ϑ−spirallike functions

inserting the function χα
β,qf .

Definition 1. A function f ∈ A is in SCα
β,q (σ, ν) if

ℜ

eiϑ
ζ
(
χα
β,qf(ζ)

)′
νζ
(
χα
β,qf(ζ)

)′
+ (1− ν)χα

β,qf(ζ)

 > σ cosϑ,

where |ϑ| < π
2 , 0 ≤ σ < 1, α > 0, β > −1, 0 ≤ ν ≤ 1.

Note that
1) Letting q → 1− and α = 1 in Definition 1, we arrive the class SCα

β,q (σ, ν) :=

SCβ (σ, ν) involving Bernardi integral operator given in (ii).
2) Letting q → 1−, α = 1 and β = 0 in Definition 1, we arrive the class

SCα
β,q (σ, ν) := SC (σ, ν) involving Alexander integral operator given in (iii).

This paper deals with the new class SCα
β,q (σ, ν) of ϑ−spirallike functions involv-

ing a generalized q−integral operator and its several properties.

Next, we get coefficient conditions and sharp bounds for functions in SCα
β,q (σ, ν).

Theorem 1. Assume χα
β,qf(ζ) ̸= 0 for ζ ∈ D \ {0}. Then, f is in SCα

β,q (σ, ν) if
and only if

∞∑
k=2

[
(k − 1)(1 + e2iϑ)(1− σν + i(1− ν)tanϑ)

+ 2(1− σ)e2iϑ − (k − 1)(1− e2iϑ)(1− σ)ν

]
× Γq(β + k)Γq(α+ β + 1)

Γq(α+ β + k)Γq(β + 1)
akζ

k ̸= 0.

Proof. Let us put

∆(ζ) = χα
β,qf(ζ) = ζ +

∞∑
k=2

Xkζ
k (ζ ∈ D),

where Xn =
Γq(β+k)Γq(α+β+1)
Γq(α+β+k)Γq(β+1)ak with X1 = 1. Now, consider the function

Σ(ζ) =

(
ζ∆′(ζ)

νζ∆′(ζ) + (1− ν)∆(ζ)

)
eiϑsecϑ− itanϑ− σ

1− σ
.

is an analytic, Σ(0) = 1 and ℜΣ(ζ) > 0, then f ∈ SCα
β,q (σ, ν) iff

Σ(ζ) ̸= 1− e2iϑ

1 + e2iϑ
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or, equivalently

eiϑsecϑζ∆′(ζ)− (σ + itanϑ)(νζ∆′(ζ) + (1− ν)∆(ζ))

(1− σ)(νζ∆′(ζ) + (1− ν)∆(ζ))
̸= 1− e2iϑ

1 + e2iϑ
.

Now, from the series expansion of ∆(ζ), we arrive∑∞
k=1 [(k − 1)(1− σν + i(1− ν)tanϑ) + (1− σ)]Xkζ

k

(1− σ)
∑∞

k=1(1 + (k − 1)ν)Xkζ
k

̸= 1− e2iϑ

1 + e2iϑ
,

which yields for ζ ̸= 0

∞∑
k=2

[
(k − 1)(1 + e2iϑ)(1− σν + i(1− ν)tanϑ) + 2(1− σ)e2iϑ

− (k − 1)(1− e2iϑ)(1− σ)ν
]
Xkζ

k ̸= 0.

□

Theorem 2. Let χα
β,qf(ζ) ̸= 0 for ζ ∈ D \ {0}. If f is in SCα

β,q (σ, ν), then

|ak| ≤
Γq(α+ β + k)Γq(β + 1)

Γq(β + k)Γq(α+ β + 1)(k − 1)! (1− ν)
k−1

×
k−2∏
j=0

∣∣j(1− ν) + 2(1− σ)eiϑcosϑ(1 + νj)
∣∣ , (8)

where k ∈ N \ {1} with a1 = 1. This result is sharp.

Proof. Since f ∈ SCα
β,q (σ, ν), we can use a Schwarz function Λ(ζ) such that ζ

(
χα
β,qf(ζ)

)′
νζ
(
χα
β,qf(ζ)

)′
+ (1− ν)χα

β,qf(ζ)

 eiϑsecϑ− itanϑ =
1 + (1− 2σ)Λ(ζ)

1− Λ(ζ)
.

If we put the function ∆(ζ), we find∑∞
k=1

[
keiϑsecϑ− (1 + itanϑ)(1 + (k − 1)ν)

]
Xkζ

k

=
(∑∞

k=1

[
keiϑsecϑ+ (1− 2σ − itanϑ)(1 + (k − 1)ν)

]
Xkζ

k
)
Λ(ζ).

Now, for k ∈ N, we can write∑m
k=1

[
keiϑsecϑ− (1 + itanϑ)(1 + (k − 1)ν)

]
Xkζ

k +
∑∞

k=m+1 bkζ
k

=
(∑m−1

k=1

[
keiϑsecϑ+ (1− 2σ − itanϑ)(1 + (k − 1)ν)

]
Xkζ

k
)
Λ(ζ).

(9)
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For m = 2, 3, · · · , the LHS of (9) is convergent in D. Since |Λ(ζ)| < 1, it is easy to
get by appealing to Parseval’s Theorem that∑m−1

k=1

∣∣keiϑsecϑ+ (1− 2σ − itanϑ)(1 + (k − 1)ν)
∣∣2 |Xk|2

≥
∑m

k=2

∣∣neiϑsecϑ− (1 + itanϑ)(1 + (k − 1)ν)
∣∣2 |Xk|2

or

m−1∑
k=1

4(1− σ)(1 + (k − 1)ν) (k − σ(1 + (k − 1)ν) |Xk|2 ≥ (m− 1)2(1− ν)2

cos2ϑ
|Xm|2 ,

(10)
where X1 = 1. Now, we claim that

|Xk| ≤
1

(k − 1)! (1− ν)
k−1

k−2∏
j=0

∣∣j(1− ν) + 2(1− σ)eiϑcosϑ(1 + νj)
∣∣ . (11)

For k = 2, we find from (10)

|X2| ≤
2(1− σ)cosϑ

1− ν
,

which is equivalent to (11). The equation (11) is found for larger k from (10) by
the principle of the mathematical induction.

Fix k, k ≥ 3 and let the equation (8) holds for n = 2, 3, ...,k − 1. From (10), we
arrive

|Xk|2 ≤ 4(1− σ)cos2ϑ

(k − 1)2 (1− ν)
2

{
1− σ +

k−1∑
n=2

X(n, j, σ)

}
, (12)

where

X(n, j, σ) =
(1 + (n− 1)ν)(n− σ(n− 1)ν)

((n− 1)! (1− ν)
n−1

)2

n−2∏
j=0

∣∣j(1− ν) + 2(1− σ)eiϑcosϑ(1 + νj)
∣∣2 .

Now, we will indicate that the square of RSH of (11) is equal to RSH of (12), that
is,

k−2∏
j=0

∣∣j(1− ν) + 2(1− σ)eiϑcosϑ(1 + νj)
∣∣2

((k − 1)! (1− ν)
k−1

)2

=
4(1− σ)cos2ϑ

(k − 1)2 (1− ν)
2

{
1− σ +

k−1∑
n=2

X(n, j, σ)

}
(13)

for k = 3, 4, · · · . After further calculations, we indicate that (13) is true for k = 3
and prove the claim. Assume the equation (13) is valid for all n, 3 < n ≤ (k − 1).
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From (9) and (12), we find

|Xk|2 ≤ 4(1− σ)cos2ϑ

(k − 1)2 (1− ν)
2

{
1− σ +

k−2∑
n=2

X(n, j, σ) +X(k − 1, j, σ)

}

≤ 4(1− σ)cos2ϑ

(k − 1)2 (1− ν)
2 ×

{
1− σ +

k−2∑
n=2

(1 + (n− 1)ν)(n− σ(n− 1)ν)

((n− 1)! (1− ν)
n−1

)2

×
n−2∏
j=0

∣∣j(1− ν) + 2(1− σ)eiϑcosϑ(1 + νj)
∣∣2

+
(1 + (k − 2)ν)(k − 1− σ(k − 2)ν)

((k − 2)! (1− ν)
k−2

)2

×
k−3∏
j=0

∣∣j(1− ν) + 2(1− σ)eiϑcosϑ(1 + νj)
∣∣2}

=

∏k−3
j=0

∣∣j(1− ν) + 2(1− σ)eiϑcosϑ(1 + νj)
∣∣2

((k − 2)! (1− ν)
k−2

)2

×
{
(k − 2)2

(k − 1)2
+

4(1− σ)cos2ϑ(1 + (k − 2)ν)(k − 1− σ(k − 2)ν)

(k − 1)2 (1− ν)
2

}

=

∏k−3
j=0

∣∣j(1− ν) + 2(1− σ)eiϑcosϑ(1 + νj)
∣∣2

((k − 1)! (1− ν)
k−1

)2

×
{
(k − 2)2 (1− ν)

2
+ 4(1− σ)cos2ϑ(1 + (k − 2)ν)(k − 1− σ(k − 2)ν)

}
yields

|Xk| ≤
1

((k − 1)! (1− ν)
k−1

)2

k−2∏
j=0

∣∣j(1− ν) + 2(1− σ)eiϑcosϑ(1 + νj)
∣∣2 .

Since

Xk =
Γq(β + k)Γq(α+ β + 1)

Γq(α+ β + k)Γq(β + 1)
ak (X1 = 1),

we obtain the desired result.
To prove the estimate is sharp, we need following equality

χα
β,qf(ζ) =

ζ

(1 +Kζ)
2(σ−1)e−iϑcosϑ

K

where K = (1− ν)− 2ν(1− σ)e−iϑcosϑ. □
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3. Conclusions

It is obvious that the link between q-calculus and Geometric Function Theory
presents original and interesting results. Hence, in the present work, we use a gen-
eralized q-integral operator to establish a new subfamily SCα

β,q (σ, ν) of ϑ-spiralike
functions. We also derive sharp upper bounds for Taylor Maclaurin coefficients of
functions in this family.

Letting α = 1, we have coefficients bounds for functions defined by q-Bernardi
integral operator.

Corollary 1. Let Jβ,qf(ζ) ̸= 0 for ζ ∈ D \ {0}. If f is in SCβ,q (σ, ν), then

|ak| ≤
[β + k]q

[β + 1]q (k − 1)! (1− ν)
k−1

k−2∏
j=0

∣∣j(1− ν) + 2(1− σ)eiϑcosϑ(1 + νj)
∣∣ ,

where k ∈ N \ {1} with a1 = 1. This result is sharp.

Letting α = 1 and q → 1−, we obtain following coefficients bounds for functions
given by Bernardi integral operator.

Corollary 2. Let Jβf(ζ) ̸= 0 for ζ ∈ D \ {0}. If f is in SCβ (σ, ν), then

|ak| ≤
(β + k)

(β + 1)(k − 1)! (1− ν)
k−1

k−2∏
j=0

∣∣j(1− ν) + 2(1− σ)eiϑcosϑ(1 + νj)
∣∣ ,

where k ∈ N \ {1} with a1 = 1. This result is sharp.

If α = 1, β = 0 and q → 1−, we have following result for functions given in terms
of Alexander integral operator.

Corollary 3. Let J0f(ζ) ̸= 0 for ζ ∈ D \ {0}. If f is in SC (σ, ν), then

|ak| ≤
k

(k − 1)! (1− ν)
k−1

k−2∏
j=0

∣∣j(1− ν) + 2(1− σ)eiϑcosϑ(1 + νj)
∣∣ ,

where k ∈ N \ {1} with a1 = 1. This result is sharp.

Our consequences are also applicable for various subfamilies of analytic functions.
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