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ABSTRACT This paper examines dynamic behaviours of a two-species discrete fractional order predator-prey
system with functional response form of Ivlev along with Gompertz growth of prey population. A discretization
scheme is first applied to get Caputo fractional differential system for the prey-predator model. This study
identifies certain conditions for the local asymptotic stability at the fixed points of the proposed prey-predator
model. The existence and direction of the period-doubling bifurcation, Neimark-Sacker bifurcation, and Control
Chaos are examined for the discrete-time domain. As the bifurcation parameter increases, the system displays
chaotic behaviour. For various model parameters, bifurcation diagrams, phase portraits, and time graphs are
obtained. Theoretical predictions and long-term chaotic behaviour are supported by numerical simulations
across a wide variety of parameters. This article aims to offer an OGY and state feedback strategy that can
stabilize chaotic orbits at a precarious equilibrium point.
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INTRODUCTION

In the ecology, predation and prey behaviors are frequent occur-
rences. Since Volterra and Lotka developed the predator-prey
paradigm in the 20th century, several academics have expressed
worry about it. Numerous researchers have made significant ad-
justments to the system by including ecological elements such
functional responses, emigration and immigration (Kangalgil and
Işık 2022), time delays (Li et al. 2022b), diffussion (Sun et al. 2022),
and the Allee effect (Zhao and Du 2016) because this system has
disregarded many real-world scenarios. The study of the intri-
cate dynamical behaviors of predator-prey systems has recently
attracted growing interest (Atabaigi 2020; Din 2017; Işık 2019; Kar-
tal 2014, 2017). In any prey-predator encounter, the functional
response in population dynamics is a key component as it refers
to the quantity of prey consumed by a predator based on the den-
sity of the prey in per unit of time. The Holling type II Holling
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(1965) is suitable for the majority of arthropod predators as the
functional response compare to others form Holling type I, III, IV.
In the first quadratic, these functional responses are uniformly
bounded functions in addition to being monotonically increasing.
Ivlev Ivlev (1961) proposed a different functional response, known
as the Ivlev functional response, to study the dynamical interaction
between prey and predator species: p(x) = b(1 − e−ax)y, where
the maximal rate of predation and the decline in hunting drive are
represented by the positive constants b and a, respectively.

Numerous studies have been done to examine the predator-prey
relationship with Ivlev-type functional responses. The findings
suggested that Ivlev-type relation between the species have several
systems in ecological applications, including dynamics in predator-
prey systems (Cheng et al. 1982; Guo et al. 2013; Kooij and Zegeling
1996; Wang et al. 2010), host-parasite systems (Preedy et al. 2007),
and animal coat patterns (Uriu and Iwasa 2007). The authors inves-
tigated the presence and uniqueness of limit cycles as well as the
numerical calculation of phase portraits in these empirical studies.
In a predator-prey system (Wei et al. 2023), this work examines
the dynamical balance and Markov-switching-induced stochastic
P-bifurcation.A theoretical foundation for comprehending the spa-
tiotemporal evolution characteristics of plant systems is provided
by the findings presented in (Li et al. 2022b; Sun et al. 2022).
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Figure 1 (a) Growth curves (b) Functional responses for r =
1.5, k = 1.5, a = 1.2, d = 0.4

When a third party distracts their predators, prey can lessen
the burden of exploitation, such type prey-predator model is dis-
cussed in (Revilla and Křivan 2022). On the basis of the generalized
Klausmeier-Gray-Scott model, authors Li et al. (2022a) build an ex-
tended vegetation-water model with infiltration delay and discuss
dynamic behavior of this model. The long-term coevolution of the
giving-up rates of the model of reckless prey and patient predator
is studied by Cecilia B. et al. in (Berardo and Geritz 2021) using
adaptive dynamics. The majority of predator-prey systems with
various functional responses take into account the logistic growth
of the prey, according to academics.

Gompertz (1825) created a different prey birth rate interpreta-
tion similar to logistic growth to study the dynamics of a commu-
nity made up of populations of several interacting species. The
comparison of functional responses and growth curves are shown
in Figure 1. The Gompertz curve expands more rapidly than the
logistic curve, we discover. Moreover, the point of inflection for
the Gompertz curve occurs earlier than for the logistic curve, and
thus reaches carrying capacity a little bit early. Also, compared to
the Holling type II functional response, the predation rate reaches
its peak significantly earlier in the Ivlev-type functional response.
In terms of biology, this suggests that the predation rate is propor-
tionate to the prey population while the prey population is low
and saturates to a constant 1 when the prey population is high.

The concept of Gompertz growth on prey will be taken into
consideration with accounting of Ivlev functional response for the
formulation of the following predator-prey system (Rosenzweig

1971):

ẋ = rx ln
k
x
− (1 − e−ax)y,

ẏ = (1 − e−ax)y − dy.
(1)

Here, prey and predator population densities are represented
by the time-dependent variables x(t) and y(t), respectively. The
carrying capacity is described by the parameter k. The value r
represents the growth rate of the prey and the death rate of the
predator is represented by the constant d. In this prey-predator
model, it is presumed that all variables and parameters are
non-negative real numbers.

Fractional calculus is the additional idea used in the creation
of our model. Fractional-order differential equations (FD) (Kil-
bas et al. 1993; Connolly 2004; Dzieliński et al. 2010) are the most
widely used because of their similarities to memory-based systems,
which are present in most biological systems (Elsadany and Ma-
touk 2015). In many disciplines, including science, engineering,
finance, economics, and epidemiology (Huang et al. 2017a, 2018,
2017b; M. et al. 2011), fractional-order differential equations can be
successfully explained. The description of phenomena that integer
order differential equations (IDEs) can’t fully simulate can be done
using fractional differential equations (Ichise et al. 1971).

A nonlinear fractional differential system exhibits the compli-
cated dynamics like a nonlinear differential system does in bi-
furcation and chaos analysis. It is fascinating to study chaos in
fractional-order dynamical systems (Elsadany and Matouk 2015;
Abdelaziz et al. 2018; Ahmad and Sprott 2003). There are various
methods for applying the differentiation notion to arbitrary or-
der. The frequently employed definitions are those proposed by
Caputo, Riemann-Liouville, and Grünwald-Letnikov (Podlubny
1999). Academics are interested in a variety of discrete models and
demonstrating dynamics of those systems through various bifur-
cations and chaotic attractors (Khan et al. 2022; Rana and Kulsum
2017; Rana 2019). Mathematical quantification of these events is
possible.

In this work, we employ the Caputo fractional derivatives on
the continuous system (1) to theoretically explain the bifurcation
occurrences. Fractional derivatives are defined in many ways.
Among the most well-known definitions of fractional derivatives
is Caputo’s (Čermák et al. 2015; Abdeljawad 2011), which is widely
applied in practical contexts.

Consider
Dαg(t) = Kl−αg(l)(t), α > 0

where gl denotes the l−order derivative of g(t), l = [α] is the
rounded nearest integer value of α, and Kq is the q− order operator
for the Riemann-Liouville integral.

Kq f (t) =

∫ t
0 (t − τe)q−1 f (τe)dτe

Γ(q)
, q > 0

where Γ(.) is the Euler gamma function. The “α–order Caputo
differential operator is expressed by Dα.

The following is the model (1)’s fractional order form

Dαx(t) = rx(t) ln
k

x(t)
− (1 − e−ax(t))y(t)

Dαy(t) = (1 − e−ax(t))y(t)− dy(t)
(2)
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There are many methods for converting the model (1) into dis-
crete form. The piecewise constant approximation (PCA) (Uddin
et al. 2023) is one among them. The model is discretized using PCA
method. Here are the steps:

Assume that model (2) initial conditions are x(0) = x0, y(0) =
y0. The discretized version of model (2) is given as:

Dαx(t) = rx([
t
ρ
]) ln

k
x([ t

ρ ])
− (1 − e−ax([ t

ρ ]))y([
t
ρ
])

Dαy(t) = (1 − e−ax([ t
ρ ]))y([

t
ρ
])− dy([

t
ρ
])

Initially consider t ∈ [0, ρ), so t
ρ ∈ [0, 1). Then, we get

Dαx(t) = rx0 ln
k
x0

− (1 − e−ax0 )y0

Dαy(t) = (1 − e−ax0 )y0 − dy0

(3)

The solution of (3) can be written as

x1(t) = x0 + Jα

(
rx0 ln

k
x0

− (1 − e−ax0 )y0

)
= x0 +

tα

αΓ(α)

(
rx0 ln

k
x0

− (1 − e−ax0 )y0

)
,

y1(t) = y0 + Jα
(
(1 − e−ax0 )y0 − dy0

)
= y0 +

tα

αΓ(α)
(
(1 − e−ax0 )y0 − dy0

)
.

Then consider t ∈ [ρ, 2ρ), so t
ρ ∈ [1, 2). Then

Dαx(t) = rx1 ln
k
x1

− (1 − e−ax1 )y1

Dαy(t) = (1 − e−ax1 )y1 − dy1

(4)

which have the following solution

x2(t) = x1(ρ) + Jα
ρ

(
rx1 ln

k
x1

− (1 − e−ax1 )y1

)
= x1(ρ) +

(t − ρ)α

αΓ(α)

(
rx1 ln

k
x1

− (1 − e−ax1 )y1

)
,

y2(t) = y1(ρ) + Jα
ρ

(
(1 − e−ax1 )y1 − dy1

)
= y1(ρ) +

(t − ρ)α

αΓ(α)
(
(1 − e−ax1 )y1 − dy1

)
,

(5)

where Jα
ρ ≡ 1

Γ(α)

∫ t
ρ (t − τe)α−1dτe, α > 0. After repeating n

times, we get

xn+1(t) = xn(nρ) +
(t − nρ)α

αΓ(α)

(
rxn(nρ) ln

k
xn(nρ)

−(1 − e−axn(nρ))yn(nρ)
)

,

yn+1(t) = yn(nρ) +
(t − nρ)α

αΓ(α)

(
(1 − e−axn(nρ))yn(nρ)− dyn(nρ)

)
,

(6)
where t ∈ [nρ, (n + 1)ρ). For t −→ (n + 1)ρ, model (6) becomes

xn+1 = xn +
ρα

Γ(α + 1)

(
rxn ln

k
xn

− (1 − e−axn )yn

)
,

yn+1 = yn +
ρα

Γ(α + 1)
(
(1 − e−axn )yn − dyn

)
.

(7)

In this context, ρ represents the step size, while α represents
the fractional order. Both parameter values are selected from the
interval (0, 1]. The remaining parameters have the same range and
meaning as defined in equation (1). The Fractional Order Predator-
Prey Model incorporating Gompertz growth on prey with Ivlev
functional response is a mathematical model designed to capture
the dynamics of predator-prey interactions in a more nuanced and
realistic way. Let’s break down the components and motivations
behind this model:

Fractional Order Dynamics: Traditional predator-prey models
often use ordinary differential equations (ODEs) with integer-order
derivatives. However, fractional calculus allows for the considera-
tion of non-integer order derivatives, offering a more flexible and
accurate representation of complex systems. Fractional order mod-
els are particularly useful in capturing long-term memory effects
and non-local interactions, making them suitable for describing
ecological systems with delayed responses.

Gompertz Growth on Prey: The Gompertz growth model is
commonly used to describe the growth of biological populations,
where the growth rate decreases exponentially over time. Incorpo-
rating Gompertz growth in the prey population allows the model
to account for the realistic limitation on prey population growth as
it reaches carrying capacity. This is especially relevant in ecological
systems where resources are finite.

Ivlev Functional Response: Motivation: The functional re-
sponse describes how the feeding rate of predators changes with
the abundance of prey. The Ivlev functional response is one of
the many functional response forms, and it considers the satu-
ration of a predator’s feeding rate as prey abundance increases.
This is crucial for capturing realistic predator-prey interactions,
where a predator’s feeding rate is not constant but saturates as
prey becomes more abundant.

Integration of Components: Motivation: By combining frac-
tional order dynamics, Gompertz growth on prey, and the Ivlev
functional response, the model aims to provide a more compre-
hensive representation of the complex and dynamic nature of
predator-prey interactions. This integration allows for a more re-
alistic portrayal of ecological systems by accounting for memory
effects, finite resources, and the nonlinear nature of predation.

In summary, the motivation behind the Fractional Order
Predator-Prey Model incorporating Gompertz growth on prey
with Ivlev functional response lies in the desire to create a more
accurate and nuanced mathematical representation of ecological
systems. By considering fractional order dynamics, realistic prey
growth dynamics, and a biologically relevant functional response,
the model aims to improve our understanding of the intricate
interplay between predators and prey in natural ecosystems.

While there may not be specific studies or examples explicitly
using the exact combination of a Fractional Order Predator-Prey
Model with Gompertz growth on prey and Ivlev functional re-
sponse, you can envision scenarios where such a model might find
application. Here are two hypothetical examples:

Fisheries Management: Consider a marine ecosystem where a
specific fish species (predator) preys on a population of smaller fish
(prey). The fractional order dynamics help account for historical
fishing pressures and the impact of environmental changes on
the predator-prey relationship. The Gompertz growth model is
applied to the prey population, considering resource limitations
and environmental factors. The Ivlev functional response reflects
the saturation of the predator’s feeding rate as the prey becomes
more abundant.
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Fisheries managers could use this model to predict the effects
of fishing quotas, environmental changes, or other interventions
on the stability and sustainability of the fishery. It provides a more
nuanced understanding of the dynamics involved, aiding in the
development of effective management strategies.

Agricultural Pest Control: In an agricultural setting, consider a
scenario where a certain insect species (prey) is damaging crops,
and a predator species (such as a bird or insect) is introduced for
pest control. The fractional order dynamics capture the long-term
impact of past pest control measures on predator-prey interactions.
The Gompertz growth model represents the natural growth con-
straints of the pest population due to resource limitations. The
Ivlev functional response reflects the saturation in the predator’s
consumption rate as the pest population increases.

Farmers and pest control agencies could use this model to opti-
mize the introduction of natural predators for pest management.
By understanding how past interventions, environmental factors,
and prey-predator interactions interact, they can implement more
targeted and sustainable pest control strategies.

These examples illustrate how the combination of fractional
order dynamics, Gompertz growth on prey, and Ivlev functional
response could be applied in different ecological and management
contexts to gain insights and inform decision-making.

The remaining sections are arranged as follows. The presence
and stability of fixed points are discussed in Section 2. The con-
ditions for codimension-one bifurcations are established such as
Neimark-Sacker and period-doubling bifurcations in Section 3.
Section 4 presents the prerequisites for Marottos chaos to exist.
The results of numerical simulations are presented in Section 5 to
demonstrate new and rich dynamic behavior to validate the the-
oretical analysis. In Section 6, we employ the OGY (Edward et al.
(1990)) and state feedback control strategies to reduce the chaos of
the unmanaged system. Finally, Section 7 provides a conclusion to
this article.

EXISTENCE CONDITIONS AND FIXED POINT’S STABILITY
ANALYSIS

Existence of Fixed points

A quick algebraic calculation reveals that the proposed system (7)
has two fixed points for any value of the permitted parameters:

(i) The fixed point of the boundary E1(k, 0). According to biol-
ogy, when there are no predators, the population of prey achieves
its carrying limit k.

(ii) If 0 < d < 1, then the unique coexistence fixed
point E2(x∗, y∗) exists, where x∗ = − 1

a ln [1 − d], y∗ =

−
r ln [1−d] ln [− ak

ln [1−d] ]

ad .

Analysis of local stability for fixed points

At fixed points obtained in section 2.1, we examine the system’s
stability of the system (7). The magnitude of the eigenvalues
calculated at the fixed point E(x∗, y∗), it should be noted that
estimated eigenvalues affect the fixed point’s local stability.

Then

J (x∗, y∗) =

 ˜j11 ˜j12

˜j21 ˜j22

 (8)

where

˜j11 = 1 −
(

r + ay∗e−ax∗ − r ln [
k

x∗
]

)
ρα

Γ(α + 1)
,

˜j12 =
(
−1 + e−ax∗

) ρα

Γ(α + 1)
,

˜j21 = ay∗e−ax∗ ρα

Γ(α + 1)
,

˜j22 = 1 +
(

1 − d − e−ax∗
) ρα

Γ(α + 1)
.

The Jacobian Matrix’s characteristic polynomial can be ex-
pressed as follows:

F(λ) := λ2 + p̂ee(x, y)λ + q̂ee(x, y) = 0 (9)

where p̂ee(x, y) = −( ˜j11 + ˜j22) and q̂ee(x, y) = ˜j11 ˜j22 − ˜j12 ˜j21.
The following stability conditions of fixed points are stated based
on the concept of the Jury’s criterion.

The Jacobian matrix (8) at E1(k, 0) can be found as

J (E1) =

 1 − r ρα

Γ(α+1) (−1 + e−ak)
ρα

Γ(α+1)

0 1 +
(

1 − d − e−ak
)

ρα

Γ(α+1)

 (10)

The eigenvalues are λ1 = 1 − r ρα

Γ(α+1) and λ2 = 1 +(
1 − d − e−ak

)
ρα

Γ(α+1)
The following topological categorization is valid for the

predator-free equilibrium point E1(k, 0):

(a) if d > (1 − e−ak) then E1(k, 0) is

− sink if 0 < ρ < min{
(

2
r Γ(1 + α)

) 1
α ,
(

2
d−(1−e−ak)

Γ(1 + α)
) 1

α }

− source if ρ > max{
(

2
r Γ(1 + α)

) 1
α ,
(

2
d−(1−e−ak)

Γ(1 + α)
) 1

α }

− non-hyperbolic if ρ =
(

2
r Γ(1 + α)

) 1
α or ρ =(

2
d−(1−e−ak)

Γ(1 + α)
) 1

α

(b) if d < (1 − e−ak) then the fixed point E1(k, 0) is

− source if ρ >
(

2
r Γ(1 + α)

) 1
α

− saddle if ρ <
(

2
r Γ(1 + α)

) 1
α

− non-hyperbolic if ρ =
(

2
r Γ(1 + α)

) 1
α

(c) if d = (1 − e−ak) then the fixed point E1(k, 0) is non-
hyperbolic

Naturally, one of the eigenvalues of the above mentioned ja-
cobian matrix is −1, and the remaining eigenvalues are different

from ±1 when ρ =
(

2
r Γ(1 + α)

) 1
α or ρ =

(
2

d−(1−e−ak)
Γ(1 + α)

) 1
α .

Therefore, if parameters change in a limited area around P̂DF
1
E1

or P̂DF
2
E1

, a flip bifurcation may happen.

P̂DF
1
E1

= {(r, a, k, d, ρ, α) ∈ (0,+∞) : ρ =

(
2
r

Γ(1 + α)

) 1
α

,

ρ ̸=
(

2Γ(1+α)
d−(1−e−ak)

) 1
α , d > (1 − e−ak)}
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or

P̂DF
2
E1

= {(r, a, k, d, ρ, α) ∈ (0,+∞) : ρ =

(
2Γ(1 + α)

d − (1 − e−ak)

) 1
α

,

ρ ̸=
(

2
r Γ(1 + α)

) 1
α , d > (1 − e−ak)}

At E2(x∗, y∗), the characteristic equation can be written as

Fe(λ) := λ2 − (2 + M̃aµ̃e)λ + (1 + M̃aµ̃e + Ñaµ̃e
2) = 0 (11)

where

µ̃e =
ρα

Γ(α + 1)

M̃a = e−ax∗
(
−1 − eax∗

(−1 + d + r)− ay∗
)
+ r ln [

k
r
]

Ña = e−ax∗
(

r − eax∗
r(1 − d) + ady∗ − (1 + (−1 + d)eax∗

)r ln [
k
x
]

)
So Fe(1) = M̃aµ̃e

2 > 0 and Fe(−1) = 4 + 2M̃aµ̃e + Ñaµ̃a
2. Re-

garding the stability criterion of E2, we state the following lemma.
The fixed point E2 with any arbitrary selection of parameter

values is a
(i) source if

(i.i) M̃a
2 − 4Ña ≥ 0 and µ̃e >

−M̃a+
√

Ña
2−4Ña

Ña

(i.ii) M̃a
2 − 4Ña < 0 and µ̃e >

−M̃a
Ña

(ii) sink if

(ii.i) M̃a
2 − 4Ña ≥ 0 and µ̃e <

−M̃a−
√

Ña
2−4Ña

Ña

(ii.ii) M̃a
2 − 4Ña < 0 and µ̃e <

−M̃a
Ña

(iii) non-hyperbolic if

(iii.i) M̃a
2 − 4Ña ≥ 0 and µ̃e =

−M̃a±
√

M̃a
2−4Ña

Ña
; µ̃e ̸= −2

M̃a
, −4

M̃a

(iii.ii) M̃a
2 − 4Ña < 0 and µ̃e =

−4
M̃a

.
(iv) saddle if otherwise
Let,

P̂DE2 =

{
(r, a, k, d, ρ, α) : ρ =

(
−M̃a±

√
M̃a

2−4Ña
Ña

Γ(1 + α)

) 1
α

= ρ±,

}
with M̃a

2 − 4Ña ≥ 0, µ̃e ̸= −2
M̃a

, −4
M̃a

The system (7) at E2 undergoes a flip bifurcation, when the pa-
rameters (r, a, k, d, ρ, α) fluctuate within a narrow region of P̂DE2 .

Also, let

N̂SE2 =

{
(r, a, k, d, ρ, α) : ρ =

(
Γ(1 + α)−M̃a

Ña

) 1
α
= ρNS, M̃a

2 − 4Ña < 0
}

If the parameters (r, a, k, d, ρ, α) vary around the set N̂SE2 , system
(7) will suffer an NS bifurcation at that point.

BIFURCATION ANALYSIS

This section introduces to investigate the Neimark–Sacker (NS)
bifurcation and Period-Doubling (PD) bifurcation at the equilib-
rium point E2 (x∗, y∗) of the system taking ρ as the parameter of
bifurcation for this study.

Neimark–Sacker bifurcation
For the formulated predator-prey system (7) in discrete fractional,
the bifurcation analysis of the research of Gompertz growth on prey
with exposure to Ivlev functional response has been conducted
through the NS bifurcation. For the parameters that fall under the
following set:

N̂SE2 =

{
(r, a, k, d, ρ, α) : ρ =

(
Γ(1 + α)

A1e
A2e

)
= ρNS,L < 0

}
,

Let ρ∗ is the perturbation of ρ where |ρ∗| ≪ 1. Therefore, the
model perturbation is

xn+1 = xn +
(ρ + ρ∗)α

Γ(α + 1)

(
rxn ln

k
xn

−
(
1 − e−axn

)
yn

)
≡ f (xn , yn , ρ∗), (12)

yn+1 = yn +
(ρ + ρ∗)α

Γ(α + 1)
((

1 − e−axn
)

yn − dyn
)
≡ g(xn , yn , ρ∗).

If un = xn − x∗, vn = yn − y∗, then equilibrium is E2 (x∗, y∗)
becomes the origin , and by using Taylor series at (un, vn) = (0, 0)
expanding f and g to the third order, the model (12) becomes

un+1 = α1un + α2vn + α11u2
n + α12unvn + α22v2

n + α111u3
n +(13)

α112u2
nvn + α122unv2

n + α222v3
n + O((|un|+ |vn|)4),

vn+1 = β1un + β2vn + β11u2
n + β12unvn + β22v2

n + β111u3
n +

β112u2
nvn + β122unv2

n + β222v3
n + O((|un|+ |vn|)4),

where

α1 =
d − dr ρα

Γ(α+1) + r ρα

Γ(α+1) (d − (−1 + d) ln [1 − d]) ln
[

−ak
ln [1−d]

]
d

,

α2 = −d
ρα

Γ(α + 1)
,

α11 =
ar ρα

Γ(α+1)

(
d + (−1 + d) ln [1 − d]2 ln

[
−ak

ln [1−d]

])
d ln [1 − d]

,

α12 = a(−1 + d)
ρα

Γ(α + 1)
,

α22 = 0,

α111 =

a2r ρα

Γ(α+1)

(
1 −

(−1+d) ln [1−d]3 ln
[

−ak
ln [1−d]

])
ln [1 − d]2

,

α112 = −a2(−1 + d)
ρα

Γ(α + 1)
,

α122 = 0,

α222 = 0,

β1 =
(−1 + d)r ρα

Γ(α+1) ln [1 − d] ln
[

−ak
ln [1−d]

]
d

,

β2 = 1,

β11 = −
a(−1 + d)r ρα

Γ(α+1) ln [1 − d] ln
[

−ak
ln [1−d]

]
d

,

β22 = 0,

β111 =
a2(−1 + d)r ρα

Γ(α+1) ln [1 − d] ln
[

−ak
ln [1−d]

]
d

,

β112 = a2(−1 + d)
ρα

Γ(α + 1)
,

β122 = 0,

β222 = 0.

(14)

The characteristic equation of the model (13) is λ2 + p(ρ∗)λ +
q(ρ∗) = 0,
where
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p(ρ∗) = −
d(2−r (ρ+ρ∗ )α

Γ(α+1) )+r (ρ+ρ∗ )α
Γ(α+1) (d−(−1+d) ln [1−d]) ln [ −ak

ln [1−d] ]

d ,

and

q(ρ∗) =
d(1−r (ρ+ρ∗ )α

Γ(α+1) )+r (ρ+ρ∗ )α
Γ(α+1)

(
d+(−1+d)(−1+d (ρ+ρ∗ )α

Γ(α+1) ) ln [1−d]
)

ln [ −ak
ln [1−d] ]

d .

The roots of the characteristic equation are λ1,2(ρ
∗) =

−p(ρ∗)±i
√

4q(ρ∗)−(p(ρ∗))2

2 .

where

4q(ρ∗)− (p(ρ∗))2 (15)

=
4
(

d − dr (ρ+ρ∗ )α
Γ(α+1) + r (ρ+ρ∗ )α

Γ(α+1)

(
d + (−1 + d)(−1 + d (ρ+ρ∗ )α

Γ(α+1) ) ln [1 − d]
)

ln
[

−ak
ln [1−d]

])
d

−

(
d(2 − r (ρ+ρ∗ )α

Γ(α+1) ) + r (ρ+ρ∗ )α
Γ(α+1) (d − (−1 + d) ln [1 − d]) ln [ −ak

ln [1−d] ]
)2

d2

(16)

For 0 < d < 1 , 4q(ρ∗)− (p(ρ∗))2 is always less than zero.

From |λ1,2(ρ
∗)| = 1, and ρ∗ = 0, we have |λ1,2(ρ

∗)| = [q(ρ∗)]
1
2

and

l =
[

d|λ1,2(ρ∗)|
dρ∗

]
ρ∗=0

=
r
(
−d+(d+(−1+d)(−1+2d ρα

Γ(α+1) ) ln [1−d]) ln
[

−ak
ln [1−d]

])
2d

√
d−dr ρα

Γ(α+1) +r ρα

Γ(α+1)

(
d+(−1+d)(1+d ρα

Γ(α+1) ) ln [1−d]
)

ln
[

−ak
ln [1−d]

]
d

̸= 0.

Additionally, it is necessary that when ρ∗ = 0, λi
1,2 ̸= 1, i =

1, 2, 3, 4, which is equivalent to p(0) ̸= ±2, 0, 1.

For normal form study, let γ = Im(λ1,2) and δ = Re(λ1,2). We

define T =

 0 1

γ δ

 , and using the transformation

 un

vn

 =

T

 xn

yn

 , the model (13) becomes

xn+1 = δxn − γyn + f11(xn, yn), (17)

yn+1 = γxn + δyn + g11(xn, yn),

where the variables (xn, yn) with the order at least two are
denoted the terms in the model (17) by the functions f11 and g11,
respectively.

The following discriminatory amount Ω must be nonzero in
order to undergo NSB:

Ω = −Re

[
(1 − 2λ)λ

2

1 − λ
ξ11ξ20

]
− 1

2
|ξ11|2 − |ξ02|2 + Re(λξ21),

where

ξ20 =
δ

8
(2β22 − δα22 − α12 + 4γα22 + i (4γα22 − 2α22 − 2δα22))

+
γ

4
α12 +

β12
8

+
δα11 − 2β11 + δ3α22 − δ2β22 − δ2α12 + δβ12

4γ
,

+ i
1
8

(
4γβ22 + 2γ2α22 − 2α11

)
ξ11 =

γ

2
(β22 − δα22) + i

1
2
(γ2α22 + α11 + δα12 + δ2α22)

+
β11 − δα11 + δβ12 − δ2α12 − 2δ2β22 + 2δ3α22

2γ
,

ξ02 =
1
4

γ(2δα22 + α12 + β22) + i
1
4
(β12 + 2δβ22 − 2δα12 − α11)

− β11 − δα11 + δβ12 − δ2α12 + δ2β22 − δ3α22
4γ

+
1
4

α22i(γ2 − 3δ2),

ξ21 =
3
8

β222(γ
2 + δ2) +

β112
8

+
δ

4
α112 +

δ

4
β122 + α122(

γ2

8
+

3δ2

8
− δ

4
)

+
3
8

α111 + i
3
8

α222(γ
2 + 2δ2) + i

3γδ

8
α122 −

1
8

β122γi − i
3γδ

8
β222

− i
3β111 − 3δα111

8γ
− i

3δβ112 − 3δ2α112
8γ

− i
3δ2β122 − 3δ3α122

8γ

− i
3δ3β222 − 3δ4α222

8γ
.

The following theorem can be used to demonstrate the direction
and stability of the NS bifurcation in light of the explanation above.

If Ω ̸= 0, the system undergoes NS bifurcation at E2 for the
parameter ρ varies in neighborhood of N̂SE2 . If Ω < 0 (Ω > 0),
then there is a smooth closed invariant curve that can bifurcate
from the positive fixed point E2, and the bifurcation is sub-critical
(resp. super-critical).

Period-Doubling bifurcation
The one eigenvalue is λ1 = −1 of the positive fixed point
E2 (x∗, y∗), and the other one (λ2) neither 1 nor −1, if the fol-
lowing set contains the model’s parameters

P̂DE2 =

{
(r, a, k, d, ρ, α) : ρ =

(
Γ(1 + α) A1e±

√
L

A2e

) 1
α
= ρ±,L ≥ 0

}
.

Here, we address the PD bifurcation of the system at E2 (x∗, y∗)
when a limited fluctuation of parameters in the area of P̂DE2 . The
parameter (ρ) is utilized to analyze the NS bifurcation.

Let ρ∗ (|ρ∗| ≪ 1,) is the perturbation of ρ and taking a model
perturbation like this

xn+1 = xn +
(ρ + ρ∗)α

Γ(α + 1)

(
rxn ln

k
xn

−
(
1 − e−axn

)
yn

)
≡ f (xn , yn , ρ∗), (18)

yn+1 = yn +
(ρ + ρ∗)α

Γ(α + 1)
((

1 − e−axn
)

yn − dyn
)
≡ g(xn , yn , ρ∗).

If un = xn − x∗, vn = yn − y∗, then equilibrium E2 (x∗, y∗) is be-
comes the origin, and by using Taylor series about (un, vn) = (0, 0)
expanding to the third order of f and g, the model (18) becomes

un+1 = α1un + α2vn + α11u2
n + α12unvn + α13unρ∗ + (19)

α23vnρ∗ + α111u3
n + α112u2

nvn + α113u2
nρ∗ +

α123unvnρ∗ + O((|un|+ |vn|+ |ρ∗|)4),

vn+1 = β1un + β2vn + β11u2
n + β12unvn + β22v2

n + β13unρ∗ +

β23vnρ∗ + β111u3
n + β112u2

nvn + β113u2
nρ∗ + β123unvnρ∗ +

β223v2
nρ∗ + O((|un|+ |vn|+ |ρ∗|)4),
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where

α13 = −
r
(

d + (−d + (−1 + d) ln [1 − d]) ln
[

−ak
ln [1−d]

])
d

αρα−1

Γ(α + 1)
,

α23 = −d
αρα−1

Γ(α + 1)
,

α113 =
ar
(

d + (−1 + d) ln [1 − d]2 ln
[

−ak
ln [1−d]

])
d ln [1 − d]

αρα−1

Γ(α + 1)
,

α123 = a(−1 + d)
αρα−1

Γ(α + 1)
,

β13 =
(−1 + d)r ln [1 − d] ln

[
−ak

ln [1−d]

]
d

αρα−1

Γ(α + 1)
,

β23 = 0,

β113 = −
a(−1 + d)r ln [1 − d] ln

[
−ak

ln [1−d]

]
d

αρα−1

Γ(α + 1)
,

β123 = a(1 − d)
αρα−1

Γ(α + 1)
,

β223 = 0.

(20)

We define T =

 α2 α2

−1 − α1 λ2 − α1

 which is invertible. Now,

applying the transformation

 un

vn

 = T

 xn

yn

, the system (19)

becomes

xn+1 = −xn + f11(un, vn, b∗), (21)

yn+1 = λ2yn + g11(un, vn, b∗),

where the variables (xn, yn) having the order at least two are
denoted the terms in the model (21) by the functions f11 and g11,
respectively.

Using the center manifold theorem, it can be derived that the
system (21) has a center manifold Wc(0, 0, 0) at (0, 0) in a very
closed neighbourhood of ρ∗ = 0, which may roughly be stated as
follows:
Wc(0, 0, 0) =

{
(xn, yn, ρ∗) ϵR3 : yn+1 = α1x2

n + α2xnρ∗

+O((|xn|+ |ρ∗|)3)
}

α1 =
α2[(1 + α1)α11 + α2β11]

1 − λ2
2

+
β22(1 + α1)

2

1 − λ2
2

−

(1 + α1)[α12(1 + α1) + α2β12]

1 − λ2
2

,

α2 =
(1 + α1)[α23(1 + α1) + α2β23]

α2(1 + λ2)2 − (1 + α1)α13 + α2β13]

(1 + λ2)2 .

The center manifold Wc(0, 0, 0) restricted the model (21) has the
following form:

xn+1 = −xn + h1x2
n + h2xnρ∗ + h3x2

nρ∗ + h4xnρ∗2 + h5x3
n +

O((|xn|+ |ρ∗|)3) ≡ F(xn, ρ∗)

where

h1 =
α2[(λ2 − α1)α11 − α2β11]

1 + λ2
− β22(1 + α1)

2

1 + λ2
−

(1 + α1)[(λ2 − α1)α12 − α2β12]

1 + λ2
,

h2 =
(λ2 − α1)α13 − α2β13

1 + λ2
− (1 + α1)[(λ2 − α1)α23 − α2β23]

α2 (1 + λ2)
,

h3 =
(λ2 − α1)α1α13 − α2β13

1 + λ2
+

[(λ2 − α1)α23 − α2β23](λ2 − α1)α1
α2 (1 + λ2)

−

(1 + α1)[(λ2 − α1)α123 − α2β123]

1 + λ2
+

α2[(λ2 − α1)α113 − α2β113]

1 + λ2
+

2α2α2[(λ2 − α1)α11 − α2β11]

1 + λ2
− 2β22α2(1 + α1)(λ2 − α1)

1 + λ2
−

β223(1 + α1)
2

1 + λ2
+

α2[(λ2 − α1)α12 − α2β12](λ2 − 1 − 2α1)

1 + λ2
,

h4 =
α2[(λ2 − α1)α13 − α2β13]

1 + λ2
+

[(λ2 − α1)α23 − α2β23](λ2 − α1)α2
α2 (1 + λ2)

+

2α2α2[(λ2 − α1)α11 − α2β11]

1 + λ2
+

2β22α2(1 + α1)(λ2 − α1)

1 + λ2
+

α2[(λ2 − α1)α12 − α2β12](λ2 − 1 − 2α1)

1 + λ2
,

h5 =
2α2α1[(λ2 − α1)α11 − α2β11]

1 + λ2
+

2β22α1(λ2 − α1)(1 + α1)

1 + λ2
−

α2(1 + α1)[(λ2 − α1)α112 − α2β112]

1 + λ2
+

α2
2[(λ2 − α1)α111 − α2β111]

1 + λ2

+
[(λ2 − α1)α11 − α2β11](λ2 − 1 − 2α1)α1

1 + λ2
.

For PD bifurcation, the two differentiating quantities ξ1 and ξ2
be nonzero,

ξ1 =
(

∂2 F
∂x∂ρ∗ +

1
2

∂F
∂ρ∗

∂2 F
∂x2

)
|(0,0) and ξ2 =(

1
6

∂3 F
∂x3 +

(
1
2

∂2 F
∂x2

)2
)
|(0,0) .

The following theorem contains a succinct statement of the
previously discussed topic.

If ξ1 ̸= 0 and ξ2 ̸= 0 then the system undergoes PD bifurcation
at E2 (x∗, y∗) for varies of ρ in a small neighborhood of bPDB. Fur-
ther, the period-two orbits for ξ2 > 0 (ξ2 < 0) that bifurcate from
E2 (x∗, y∗) is stable (unstable).

EXISTENCE OF MAROTTOS CHAOS

This section presents the condition under which the system (7) will
be chaotic in the sense of Marotto (1978, 2005). Fixed point z of
system f is repelling if all of the eigenvalues of D f (z) are greater
than 1. A repelling fixed point z is snap-back repeller of system
f if there is a point x0 ̸= z in the repelling vicinity of z, such that
xM = z and det(D f (xk)) ̸= 0 for 1 ≤ k ≤ M, where xk = f k(x0).
A snap-back repeller indicates that system f is chaotic.

E2 (x∗, y∗) is an repelling fixed point of F(Xn) if p2 (x∗, y∗)−
4q (x∗, y∗) < 0 and q (x∗, y∗)− 1 > 0

For map F(Xn) =

 xn +
ρα

Γ(α+1)

(
rxn ln k

xn
−
(
1 − e−axn

)
yn

)
yn +

ρα

Γ(α+1)

((
1 − e−axn

)
yn − dyn

)
 ,

Xn = (xn yn)
T

The eigenvalues that match the fixed point E2 (x∗, y∗) are given

by λ1,2 =
− p̂(x∗ ,y∗)±

√
p̂2(x∗ ,y∗)−4q̂(x∗ ,y∗)

2 , where
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p̂ (x∗, y∗) = −( 2 − rρα

Γ(α+1) ) −
rρα

dΓ(α+1) (d − (−1 + d) ln[1 −

d]) ln
[

−ak
ln[1−d]

]
,

q̂ (x∗, y∗) = ( 1 − rρα

Γ(α+1) ) +
rρα

dΓ(α+1) (d + (−1 + d)(−1 +

dρα

Γ(α+1) ) ln[1 − d]) ln
[

−ak
ln[1−d]

]
.

As a result, the fixed point E2 (x∗, y∗) has two complex eigen-
values, and their norm is greater than unity if

p2 (x∗, y∗)− 4q (x∗, y∗) < 0 and q (x∗, y∗)− 1 > 0
As a result, we can assert the following inference.
E2 (x∗, y∗) is a snap-back repeller of F(Xn) if

∣∣DF2(E (x0, y0))
∣∣

̸= 0.
Let E (x0, y0) ̸= E2 (x∗, y∗) be a point in a repelling neighbor-

hood of E2 (x∗, y∗), such that F2(E (x0, y0)) = E2 (x∗, y∗).
Therefore

x1 = x0 +
ρα

Γ(α + 1)

(
rx0 ln

k
x0

−
(
1 − e−ax0

)
y0

)
and

y1 = y0 +
ρα

Γ(α + 1)
((

1 − e−ax0
)

y0 − dy0
)

(22)

and

x∗ = x1 +
ρα

Γ(α + 1)

(
rx1 ln

k
x1

−
(
1 − e−ax1

)
y1

)
and

y∗ = y1 +
ρα

Γ(α + 1)
((

1 − e−ax1
)

y1 − dy1
)

. (23)

We will calculate the value of x0 and y0 by solving equations
(22) and (23)

By simple calculations, we get∣∣DF2(E (x0, y0))
∣∣ = |DF(E (x0, y0))| |DF(F(E (x0, y0)))|

= (CH − DG)

 1 +
{

1 − d − r − (1 + aB)e−aA + r ln k
A

} ρα

Γ(α+1)

+
{

d(r + aBe−aA − r ln k
A )− r(1 − e−aA)(1 − ln k

A )
} ( ρα

Γ(α+1)

)2


where A = x0 +

ρα

Γ(α+1)

(
rx0 ln k

x0
−
(
1 − e−ax0

)
y0

)
, B = y0 +

ρα

Γ(α+1)

((
1 − e−ax0

)
y0 − dy0

)
,

C = 1 − ρα

Γ(α+1)

(
r + ay0e−ax0 − r ln k

x0

)
, D =

ρα

Γ(α+1)

(
−1 + e−ax0

)
,

G =
ρα

Γ(α+1)

(
ay0e−ax0

)
, H = 1 + ρα

Γ(α+1)

(
1 − d − e−ax0

)
.

Therefore E2 (x∗, y∗) is a snap-back repeller of F(Xn) when∣∣DF2(E (x0, y0))
∣∣ ̸= 0 Further, the following inference can claim

as a result of the chaotic nature. F(Xn) is chaotic under the
condition p2 (x∗, y∗) − 4q (x∗, y∗) < 0, q (x∗, y∗) − 1 > 0 and∣∣DF2(E (x0, y0))

∣∣ ̸= 0. Since F(Xn) has a repelling fixed point
E2 (x∗, y∗) if p2 (x∗, y∗)− 4q (x∗, y∗) < 0, q (x∗, y∗)− 1 > 0, and
further from Theorem-5, the same fixed point E2 (x∗, y∗) is a snap-
back repeller if

∣∣DF2(E (x0, y0))
∣∣ ̸= 0.

Therefore F(Xn) is chaotic.

NUMERICAL SIMULATIONS

The Lyapunov exponent, bifurcation diagram, phase por-
trait and fractal dimension are shown for various parameter
values in this section to illustrate the qualitative dynamical
characteristic of the discrete fractional system. To support
our theoretical conclusions for the system (7), we shall
run numerical simulations. These parameter values were
picked: r = 1.2, k = 1.5, a = 0.5, α = 0.75, d = 0.1 and
ρ varies between 1.9 ≤ ρ ≤ 2.73. We locate a fixed point

E(x∗, y∗) = (1.02165, 3.36309) and assess the bifurcation point
for the system (7) at ρ− = 2.08616. The eigenvalues are
λ1,2 = −1, 0.937016.

The system trajectory is shown in Figure 2 as changing from a
fixed point to a Flip bifurcation and finally to a chaotic attractor.
The computed MLEs and FDs associated with Figure 2(a-b) are
shown in Figure 2 (c-d). In reference of the bifurcation Figure 2,
the phase portraits are displayed in Figure 3, which effectively
illustrates the bifurcation of a smooth, invariant closed curve into
a chaotic attractor from a stable fixed point.

(a) (b)

(c) (d)

Figure 2 Flip Bifurcation diagram, MLEs and FDs for varying parameter
ρ

Figure 3 Phase picture for varying ρ with matching to Figure 2 a,b. Blue
∗ is the fixed point E0.

In Figure 4, the orbit diagram of the prey and predator popula-
tions is shown together with other fixed parameter values are r =
1.2, k = 1.5, a = 1.0, α = 0.5, d = 0.4 and ρ varies between 2.5 ≤
ρ ≤ 3.25. We establish a fixed point E(x∗, y∗) = (0.510826, 3.30154)
and assess the bifurcation point for the system (7) at ρNS = 2.65984.
The eigenvalues are λ1,2 = −0.0173315 ± 0.99985i. This figure
showing transition of trajectory from a fixed point to NSB and
finally to chaotic attractor. The phase portrait, MLEs and FD of
Figure 4 (a-b) are shown in Figure 5 and Figure 4 (c-d) respectively.
All bifurcation processes for both prey and predator have three
distinct periodic windows.
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(a) (b)

(c) (d)

Figure 4 Visual representation of NS Bifurcation, MLEs and FDs of
species for varying parameter ρ

Figure 5 Phase picture for changing input of ρ matching to Figure 4 a,b.
Red ∗ is the fixed point E0.

We have also investigated NS bifurcation by varying the frac-
tional order α in the range 0.65 ≤ α ≤ 0.985 and fixed all other
parameter discussed above for Figure 4 with ρ = 2.65984. The
visual representation of Figure 6 is displayed in Figure 7.

The prey-predator model may behave more dynamically in the
Neimark-Sacker bifurcation diagram as other parameter values
vary (for example, parameter a). When the parameter values are
set as r = 1.2, k = 1.5, α = 0.75, d = 0.4 with ρ = 2.65984 and a
range between 0.5 ≤ a ≤ 1.33, as illustrated in Figure 8 (a-b), a new
Neimark-Sacker bifurcation diagram is produced. At a = aNS =
1.0, the system encounters a Neimark-Sacker bifurcation. Figures 9
and 8 (c-d) illustrate, respectively, the phase portrait, MLEs, and FD
of Figure 8(a-b). Figure 10 (a) shows the 3D bifurcation diagrams
in (ρ, b, x)-space. The plot of the maximal Lyapunov exponents is
shown in Figure 10 (b) for two control parameters through a 2D
projection onto the (ρ, a) plane.

(a) (b)

(c) (d)

Figure 6 Diagram of NS Bifurcation in (a) (α, x) plane, (b) (α, y) plane,
(c) MLEs , (d) FDs

Figure 7 Phase picture for different inputs of α matching to Figure 6 a,b.
Red ∗ is the fixed point E2.

(a) (b)

(c) (d)

Figure 8 Diagram of NS Bifurcation in (a) (a, x) plane, (b) (a, y) plane,
(c) MLEs , (d) FDs

Fractal Dimension
To determine chaotic attractors of a system, the fractal dimensions
(FD) measurement is used and is defined by Cartwright (1999)
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Figure 9 Phase picture for different inputs of a matching to Figure 8 a,b.
Red ∗ is the fixed point E2.

(a) (b)

Figure 10 (a) 3D Bifurcation diagram in (ρ, b, x) space (b) Maximum
Lyapunov exponents projected in two dimensions onto the (ρ, a) plane

D̂FD = k +
∑k

j=1 ttj

|ttk+1|
(24)

where the largest integer is k such that ∑k
j=1 ttj ≥ 0 and

∑k+1
j=1 ttj < 0 and tj’s are Lyapunov exponenets.
Now, the system’s fractal dimensions (7) have the following

structure:
D̂FD = 2 +

tt1
|tt2|

(25)

It is certain that the dynamics of the fractional order prey-predator
system become unstable as the value of the parameter ρ rises since
the chaotic dynamics of the system (7) (ref. Figure 5) are quantified
with the sign of FD (ref. Figure 4 (d)).

CHAOS CONTROL

Dynamical systems are thought to be optimal in reference to a per-
formance criterion and will avert chaos. Chaotic behavior is inves-
tigated in physics, biology, ecology, telecommunications, and other
domains. Additionally, useful chaos management approaches can
be used to a wide range of sectors, including communication sys-
tems, physics labs, biochemistry, turbulence, and cardiology. The
challenge of regulating chaos dynamics in discrete-time systems
has recently piqued the interest of many academics.

The four approaches for researching chaos control in discrete-
time models most frequently referenced to take the challenge of
controlling chaos are the state feedback method, pole-placement
methodology, OGY technique, and hybrid control approach. We
introduce OGY (Edward et al. 1990) and state feedback (Lynch
2007) for managing chaos in the fractional order prey-predator
model. We are unable to use ρ as a control parameter in the OGY
technique. To implement the OGY approach, a serves as a control
parameter.

To apply the OGY approach, we can rewrite the system (7) as
shown below.

xn+1 = xn +
ρα

Γ(α + 1)

(
rxn ln

k
xn

− (1 − e−axn )yn

)
= ˜fe1(x, y, a),

yn+1 = yn +
ρα

Γ(α + 1)
(
(1 − e−axn )yn − dyn

)
= ˜fe2(x, y, a)

(26)
where a is the parameter for chaos control. Additionally, let us
assume that the chaotic regions are defined by |a − a0| < ν̃, where
ν̃ > 0 and a0 symbolizes the nominal parameter. Our stabilizing
feedback control system steers the trajectory toward the desired
orbit. If the system (7) has an unstable fixed point at (x+, y+) in
a chaotic zone created by the development of a Neimark-Sacker
bifurcation, the following linear map can represent the system (26)
in the vicinity of the unstable fixed point at (x+, y+). xn+1 − x+

yn+1 − y+

 ≈ Ãee

 xn − x+

yn − y+

+ B̃ee [a − a0] (27)

where

Ãee =

 ∂ ˜fe1(x,y,a)
∂x

∂ ˜fe1(x,y,a)
∂y

∂ ˜fe2(x,y,a)
∂x

∂ ˜fe2(x,y,a)
∂y



=

 1 + rµ̃e

(
−1 + ln k

x+ − aR̃e1

)
(−1 + e−ax+

)µ̃e

arµ̃eR̃e1 1 + µ̃e(1 − d − e−ax+
)


and

B̃ee =

 ∂ ˜fe1(x,y,a)
∂a

∂ ˜fe2(x,y,a)
∂a

 =

 −R̃e2

R̃e2


For convenience, here we let ρα

Γ(α+1) = µ̃e, R̃e1 =
e−ax+ x+ ln −ak

ln [1−d]
d

and R̃e2 =
e−ax+ rx+2

µ̃e ln −ak
ln [1−d]

d
The system’s (26) controllability matrix, is therefore defined as

follows:

C̃ee =
[
B̃ee : Ãee B̃ee

]
=

 −R̃e2

e−2ax+ rx+2 ln −ak
ln [1−d]

(
d(µ̃e+eax+ (−1+(−1+r)µ̃e )−deax+ r ln k

x+
)+arx+ µ̃e ln −ak

ln [1−d]

)
d2

R̃e2

e−2ax+ rx+2 ln −ak
ln [1−d]

(
d(µ̃e+eax+ (−1+(−1+r)µ̃e )+arx+ µ̃e ln −ak

ln [1−d]

)
d2


It is then clear to determine that the rank of C̃ee is 2. Assume

that [a − a0] = −K̃ee

 xn − x+

yn − y+

 where K̃ee = [σ̃e1 σ̃e2], then

system (26) becomes
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 xn+1 − x+

yn+1 − y+

 ≈ [Ãee − B̃eeK̃ee]

 xn − x+

yn − y+


Additionally, (7) offers the appropriate controlled system.

xn+1 = xn + µ̃e

(
rxn ln

k
xn

− (1 − e−(a0−σ̃e1(xn−x+)−σ̃e2(yn−y+))xn )yn

)
yn+1 = yn + µ̃e

(
(1 − e−(a0−σ̃e1(xn−x+)−σ̃e2(yn−y+))xn )yn − dyn

)
(28)

Additionally, the fixed point (x+, y+) is locally asymptotically
stable iff both eigenvalues (Ãee − B̃eeK̃ee) of the matrix are situated
inside an open unit disk.

Also,
Ãee − B̃eeK̃ee = 1 + µ̃e

(
r ln k

x+ − arR̃e1 − r
)
+ R̃e2σ̃e1 (e−ax+ − 1)µ̃e + R̃e2σ̃e2

arR̃e1 − R̃e2σ̃e1 1 + (d − e−ax+ − 1)µ̃e − R̃e2σ̃e2


Also

λe
2 −

(
2 + (1 − d − eax+ )µ̃e + µ̃e(r ln

k
x+

− r − arR̃e1) + (R̃e2σ̃e1 − R̃e2σ̃e2)

)
λe

+
e−ax+

d

(
dµ̃e(rµ̃e − 1) + deax+ (1 + µ̃e(1 − d − r − rµ̃e(1 − d)))

)
+

1
d

e−ax+
(

drµ̃e ln
k

x+
(ex+ − µ̃e(1 − eax+ (1 − d)))

)
+

e−ax+

d

(
rx+ µ̃e ln

−ak
ln [1 − d]

(aµ̃e − a + x+(1 − dµ̃e)σ̃e1 − x+(1 − rµ̃e + rµ̃e ln
k

x+
)σ̃e2)

)
= 0.

(29)

The lines of marginal stability can then be obtained by solving
the equations λe1 = ±1 and λe1λe2 = 1. Furthermore, these
restrictions ensure that the open unit disc has both eigenvalues.
Let us consider λe1λe2 = 1 and from (29), we get

Le1 =
−1
d

e−ax+ µ̃e

(
d(1 − rµ̃e)− deax+ (1 − d − r − rµ̃e(1 − d))

)
+

−1
d

e−ax+ µ̃e

(
dr ln

k
x+

(−eax+ + µ̃e(1 − eax+ + deax+ ))

)
−

e−ax+

d
µ̃e

(
rx+ ln

−ak
ln [1 − d]

(a − adµ̃e + x+(1 − dµ̃e)σ̃e1 + x+(1 − rµ̃e + rµ̃e ln
k

x+
)σ̃e2)

)
.

Next, if we assume that λe1 = 1, we obtain

Le2 =
1
d

e−ax+
(

dµ̃e(−2 + µ̃e) + deax+ (4 + 2µ̃e − 2dµ̃e − rµ̃e(2 + rµ̃e − drµ̃e))
)

+
1
d

e−ax+
(

drµ̃e ln
k

x+
(2eax+ − µ̃e(1 − eax+ − deax+ ))

)
+

1
d

e−ax+
(

rx+ µ̃e ln
−ak

ln [1 − d]
(−2a + adµ̃e + x+(2 − dµ̃e)σ̃e1 + x+(−2 + rµ̃e − rµ̃e ln

k
x+

)σ̃e2)

)
.

Also, if λe1 = −1 , then

Le3 =
e−ax+ rµ̃e

2

d

(
d(eax+ − deax+ − 1 + (1 + (−1 + d)eax+ ) ln

k
x+

− ax+ ln
−ak

ln [1 − d]
)

)
+

1
d

e−ax+ rµ̃e
2 ln

−ak
ln [1 − d]

x+2
(

dσ̃e1 + r(−1 + ln
k

x+
σ̃e2)

)
.

For a given parametric value, the stable eigenvalues are located
in the triangle in the σ̃e1, σ̃e2 plane encircled by the straight lines
Le1, Le2, Le3.

Chaos is stabilized at the point where the system’s (7) unstable
trajectories through a technique known as state feedback control.
By introducing a feedback control law as the control force uee, and
using the following formula, the system (7) may be made to take
on a controlled form.

xn+1 = xn +
ρα

Γ(α + 1)

(
rxn ln

k
xn

− (1 − e−axn )yn

)
+ uee

yn+1 = yn +
ρα

Γ(α + 1)
(
(1 − e−axn )yn − dyn

)
uee = −k1(xn − x+)− k2(yn − y+)

(30)

where the nonnegative equilibrium point of the system (7) is
represented by (x+, y+). The feedback gains are represented by
the numbers k1 and k2.

Example: To implement the feedback control OGY mech-
anism for the system (7), we utilize (a0, r, k, d, α, ρ) =
(1.33, 1.2, 1.5, 0.4, 0.75, 2.65984). In this situation, the unstable
system (7) has a single non-negative fixed point (x+, y+) =
(0.384079, 1.56978). Then, based on these parametric values, we
offer the controlled system below.

xn+1 = xn + 2.2662
(

1.2xn ln
1.5
xn

− (1 − e−(1.33− ˜σe1(xn−0.384079)− ˜σe2(yn−1.56978))xn )yn

)
,

yn+1 = yn + 2.2662
(
(1 − e−(1.33− ˜σe1(xn−0.384079)− ˜σe2(yn−1.56978))xn )yn − 0.4yn

)
.

(31)

where the gain matrix is K̃ = [σ̃e1 σ̃e2]. We also get,

Ãee =

 −0.85338 −0.90648

2.83883 1



B̃ee =

 −0.819801

0.819801



C̃ee =

 −0.819801 −0.0435314

0.819801 −1.50747


Consequently, it is easy to confirm that the matrix’s C̃ee rank

is 2. As a result, it is possible to control the system (31), and the
Jacobian matrix of its controlled system is given by.

Ãee − B̃eeK̃ee =

 −0.85338 + 0.819801σ̃e1 −0.90648 + 0.819801σ̃e2

2.83883 − 0.819801σ̃e1 1 − 0.819801σ̃e2


The lines Le1, Le2 and Le3 are offered by for marginal stability.

Le1 = 0.719959 + 0.0766677σ̃e1 − 1.62767σ̃e2 = 0

Le2 = 2.86658 + 0.896468σ̃e1 − 2.44747σ̃e2 = 0

Le3 = −2.57334 + 0.743133σ̃e1 + 0.807869σ̃e2 = 0

The controlled system(31)’s stable triangular region is defined
by the marginal lines Le1, Le2 and Le3, which are shown in Figure
11.

To investigate the operation of the applied feedback control
influence as a controller of chaos in an unstable condition, we
performed numerical simulations (see Figure 11). The parameter
values will be the same as the OGY method that we select. The
chosen feedback increases are k1 = −0.3 and k2 = −0.25.

202 | Uddin et al. CHAOS Theory and Applications



(i) (ii)

(iii) (iv)

Figure 11 (i-ii) OGY method and State feedback method’s stable
region (iii-iv) Trajectories of a stable system

CONCLUSION

The present study investigates the dynamics of a model system
and identifies two equilibrium points under specific parametric
conditions. Our work provides a comprehensive stability analysis
of these equilibrium points, which is presented in detail in the
paper. In addition, we demonstrate the occurrence of a flip bifurca-
tion and a Neimark-Sacker bifurcation in the model system, both
analytically and numerically, under certain conditions. Notably,
our results indicate that increasing values of the parameters ρ and
a destabilize the system, resulting in a transition from a stable
state to chaotic behavior via bifurcation. We observe the resulting
chaotic behavior in the models. However, we also demonstrate
that the OGY technique can be used to control the chaotic behavior,
both numerically and analytically.

Furthermore, our main finding is that the degree of memory
represented by the parameter α plays a crucial role in determining
the system’s behavior. Specifically, our results indicate that strong
memory, corresponding to α approaching zero, stabilizes the sys-
tem, while weak memory, corresponding to α approaching one,
leads to chaotic behavior. These findings highlight the importance
of memory in the dynamics of the model system.

In summary, this study presents a comprehensive analysis of
the dynamics of a model system and demonstrates the occurrence
of bifurcations and chaos under specific parametric conditions.
Additionally, we show the effectiveness of the OGY technique
in controlling the chaotic behavior and highlight the impact of
memory on the system’s behavior. Our work contributes to a
better understanding of the dynamics of the model system and
provides insights into the role of memory in the system’s behavior.
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