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ABSTRACT This paper examines dynamic behaviours of a two-species discrete fractional order predator-prey
system with functional response form of Ivlev along with Gompertz growth of prey population. A discretization
scheme is first applied to get Caputo fractional differential system for the prey-predator model. This study
identifies certain conditions for the local asymptotic stability at the fixed points of the proposed prey-predator
model. The existence and direction of the period-doubling bifurcation, Neimark-Sacker bifurcation, and Control
Chaos are examined for the discrete-time domain. As the bifurcation parameter increases, the system displays
chaotic behaviour. For various model parameters, bifurcation diagrams, phase portraits, and time graphs are
obtained. Theoretical predictions and long-term chaotic behaviour are supported by numerical simulations
across a wide variety of parameters. This article aims to offer an OGY and state feedback strategy that can
stabilize chaotic orbits at a precarious equilibrium point.
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INTRODUCTION

In the ecology, predation and prey behaviors are frequent occur-
rences. Since Volterra and Lotka developed the predator-prey
paradigm in the 20th century, several academics have expressed
worry about it. Numerous researchers have made significant ad-
justments to the system by including ecological elements such
functional responses, emigration and immigration (Kangalgil and
Işık 2022), time delays (Li et al. 2022b), diffussion (Sun et al. 2022),
and the Allee effect (Zhao and Du 2016) because this system has
disregarded many real-world scenarios. The study of the intri-
cate dynamical behaviors of predator-prey systems has recently
attracted growing interest (Atabaigi 2020; Din 2017; Işık 2019; Kar-
tal 2014, 2017). In any prey-predator encounter, the functional
response in population dynamics is a key component as it refers
to the quantity of prey consumed by a predator based on the den-
sity of the prey in per unit of time. The Holling type II Holling
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(1965) is suitable for the majority of arthropod predators as the
functional response compare to others form Holling type I, III, IV.
In the first quadratic, these functional responses are uniformly
bounded functions in addition to being monotonically increasing.
Ivlev Ivlev (1961) proposed a different functional response, known
as the Ivlev functional response, to study the dynamical interaction
between prey and predator species: p(x) = b(1 − e−ax)y, where
the maximal rate of predation and the decline in hunting drive are
represented by the positive constants b and a, respectively.

Numerous studies have been done to examine the predator-prey
relationship with Ivlev-type functional responses. The findings
suggested that Ivlev-type relation between the species have several
systems in ecological applications, including dynamics in predator-
prey systems (Cheng et al. 1982; Guo et al. 2013; Kooij and Zegeling
1996; Wang et al. 2010), host-parasite systems (Preedy et al. 2007),
and animal coat patterns (Uriu and Iwasa 2007). The authors inves-
tigated the presence and uniqueness of limit cycles as well as the
numerical calculation of phase portraits in these empirical studies.
In a predator-prey system (Wei et al. 2023), this work examines
the dynamical balance and Markov-switching-induced stochastic
P-bifurcation.A theoretical foundation for comprehending the spa-
tiotemporal evolution characteristics of plant systems is provided
by the findings presented in (Li et al. 2022b; Sun et al. 2022).
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(a)
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Figure 1 (a) Growth curves (b) Functional responses for r =
1.5,k = 1.5,a = 1.2,d = 0.4

When a third party distracts their predators, prey can lessen
the burden of exploitation, such type prey-predator model is dis-
cussed in (Revilla and K�rivan 2022). On the basis of the generalized
Klausmeier-Gray-Scott model, authors Li et al.(2022a) build an ex-
tended vegetation-water model with in�ltration delay and discuss
dynamic behavior of this model. The long-term coevolution of the
giving-up rates of the model of reckless prey and patient predator
is studied by Cecilia B. et al. in (Berardo and Geritz 2021) using
adaptive dynamics. The majority of predator-prey systems with
various functional responses take into account the logistic growth
of the prey, according to academics.

Gompertz (1825) created a different prey birth rate interpreta-
tion similar to logistic growth to study the dynamics of a commu-
nity made up of populations of several interacting species. The
comparison of functional responses and growth curves are shown
in Figure 1. The Gompertz curve expands more rapidly than the
logistic curve, we discover. Moreover, the point of in�ection for
the Gompertz curve occurs earlier than for the logistic curve, and
thus reaches carrying capacity a little bit early. Also, compared to
the Holling type II functional response, the predation rate reaches
its peak signi�cantly earlier in the Ivlev-type functional response.
In terms of biology, this suggests that the predation rate is propor-
tionate to the prey population while the prey population is low
and saturates to a constant 1 when the prey population is high.

The concept of Gompertz growth on prey will be taken into
consideration with accounting of Ivlev functional response for the
formulation of the following predator-prey system (Rosenzweig

1971):

�x = rx ln
k
x

� (1 � e� ax)y,

�y = ( 1 � e� ax)y � dy.
(1)

Here, prey and predator population densities are represented
by the time-dependent variables x(t) and y(t), respectively. The
carrying capacity is described by the parameter k. The value r
represents the growth rate of the prey and the death rate of the
predator is represented by the constant d. In this prey-predator
model, it is presumed that all variables and parameters are
non-negative real numbers.

Fractional calculus is the additional idea used in the creation
of our model. Fractional-order differential equations (FD) (Kil-
baset al.1993; Connolly 2004; Dzieliński et al.2010) are the most
widely used because of their similarities to memory-based systems,
which are present in most biological systems (Elsadany and Ma-
touk 2015). In many disciplines, including science, engineering,
�nance, economics, and epidemiology (Huang et al.2017a, 2018,
2017b; M.et al.2011), fractional-order differential equations can be
successfully explained. The description of phenomena that integer
order differential equations (IDEs) can't fully simulate can be done
using fractional differential equations (Ichise et al.1971).

A nonlinear fractional differential system exhibits the compli-
cated dynamics like a nonlinear differential system does in bi-
furcation and chaos analysis. It is fascinating to study chaos in
fractional-order dynamical systems (Elsadany and Matouk 2015;
Abdelaziz et al.2018; Ahmad and Sprott 2003). There are various
methods for applying the differentiation notion to arbitrary or-
der. The frequently employed de�nitions are those proposed by
Caputo, Riemann-Liouville, and Grünwald-Letnikov (Podlubny
1999). Academics are interested in a variety of discrete models and
demonstrating dynamics of those systems through various bifur-
cations and chaotic attractors (Khan et al.2022; Rana and Kulsum
2017; Rana 2019). Mathematical quanti�cation of these events is
possible.

In this work, we employ the Caputo fractional derivatives on
the continuous system (1) to theoretically explain the bifurcation
occurrences. Fractional derivatives are de�ned in many ways.
Among the most well-known de�nitions of fractional derivatives
is Caputo's ( �Cermák et al.2015; Abdeljawad 2011), which is widely
applied in practical contexts.

Consider
Dag(t) = Kl � ag( l ) (t), a > 0

where gl denotes the l � order derivative of g(t), l = [ a] is the
rounded nearest integer value of a, and Kq is the q� order operator
for the Riemann-Liouville integral.

Kq f (t) =

Rt
0 (t � t e)q� 1 f (t e)dt e

G(q)
, q > 0

where G(.) is the Euler gamma function. The “ a–order Caputo
differential operator is expressed by Da.

The following is the model (1)'s fractional order form

Dax(t) = rx(t) ln
k

x(t)
� (1 � e� ax(t) )y(t)

Day(t) = ( 1 � e� ax(t) )y(t) � dy(t)
(2)
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There are many methods for converting the model (1) into dis-
crete form. The piecewise constant approximation (PCA) (Uddin
et al.2023) is one among them. The model is discretized using PCA
method. Here are the steps:

Assume that model (2) initial conditions are x(0) = x0, y(0) =
y0. The discretized version of model (2) is given as:

Dax(t) = rx([
t
r

]) ln
k

x([ t
r ])

� (1 � e� ax([ t
r ]) )y([

t
r

])

Day(t) = ( 1 � e� ax([ t
r ]) )y([

t
r

]) � dy([
t
r

])

Initially consider t 2 [0,r ), so t
r 2 [0, 1). Then, we get

Dax(t) = rx0 ln
k
x0

� (1 � e� ax0)y0

Day(t) = ( 1 � e� ax0)y0 � dy0

(3)

The solution of (3) can be written as

x1(t) = x0 + Ja
�

rx0 ln
k
x0

� (1 � e� ax0)y0

�

= x0 +
ta

aG(a)

�
rx0 ln

k
x0

� (1 � e� ax0)y0

�
,

y1(t) = y0 + Ja �
(1 � e� ax0)y0 � dy0

�

= y0 +
ta

aG(a)
�
(1 � e� ax0)y0 � dy0

�
.

Then consider t 2 [r , 2r ), so t
r 2 [1, 2). Then

Dax(t) = rx1 ln
k
x1

� (1 � e� ax1)y1

Day(t) = ( 1 � e� ax1)y1 � dy1

(4)

which have the following solution

x2(t) = x1(r ) + Ja
r

�
rx1 ln

k
x1

� (1 � e� ax1)y1

�

= x1(r ) +
(t � r )a

aG(a)

�
rx1 ln

k
x1

� (1 � e� ax1)y1

�
,

y2(t) = y1(r ) + Ja
r

�
(1 � e� ax1)y1 � dy1

�

= y1(r ) +
(t � r )a

aG(a)
�
(1 � e� ax1)y1 � dy1

�
,

(5)

where Ja
r � 1

G(a)

Rt
r (t � t e)a� 1dt e, a > 0. After repeating n

times, we get

xn+ 1(t) = xn(nr ) +
(t � nr )a

aG(a)

�
rxn(nr ) ln

k
xn(nr )

� (1 � e� axn(nr ) )yn(nr )
�

,

yn+ 1(t) = yn(nr ) +
(t � nr )a

aG(a)

�
(1 � e� axn(nr ) )yn(nr ) � dyn(nr )

�
,

(6)
where t 2 [nr , (n + 1)r ). For t �! (n + 1)r , model (6) becomes

xn+ 1 = xn +
r a

G(a + 1)

�
rxn ln

k
xn

� (1 � e� axn )yn

�
,

yn+ 1 = yn +
r a

G(a + 1)
�
(1 � e� axn )yn � dyn

�
.

(7)

In this context, r represents the step size, while a represents
the fractional order. Both parameter values are selected from the
interval (0, 1]. The remaining parameters have the same range and
meaning as de�ned in equation (1). The Fractional Order Predator-
Prey Model incorporating Gompertz growth on prey with Ivlev
functional response is a mathematical model designed to capture
the dynamics of predator-prey interactions in a more nuanced and
realistic way. Let's break down the components and motivations
behind this model:

Fractional Order Dynamics: Traditional predator-prey models
often use ordinary differential equations (ODEs) with integer-order
derivatives. However, fractional calculus allows for the considera-
tion of non-integer order derivatives, offering a more �exible and
accurate representation of complex systems. Fractional order mod-
els are particularly useful in capturing long-term memory effects
and non-local interactions, making them suitable for describing
ecological systems with delayed responses.

Gompertz Growth on Prey: The Gompertz growth model is
commonly used to describe the growth of biological populations,
where the growth rate decreases exponentially over time. Incorpo-
rating Gompertz growth in the prey population allows the model
to account for the realistic limitation on prey population growth as
it reaches carrying capacity. This is especially relevant in ecological
systems where resources are �nite.

Ivlev Functional Response: Motivation: The functional re-
sponse describes how the feeding rate of predators changes with
the abundance of prey. The Ivlev functional response is one of
the many functional response forms, and it considers the satu-
ration of a predator's feeding rate as prey abundance increases.
This is crucial for capturing realistic predator-prey interactions,
where a predator's feeding rate is not constant but saturates as
prey becomes more abundant.

Integration of Components: Motivation: By combining frac-
tional order dynamics, Gompertz growth on prey, and the Ivlev
functional response, the model aims to provide a more compre-
hensive representation of the complex and dynamic nature of
predator-prey interactions. This integration allows for a more re-
alistic portrayal of ecological systems by accounting for memory
effects, �nite resources, and the nonlinear nature of predation.

In summary, the motivation behind the Fractional Order
Predator-Prey Model incorporating Gompertz growth on prey
with Ivlev functional response lies in the desire to create a more
accurate and nuanced mathematical representation of ecological
systems. By considering fractional order dynamics, realistic prey
growth dynamics, and a biologically relevant functional response,
the model aims to improve our understanding of the intricate
interplay between predators and prey in natural ecosystems.

While there may not be speci�c studies or examples explicitly
using the exact combination of a Fractional Order Predator-Prey
Model with Gompertz growth on prey and Ivlev functional re-
sponse, you can envision scenarios where such a model might �nd
application. Here are two hypothetical examples:

Fisheries Management: Consider a marine ecosystem where a
speci�c �sh species (predator) preys on a population of smaller �sh
(prey). The fractional order dynamics help account for historical
�shing pressures and the impact of environmental changes on
the predator-prey relationship. The Gompertz growth model is
applied to the prey population, considering resource limitations
and environmental factors. The Ivlev functional response re�ects
the saturation of the predator's feeding rate as the prey becomes
more abundant.
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Fisheries managers could use this model to predict the effects
of �shing quotas, environmental changes, or other interventions
on the stability and sustainability of the �shery. It provides a more
nuanced understanding of the dynamics involved, aiding in the
development of effective management strategies.

Agricultural Pest Control: In an agricultural setting, consider a
scenario where a certain insect species (prey) is damaging crops,
and a predator species (such as a bird or insect) is introduced for
pest control. The fractional order dynamics capture the long-term
impact of past pest control measures on predator-prey interactions.
The Gompertz growth model represents the natural growth con-
straints of the pest population due to resource limitations. The
Ivlev functional response re�ects the saturation in the predator's
consumption rate as the pest population increases.

Farmers and pest control agencies could use this model to opti-
mize the introduction of natural predators for pest management.
By understanding how past interventions, environmental factors,
and prey-predator interactions interact, they can implement more
targeted and sustainable pest control strategies.

These examples illustrate how the combination of fractional
order dynamics, Gompertz growth on prey, and Ivlev functional
response could be applied in different ecological and management
contexts to gain insights and inform decision-making.

The remaining sections are arranged as follows. The presence
and stability of �xed points are discussed in Section 2. The con-
ditions for codimension-one bifurcations are established such as
Neimark-Sacker and period-doubling bifurcations in Section 3.
Section 4 presents the prerequisites for Marottos chaos to exist.
The results of numerical simulations are presented in Section 5 to
demonstrate new and rich dynamic behavior to validate the the-
oretical analysis. In Section 6, we employ the OGY (Edward et al.
(1990)) and state feedback control strategies to reduce the chaos of
the unmanaged system. Finally, Section 7 provides a conclusion to
this article.

EXISTENCE CONDITIONS AND FIXED POINT'S STABILITY
ANALYSIS

Existence of Fixed points

A quick algebraic calculation reveals that the proposed system (7)
has two �xed points for any value of the permitted parameters:

(i) The �xed point of the boundary E1(k, 0). According to biol-
ogy, when there are no predators, the population of prey achieves
its carrying limit k.

(ii) If 0 < d < 1, then the unique coexistence �xed
point E2(x� , y� ) exists, where x� = � 1

a ln [1 � d], y� =

�
r ln [1� d] ln [� ak

ln [1� d] ]
ad .

Analysis of local stability for �xed points

At �xed points obtained in section 2.1, we examine the system's
stability of the system (7). The magnitude of the eigenvalues
calculated at the �xed point E(x� , y� ), it should be noted that
estimated eigenvalues affect the �xed point's local stability.

Then

J(x� , y� ) =

0

B
@

˜j11 ˜j12

˜j21 ˜j22

1

C
A (8)

where

˜j11 = 1 �
�

r + ay� e� ax�
� r ln [

k
x� ]

�
r a

G(a + 1)
,

˜j12 =
�

� 1 + e� ax�
� r a

G(a + 1)
,

˜j21 = ay� e� ax� r a

G(a + 1)
,

˜j22 = 1 +
�

1 � d � e� ax�
� r a

G(a + 1)
.

The Jacobian Matrix's characteristic polynomial can be ex-
pressed as follows:

F( l ) := l 2 + cpee(x, y) l + cqee(x, y) = 0 (9)

where cpee(x, y) = � ( ˜j11 + ˜j22) and cqee(x, y) = ˜j11 ˜j22 � ˜j12 ˜j21.
The following stability conditions of �xed points are stated based
on the concept of the Jury's criterion.

The Jacobian matrix (8) atE1(k, 0) can be found as

J(E1) =

0

B
B
@

1 � r r a

G(a+ 1) (� 1 + e� ak) r a

G(a+ 1)

0 1+
�

1 � d � e� ak
�

r a

G(a+ 1)

1

C
C
A (10)

The eigenvalues are l 1 = 1 � r r a

G(a+ 1) and l 2 = 1 +
�

1 � d � e� ak
�

r a

G(a+ 1)
The following topological categorization is valid for the

predator-free equilibrium point E1(k, 0):

(a) if d > (1 � e� ak) then E1(k, 0) is

� sink if 0 < r < minf
�

2
r G(1 + a)

� 1
a

,
�

2
d� (1� e� ak) G(1 + a)

� 1
a g

� source if r > maxf
�

2
r G(1 + a)

� 1
a

,
�

2
d� (1� e� ak) G(1 + a)

� 1
a g

� non-hyperbolic if r =
�

2
r G(1 + a)

� 1
a

or r =
�

2
d� (1� e� ak) G(1 + a)

� 1
a

(b) if d < (1 � e� ak) then the �xed point E1(k, 0) is

� source if r >
�

2
r G(1 + a)

� 1
a

� saddle if r <
�

2
r G(1 + a)

� 1
a

� non-hyperbolic if r =
�

2
r G(1 + a)

� 1
a

(c) if d = ( 1 � e� ak) then the �xed point E1(k, 0) is non-
hyperbolic

Naturally, one of the eigenvalues of the above mentioned ja-
cobian matrix is � 1, and the remaining eigenvalues are different

from � 1 when r =
�

2
r G(1 + a)

� 1
a

or r =
�

2
d� (1� e� ak) G(1 + a)

� 1
a
.

Therefore, if parameters change in a limited area around [PDF
1
E1

or [PDF
2
E1

, a �ip bifurcation may happen.

[PDF
1
E1

= f (r, a, k, d, r , a) 2 (0,+ ¥ ) : r =
�

2
r

G(1 + a)
� 1

a

,

r 6=
�

2G(1+ a)
d� (1� e� ak)

� 1
a

, d > (1 � e� ak)g
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or

[PDF
2
E1

= f (r, a, k, d, r , a) 2 (0,+ ¥ ) : r =
�

2G(1 + a)
d � (1 � e� ak)

� 1
a

,

r 6=
�

2
r G(1 + a)

� 1
a

, d > (1 � e� ak)g

At E2(x� , y� ), the characteristic equation can be written as

Fe( l ) := l 2 � (2 + M̃ am̃e) l + ( 1 + M̃ am̃e + Ñam̃e
2) = 0 (11)

where

m̃e =
r a

G(a + 1)

M̃ a = e� ax�
�

� 1 � eax�
(� 1 + d + r) � ay�

�
+ r ln [

k
r

]

Ña = e� ax�
�

r � eax�
r(1 � d) + ady� � (1 + ( � 1 + d)eax�

)r ln [
k
x

]
�

So Fe(1) = M̃ am̃e
2 > 0 and Fe(� 1) = 4 + 2M̃ am̃e + Ñam̃a

2. Re-
garding the stability criterion of E2, we state the following lemma.

The �xed point E2 with any arbitrary selection of parameter
values is a

( i) source if

( i .i) M̃ a
2 � 4Ña � 0 and m̃e > � M̃ a+

p
Ña

2� 4Ña
Ña

( i .ii ) M̃ a
2 � 4Ña < 0 and m̃e > � M̃ a

Ña

( ii ) sink if

( ii .i) M̃ a
2 � 4Ña � 0 and m̃e < � M̃ a�

p
Ña

2� 4Ña
Ña

( ii .ii ) M̃ a
2 � 4Ña < 0 and m̃e < � M̃ a

Ña

( iii ) non-hyperbolic if

( iii .i) M̃ a
2 � 4Ña � 0 and m̃e = � M̃ a�

p
M̃ a

2� 4Ña
Ña

; m̃e 6= � 2
M̃ a

, � 4
M̃ a

( iii .ii ) M̃ a
2 � 4Ña < 0 and m̃e = � 4

M̃ a
.

( iv) saddle if otherwise
Let,

dPDE2 =

(

(r, a, k, d, r , a) : r =
�

� M̃ a�
p

M̃ a
2� 4Ña

Ña
G(1 + a)

� 1
a

= r � ,

)

with M̃ a
2 � 4Ña � 0,m̃e 6= � 2

M̃ a
, � 4

M̃ a

The system (7) atE2 undergoes a �ip bifurcation, when the pa-
rameters (r, a, k, d, r , a) �uctuate within a narrow region of dPDE2.

Also, let

cNSE2 =
�

(r, a, k, d, r , a) : r =
�

G(1 + a) � M̃ a
Ña

� 1
a = r NS, M̃ a

2 � 4Ña < 0
�

If the parameters (r, a, k, d, r , a) vary around the set cNSE2, system
(7) will suffer an NS bifurcation at that point.

BIFURCATION ANALYSIS

This section introduces to investigate the Neimark–Sacker (NS)
bifurcation and Period-Doubling (PD) bifurcation at the equilib-
rium point E2 (x� , y� ) of the system taking r as the parameter of
bifurcation for this study.

Neimark–Sacker bifurcation

For the formulated predator-prey system (7) in discrete fractional,
the bifurcation analysis of the research of Gompertz growth on prey
with exposure to Ivlev functional response has been conducted
through the NS bifurcation. For the parameters that fall under the
following set:

cNSE2 =
�

(r, a, k, d, r , a) : r =
�

G(1 + a)
A1e

A2e

�
= r NS, L < 0

�
,

Let r � is the perturbation of r where jr � j n 1. Therefore, the
model perturbation is

xn+ 1 = xn +
(r + r � )a

G(a + 1)

�
rxn ln

k
xn

�
�
1 � e� axn

�
yn

�
� f (xn, yn, r � ), (12)

yn+ 1 = yn +
(r + r � )a

G(a + 1)
��

1 � e� axn
�

yn � dyn
�

� g(xn, yn, r � ).

If un = xn � x� , vn = yn � y� , then equilibrium is E2 (x� , y� )
becomes the origin , and by using Taylor series at (un, vn) = ( 0, 0)
expanding f and g to the third order, the model (12) becomes

un+ 1 = a1un + a2vn + a11u2
n + a12unvn + a22v2

n + a111u
3
n +(13)

a112u
2
nvn + a122unv2

n + a222v
3
n + O(( jun j + jvn j)4),

vn+ 1 = b1un + b2vn + b11u2
n + b12unvn + b22v2

n + b111u
3
n +

b112u
2
nvn + b122unv2

n + b222v
3
n + O(( jun j + jvn j)4),

where

a1 =
d � dr r a

G(a+ 1) + r r a

G(a+ 1) (d � (� 1 + d) ln [1 � d]) ln
h

� ak
ln [1� d]

i

d
,

a2 = � d
r a

G(a + 1)
,

a11 =
ar r a

G(a+ 1)

�
d + ( � 1 + d) ln [1 � d]2 ln

h
� ak

ln [1� d]

i�

d ln [1 � d]
,

a12 = a(� 1 + d)
r a

G(a + 1)
,

a22 = 0,

a111 =

a2r r a

G(a+ 1)

 

1 �
(� 1+ d) ln [1� d]3 ln

h
� ak

ln [1� d]

i !

ln [1 � d]2
,

a112 = � a2(� 1 + d)
r a

G(a + 1)
,

a122 = 0,

a222 = 0,

b1 =
(� 1 + d)r r a

G(a+ 1) ln [1 � d] ln
h

� ak
ln [1� d]

i

d
,

b2 = 1,

b11 = �
a(� 1 + d)r r a

G(a+ 1) ln [1 � d] ln
h

� ak
ln [1� d]

i

d
,

b22 = 0,

b111 =
a2(� 1 + d)r r a

G(a+ 1) ln [1 � d] ln
h

� ak
ln [1� d]

i

d
,

b112 = a2(� 1 + d)
r a

G(a + 1)
,

b122 = 0,

b222 = 0.

(14)

The characteristic equation of the model (13) is l 2 + p(r � ) l +
q(r � ) = 0,
where

196 | Uddin et al.



p(r � ) = �
d(2� r (r + r � )a

G(a+ 1) )+ r (r + r � )a

G(a+ 1) (d� (� 1+ d) ln [1� d]) ln [ � ak
ln [1� d] ]

d ,

and

q(r � ) =
d(1� r (r + r � )a

G(a+ 1) )+ r (r + r � )a

G(a+ 1)

�
d+( � 1+ d)( � 1+ d (r + r � )a

G(a+ 1) ) ln [1� d]
�

ln [ � ak
ln [1� d] ]

d .

The roots of the characteristic equation are l 1,2(r � ) =
� p(r � )� i

p
4q(r � )� (p(r � )) 2

2 .

where

4q(r � ) � (p(r � )) 2 (15)

=
4

�
d � dr (r + r � )a

G(a+ 1) + r (r + r � )a

G(a+ 1)

�
d + ( � 1 + d)( � 1 + d (r + r � )a

G(a+ 1) ) ln [1 � d]
�

ln
h

� ak
ln [1� d]

i�

d

�

�
d(2 � r (r + r � )a

G(a+ 1) ) + r (r + r � )a

G(a+ 1) (d � (� 1 + d) ln [1 � d]) ln [ � ak
ln [1� d] ]

� 2

d2

(16)

For 0 < d < 1 , 4q(r � ) � (p(r � )) 2 is always less than zero.

From j l 1,2(r � )j = 1, and r � = 0, we have j l 1,2(r � )j = [ q(r � )]
1
2

and

l =
h

dj l 1,2(r � )j
dr �

i

r � = 0

=
r
�

� d+( d+( � 1+ d)( � 1+ 2d r a

G(a+ 1) ) ln [1� d]) ln
h

� ak
ln [1� d]

i�

2d

s
d� dr

r a

G(a+ 1) + r
r a

G(a+ 1)

�
d+( � 1+ d)(1+ d

r a

G(a+ 1) ) ln [1� d]
�

ln
�

� ak
ln [1� d]

�

d

6= 0.

Additionally, it is necessary that when r � = 0, l i
1,2 6= 1, i =

1, 2, 3, 4, which is equivalent to p(0) 6= � 2, 0, 1.

For normal form study, let g = Im( l 1,2) and d = Re( l 1,2). We

de�ne T =

2

6
4

0 1

g d

3

7
5 , and using the transformation

2

6
4

un

vn

3

7
5 =

T

2

6
4

xn

yn

3

7
5 , the model (13) becomes

xn+ 1 = dxn � gyn + f11(xn, yn), (17)

yn+ 1 = gxn + dyn + g11(xn, yn),

where the variables (xn, yn) with the order at least two are
denoted the terms in the model (17) by the functions f11 and g11,
respectively.

The following discriminatory amount W must be nonzero in
order to undergo NSB:

W = � Re

"
(1 � 2l ) l

2

1 � l
x11x20

#

�
1
2

jx11j
2 � jx02j

2 + Re( lx 21),

where

x20 =
d
8

(2b22 � da22 � a12 + 4ga22 + i (4ga22 � 2a22 � 2da22))

+
g
4

a12 +
b12

8
+

da11 � 2b11 + d3a22 � d2b22 � d2a12 + db12

4g
,

+ i
1
8

�
4gb22 + 2g2a22 � 2a11

�

x11 =
g
2

(b22 � da22) + i
1
2

(g2a22 + a11 + da12 + d2a22)

+
b11 � da11 + db12 � d2a12 � 2d2b22 + 2d3a22

2g
,

x02 =
1
4

g(2da22 + a12 + b22) + i
1
4

(b12 + 2db22 � 2da12 � a11)

�
b11 � da11 + db12 � d2a12 + d2b22 � d3a22

4g
+

1
4

a22i(g2 � 3d2),

x21 =
3
8

b222(g2 + d2) +
b112

8
+

d
4

a112 +
d
4

b122 + a122(
g2

8
+

3d2

8
�

d
4

)

+
3
8

a111 + i
3
8

a222(g2 + 2d2) + i
3gd

8
a122 �

1
8

b122gi � i
3gd

8
b222

� i
3b111 � 3da111

8g
� i

3db112 � 3d2a112

8g
� i

3d2b122 � 3d3a122

8g

� i
3d3b222 � 3d4a222

8g
.

The following theorem can be used to demonstrate the direction
and stability of the NS bifurcation in light of the explanation above.

If W 6= 0, the system undergoes NS bifurcation at E2 for the
parameter r varies in neighborhood of cNSE2. If W < 0 (W > 0),
then there is a smooth closed invariant curve that can bifurcate
from the positive �xed point E2, and the bifurcation is sub-critical
(resp. super-critical).

Period-Doubling bifurcation

The one eigenvalue is l 1 = � 1 of the positive �xed point
E2 (x� , y� ), and the other one ( l 2) neither 1 nor � 1, if the fol-
lowing set contains the model's parameters

dPDE2 =
�

(r, a, k, d, r , a) : r =
�

G(1 + a) A1e�
p

L
A2e

� 1
a

= r � , L � 0
�

.

Here, we address the PD bifurcation of the system at E2 (x� , y� )
when a limited �uctuation of parameters in the area of dPDE2. The
parameter (r ) is utilized to analyze the NS bifurcation.

Let r � (jr � j n 1,) is the perturbation of r and taking a model
perturbation like this

xn+ 1 = xn +
(r + r � )a

G(a + 1)

�
rxn ln

k
xn

�
�
1 � e� axn

�
yn

�
� f (xn, yn, r � ), (18)

yn+ 1 = yn +
(r + r � )a

G(a + 1)
��

1 � e� axn
�

yn � dyn
�

� g(xn, yn, r � ).

If un = xn � x� , vn = yn � y� , then equilibrium E2 (x� , y� ) is be-
comes the origin, and by using Taylor series about (un, vn) = ( 0, 0)
expanding to the third order of f and g, the model (18) becomes

un+ 1 = a1un + a2vn + a11u2
n + a12unvn + a13unr � + (19)

a23vnr � + a111u
3
n + a112u

2
nvn + a113u

2
nr � +

a123unvnr � + O(( jun j + jvn j + jr � j)4),

vn+ 1 = b1un + b2vn + b11u2
n + b12unvn + b22v2

n + b13unr � +

b23vnr � + b111u
3
n + b112u

2
nvn + b113u

2
nr � + b123unvnr � +

b223v
2
nr � + O(( jun j + jvn j + jr � j)4),
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where

a13 = �
r

�
d + ( � d + ( � 1 + d) ln [1 � d]) ln

h
� ak

ln [1� d]

i�

d
ar a� 1

G(a + 1)
,

a23 = � d
ar a� 1

G(a + 1)
,

a113 =
ar

�
d + ( � 1 + d) ln [1 � d]2 ln

h
� ak

ln [1� d]

i�

d ln [1 � d]
ar a� 1

G(a + 1)
,

a123 = a(� 1 + d)
ar a� 1

G(a + 1)
,

b13 =
(� 1 + d)r ln [1 � d] ln

h
� ak

ln [1� d]

i

d
ar a� 1

G(a + 1)
,

b23 = 0,

b113 = �
a(� 1 + d)r ln [1 � d] ln

h
� ak

ln [1� d]

i

d
ar a� 1

G(a + 1)
,

b123 = a(1 � d)
ar a� 1

G(a + 1)
,

b223 = 0.

(20)

We de�ne T =

2

6
4

a2 a2

� 1 � a1 l 2 � a1

3

7
5 which is invertible. Now,

applying the transformation

2

6
4

un

vn

3

7
5 = T

2

6
4

xn

yn

3

7
5, the system (19)

becomes

xn+ 1 = � xn + f11(un, vn, b� ), (21)

yn+ 1 = l 2yn + g11(un, vn, b� ),

where the variables (xn, yn) having the order at least two are
denoted the terms in the model (21) by the functions f11 and g11,
respectively.

Using the center manifold theorem, it can be derived that the
system (21) has a center manifold Wc(0, 0, 0) at (0, 0) in a very
closed neighbourhood of r � = 0, which may roughly be stated as
follows:
Wc(0, 0, 0) =

�
(xn, yn, r � ) eR3 : yn+ 1 = a1x2

n + a2xnr �

+ O(( jxn j + jr � j)3)
	

a1 =
a2[(1 + a1)a11 + a2b11]

1 � l 2
2

+
b22(1 + a1)2

1 � l 2
2

�

(1 + a1)[a12(1 + a1) + a2b12]
1 � l 2

2
,

a2 =
(1 + a1)[a23(1 + a1) + a2b23]

a2(1 + l 2)2 �
(1 + a1)a13 + a2b13]

(1 + l 2)2 .

The center manifold Wc(0, 0, 0) restricted the model (21) has the
following form:

xn+ 1 = � xn + h1x2
n + h2xnr � + h3x2

nr � + h4xnr � 2 + h5x3
n +

O(( jxn j + jr � j)3) � F(xn, r � )

where

h1 =
a2[( l 2 � a1)a11 � a2b11]

1 + l 2
�

b22(1 + a1)2

1 + l 2
�

(1 + a1)[( l 2 � a1)a12 � a2b12]
1 + l 2

,

h2 =
( l 2 � a1)a13 � a2b13

1 + l 2
�

(1 + a1)[( l 2 � a1)a23 � a2b23]
a2 (1 + l 2)

,

h3 =
( l 2 � a1)a1a13 � a2b13

1 + l 2
+

[( l 2 � a1)a23 � a2b23]( l 2 � a1)a1

a2 (1 + l 2)
�

(1 + a1)[( l 2 � a1)a123 � a2b123]
1 + l 2

+
a2[( l 2 � a1)a113 � a2b113]

1 + l 2
+

2a2a2[( l 2 � a1)a11 � a2b11]
1 + l 2

�
2b22a2(1 + a1)( l 2 � a1)

1 + l 2
�

b223(1 + a1)2

1 + l 2
+

a2[( l 2 � a1)a12 � a2b12]( l 2 � 1 � 2a1)
1 + l 2

,

h4 =
a2[( l 2 � a1)a13 � a2b13]

1 + l 2
+

[( l 2 � a1)a23 � a2b23]( l 2 � a1)a2

a2 (1 + l 2)
+

2a2a2[( l 2 � a1)a11 � a2b11]
1 + l 2

+
2b22a2(1 + a1)( l 2 � a1)

1 + l 2
+

a2[( l 2 � a1)a12 � a2b12]( l 2 � 1 � 2a1)
1 + l 2

,

h5 =
2a2a1[( l 2 � a1)a11 � a2b11]

1 + l 2
+

2b22a1( l 2 � a1)(1 + a1)
1 + l 2

�

a2(1 + a1)[( l 2 � a1)a112 � a2b112]
1 + l 2

+
a2

2[( l 2 � a1)a111 � a2b111]
1 + l 2

+
[( l 2 � a1)a11 � a2b11]( l 2 � 1 � 2a1)a1

1 + l 2
.

For PD bifurcation, the two differentiating quantities x1 and x2
be nonzero,

x1 =
�

¶2F
¶x¶r � + 1

2
¶F
¶r �

¶2F
¶x2

�
j(0,0) and x2 =

�
1
6

¶3F
¶x3 +

�
1
2

¶2F
¶x2

� 2
�

j(0,0) .

The following theorem contains a succinct statement of the
previously discussed topic.

If x1 6= 0 and x2 6= 0 then the system undergoes PD bifurcation
at E2 (x� , y� ) for varies of r in a small neighborhood of bPDB. Fur-
ther, the period-two orbits for x2 > 0 (x2 < 0) that bifurcate from
E2 (x� , y� ) is stable (unstable).

EXISTENCE OF MAROTTOS CHAOS

This section presents the condition under which the system (7) will
be chaotic in the sense of Marotto (1978, 2005). Fixed pointz of
system f is repelling if all of the eigenvalues of D f (z) are greater
than 1. A repelling �xed point z is snap-back repeller of system
f if there is a point x0 6= z in the repelling vicinity of z, such that
xM = z and det(D f (xk)) 6= 0 for 1 � k � M, where xk = f k(x0).
A snap-back repeller indicates that system f is chaotic.

E2 (x� , y� ) is an repelling �xed point of F(Xn) if p2 (x� , y� ) �
4q(x� , y� ) < 0 and q(x� , y� ) � 1 > 0

For map F(Xn) =

0

B
B
@

xn + r a

G(a+ 1)

�
rxn ln k

xn
�

�
1 � e� axn

�
yn

�

yn + r a

G(a+ 1)

��
1 � e� axn

�
yn � dyn

�

1

C
C
A ,

Xn = (xn yn)T

The eigenvalues that match the �xed point E2 (x� , y� ) are given

by l 1,2 = � bp(x� ,y� )�
p

bp2(x� ,y� )� 4bq(x� ,y� )
2 , where
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bp (x� , y� ) = � ( 2 � rr a

G(a+ 1) ) � rr a

dG(a+ 1) (d � (� 1 + d) ln [1 �

d]) ln
h

� ak
ln [1� d]

i
,

bq(x� , y� ) = ( 1 � rr a

G(a+ 1) ) + rr a

dG(a+ 1) (d + ( � 1 + d)( � 1 +
dr a

G(a+ 1) ) ln [1 � d]) ln
h

� ak
ln [1� d]

i
.

As a result, the �xed point E2 (x� , y� ) has two complex eigen-
values, and their norm is greater than unity if

p2 (x� , y� ) � 4q(x� , y� ) < 0 and q(x� , y� ) � 1 > 0
As a result, we can assert the following inference.
E2 (x� , y� ) is a snap-back repeller of F(Xn) if

�
�DF2(E (x0, y0))

�
�

6= 0.
Let E (x0, y0) 6= E2 (x� , y� ) be a point in a repelling neighbor-

hood of E2 (x� , y� ), such that F2(E (x0, y0)) = E2 (x� , y� ).
Therefore

x1 = x0 +
r a

G(a + 1)

�
rx0 ln

k
x0

�
�
1 � e� ax0

�
y0

�
and

y1 = y0 +
r a

G(a + 1)
��

1 � e� ax0
�

y0 � dy0
�

(22)

and

x� = x1 +
r a

G(a + 1)

�
rx1 ln

k
x1

�
�
1 � e� ax1

�
y1

�
and

y� = y1 +
r a

G(a + 1)
��

1 � e� ax1
�

y1 � dy1
�

. (23)

We will calculate the value of x0 and y0 by solving equations
(22) and (23)

By simple calculations, we get
�
�DF2(E (x0, y0))

�
� = jDF(E (x0, y0))j j DF(F(E (x0, y0))) j

= ( CH � DG)

2

6
6
4

1 +
�

1 � d � r � (1 + aB)e� aA + r ln k
A

	 r a

G(a+ 1)

+
�

d(r + aBe� aA � r ln k
A ) � r(1 � e� aA)(1 � ln k

A )
	 �

r a

G(a+ 1)

� 2

3

7
7
5

where A = x0 + r a

G(a+ 1)

�
rx0 ln k

x0
�

�
1 � e� ax0

�
y0

�
, B = y0 +

r a

G(a+ 1)

��
1 � e� ax0

�
y0 � dy0

�
,

C = 1 � r a

G(a+ 1)

�
r + ay0e� ax0 � r ln k

x0

�
, D =

r a

G(a+ 1)

�
� 1 + e� ax0

�
,

G = r a

G(a+ 1)

�
ay0e� ax0

�
, H = 1 + r a

G(a+ 1)

�
1 � d � e� ax0

�
.

Therefore E2 (x� , y� ) is a snap-back repeller of F(Xn) when�
�DF2(E (x0, y0))

�
� 6= 0 Further, the following inference can claim

as a result of the chaotic nature. F(Xn) is chaotic under the
condition p2 (x� , y� ) � 4q(x� , y� ) < 0, q(x� , y� ) � 1 > 0 and�
�DF2(E (x0, y0))

�
� 6= 0. SinceF(Xn) has a repelling �xed point

E2 (x� , y� ) if p2 (x� , y� ) � 4q(x� , y� ) < 0, q(x� , y� ) � 1 > 0, and
further from Theorem-5, the same �xed point E2 (x� , y� ) is a snap-
back repeller if

�
�DF2(E (x0, y0))

�
� 6= 0.

Therefore F(Xn) is chaotic.

NUMERICAL SIMULATIONS

The Lyapunov exponent, bifurcation diagram, phase por-
trait and fractal dimension are shown for various parameter
values in this section to illustrate the qualitative dynamical
characteristic of the discrete fractional system. To support
our theoretical conclusions for the system (7), we shall
run numerical simulations. These parameter values were
picked: r = 1.2, k = 1.5, a = 0.5, a = 0.75, d = 0.1 and
r varies between 1.9 � r � 2.73. We locate a �xed point

E(x� , y� ) = ( 1.02165, 3.36309) and assess the bifurcation point
for the system (7) at r � = 2.08616. The eigenvalues are
l 1,2 = � 1, 0.937016.

The system trajectory is shown in Figure 2 as changing from a
�xed point to a Flip bifurcation and �nally to a chaotic attractor.
The computed MLEs and FDs associated with Figure 2(a-b) are
shown in Figure 2 (c-d). In reference of the bifurcation Figure 2,
the phase portraits are displayed in Figure 3, which effectively
illustrates the bifurcation of a smooth, invariant closed curve into
a chaotic attractor from a stable �xed point.

(a) (b)

(c) (d)

Figure 2 Flip Bifurcation diagram, MLEs and FDs for varying parameter
r

Figure 3 Phase picture for varying r with matching to Figure 2 a,b. Blue
� is the �xed point E0.

In Figure 4, the orbit diagram of the prey and predator popula-
tions is shown together with other �xed parameter values are r =
1.2,k = 1.5,a = 1.0,a = 0.5,d = 0.4 and r varies between 2.5 �
r � 3.25. We establish a �xed point E(x� , y� ) = ( 0.510826, 3.30154)
and assess the bifurcation point for the system (7) at r NS = 2.65984.
The eigenvalues are l 1,2 = � 0.0173315� 0.99985i. This �gure
showing transition of trajectory from a �xed point to NSB and
�nally to chaotic attractor. The phase portrait, MLEs and FD of
Figure 4 (a-b) are shown in Figure 5 and Figure 4 (c-d) respectively.
All bifurcation processes for both prey and predator have three
distinct periodic windows.
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(a) (b)

(c) (d)

Figure 4 Visual representation of NS Bifurcation, MLEs and FDs of
species for varying parameter r

Figure 5 Phase picture for changing input of r matching to Figure 4 a,b.
Red � is the �xed point E0.

We have also investigated NS bifurcation by varying the frac-
tional order a in the range 0.65 � a � 0.985and �xed all other
parameter discussed above for Figure 4 with r = 2.65984. The
visual representation of Figure 6 is displayed in Figure 7.

The prey-predator model may behave more dynamically in the
Neimark-Sacker bifurcation diagram as other parameter values
vary (for example, parameter a). When the parameter values are
set asr = 1.2, k = 1.5, a = 0.75, d = 0.4with r = 2.65984and a
range between0.5 � a � 1.33, as illustrated in Figure 8 (a-b), a new
Neimark-Sacker bifurcation diagram is produced. At a = aNS =
1.0, the system encounters a Neimark-Sacker bifurcation. Figures 9
and 8 (c-d) illustrate, respectively, the phase portrait, MLEs, and FD
of Figure 8(a-b). Figure 10 (a) shows the 3D bifurcation diagrams
in (r , b, x)-space. The plot of the maximal Lyapunov exponents is
shown in Figure 10 (b) for two control parameters through a 2D
projection onto the (r , a) plane.

(a) (b)

(c) (d)

Figure 6 Diagram of NS Bifurcation in (a) (a, x) plane, (b) (a, y) plane,
(c) MLEs , (d) FDs

Figure 7 Phase picture for different inputs of a matching to Figure 6 a,b.
Red � is the �xed point E2.

(a) (b)

(c) (d)

Figure 8 Diagram of NS Bifurcation in (a) (a, x) plane, (b) (a, y) plane,
(c) MLEs , (d) FDs

Fractal Dimension

To determine chaotic attractors of a system, the fractal dimensions
(FD) measurement is used and is de�ned by Cartwright (1999)
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