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ABSTRACT 
 

In this paper, extended version of Latin hypercube sampling (ELHS) is proposed to obtain different design variations of a CAD 

model. The model is first represented by design parameters. Design constraints that are relationships between the parameters 

are then determined. After assigning value ranges for the design parameters, design space is formed. Each design parameter 

represents a dimension of this design space. Design is a point in the design space and is feasible if it satisfies the predefined 

design constraints. Otherwise, it is infeasible. ELHS utilizes an input design in order to obtain feasible designs. 

 

All dimensions of the design space are divided into equal number of intervals. ELHS perform trials in design space to find 

feasible designs. In each trial, all the candidate designs are enumerated and one of them is selected based on a cost function. 

Value of the cost function is zero if all design constraints of the design are satisfied. A similarity constraint is introduced in 

order to eliminate designs with similar geometries. Three different CAD models are utilized for this study’s experiments in 

order to show the results of the ELHS algorithm.  

 

Keywords: Latin hypercube sampling, Computer aided design, Geometrical designs, Constrained design space 
 

 

1. INTRODUCTION 

 

Engineering and industrial product design is a goal oriented, constrained based and decision making 

process. The product obtained after this process should satisfy consumer’s needs not just by functional 

performance also by external appearance. Design process can be more complex and time consuming if 

the appearance of the product is valuable to its consumers. Therefore, a tool which can automatically 

generates variety of design options for a product within product’s design space can be beneficial. This 

can provide designers different options for the selection of the most appealing design. The objective of 

this research is to develop a technique that can produce variety of design options for a product within 

the designer’s design requirements. For this, a sampling technique called Latin Hypercube sampling 

(LHS) is selected and modified according to the objectives of the current research.  

 

LHS is a popular stratified sampling technique which was first proposed by MacKay et. al. [1] and was 

further improved by Iman and Conover [2]. It is a method of sampling random designs that attempts to 

distribute evenly in the design space. In this research, traditional LHS technique is extended to perform 

sampling in the constrained and high dimensional design spaces, which is named as Extended Latin 

Hypercube sampling (ELHS). The CAD model is defined by design parameters. Relationships between 

these parameters are also determined and are called design constraints. Range of each design parameter 

is specified by defining its lower and upper bounds. These design parameters and their bounds form the 

design space in which sampling is performed. Each design parameter represents a dimension in the 

design space and sampling is performed by dividing the all dimensions into equally spaced number of 

intervals (levels). This division partitioned the design space into sub-spaces (stratums).  

 

During the search process in the design space, ELHS performs equal number of trials as the number of 

intervals of the design space. Only one design is selected from each interval. There can be many feasible 
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and infeasible designs in the dimension interval. In order to select a feasible one, enumeration is 

performed during the trails. All the candidate designs are enumerated in each trial and the one which 

minimizes the cost is selected. The cost function is defined based on the equality and inequality design 

constraints. A similarity constraint is applied based on the Euclidian distance formulation which ensures 

the generation of designs with variant geometries. Figure 1 shows designs generated using proposed 

methodology. A vase model is given as input and different designs are obtained. We believe that such 

automatic generation of CAD models can be very useful for design engineers and inspire them in the 

design process. 
 

 
 

Figure 1. Variant shapes of vase model obtained by the proposed methodology 
 

2. RELATED WORKS 
 

Several improvements have been done by different researcher in order to improve LHS sampling. The 

method to perform uniform sampling in multidimensional space for LHS was introduced by Johnson et 

al. [3]. In this method, designs to be sampled using LHS are obtained while maximizing the minimum 

distance between designs (maximin criterion). The algorithm starts with a random design in the design 

space and searches for the next design with maximum of the minimum (maximin) inter-design distance. 

The maximin criterion was also used by Morris and Mitchell [4]. They used a simulated annealing search 

algorithm to search design space for designs which offer a compromise between the entropy and 

maximin criterion. Deutsch et al. [5] improved the method of maximin criterion by using Cholesky 

decomposition of correlation matrix and compared the proposed algorithm with simple LHS and Monte 

Carlo simulation. The obtained results showed that samples produced by their algorithm have better 

uniformity in the design space.    
 

An algorithm for the best space filling designs was proposed by the Cioppa and Lucas [6]. However, 

their algorithm is computationally expensive because it requires the long run times.  A Sliced Latin 

Hypercube (SLH) technique was introduced by Qian [7]. Design space is further sub-divided small 

design spaces and then sampling is performed in the sub-divided design spaces. This sub-division 

improves the space filling property of original LHS. SLH was further improved by Cao and liu [8]. They 

proposed a method which optimizes the sub-divided design space in order to maintain uniformity. 

Prescott [9] performed complete or partial enumeration searches to investigate the space-filling 

properties of orthogonal-column Latin Hypercube designs with multiple number of runs. He used the 

maximin criterion in cases where there are several designs with similar properties.  
 

There are several other approaches proposed for the optimal distribution of designs in design space. 

Sacks et. al. [10] introduced a method of minimization of the integrated mean square error (IMSE). 

Shewry and Wynn performed selection of designs based on the maximization of entropy. Bates et. al. 

[11, 12] used approach of minimization of potential energy of designs according to Audze and Eglais 

[13]. Rajabi et. al. [14] studied the impact of initial design feed to LHS. They compared the effect of 

design selections randomly from the stratums and the selection of designs from the mid-point of 

stratums. The results revealed that design selection based on mid-point is significantly better than those 

based on random selection.  

 

Several other variations of LHS based on orthogonality of design space are also proposed by different 

researchers. Leary et. al. [15] introduced orthogonal-array-based LHS designs, Joseph and Hung [16] 

proposed orthogonal-maximum LHS designs and orthogonal and nearly orthogonal designs was 
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demonstrated by Bingham et. al. [17].  There is considerable amount of research has been done on 

optimal selection of designs in the design space in order to improve the space-filling property of LHS. 

However, most works done by researchers are proposed for the unconstrained design spaces. The 

research problem becomes very complicated when selection of designs has to be performed in a 

constrained and high dimensional design space, as that of the current research. Mysakova et al. [18] and 

Mysakova and Leps [19] proposed a technique to perform sampling for constrained spaces. This 

technique is based on the triangulation of admissible space by Delaunay Triangulation method. To 

produce uniform sampling in the design space, a heuristic method based on the uniform finite element 

meshes was proposed. Although this technique has good space filling property but it is just applicable 

to only two dimensional constraint problems. Fuerle and Sienz [20] proposed a method based on LHS 

for design selections for constrained spaces. Desired number of designs to be sampled are defined first 

and these points are then randomly sampled using LHS in two dimensional space. The coordinates of 

samples that are in infeasible region are modified using the mutation operator that is used for the genetic 

algorithms. Fuerle and Sienz method has some draw backs such that it cannot be implemented for the 

high dimensional sampling problems more than 3D. Furthermore, it does not produce good results for 

the designs space where infeasible designs are spread irregularly. 
 

However, ELHS has the ability to perform sampling in more than three-dimension design spaces. ELHS 

also ensures the selection of variant feasible designs from the design spaces in which the distribution of 

the infeasible designs is highly irregular.   
 

3. RESEARCH PROBLEM 
 

LHS is a stratified sampling technique in which random samples of design can be generated from a 

multidimensional design space. Suppose an 𝑗 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 design space and we want to sample 𝑗 

number of designs evenly throughout the design space. The design parameters forms a specific 

geometrical design (or design) and are denoted by 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑗. Each design parameter defines a 

dimension in the design space. The value of each design parameter ranges between its lower and upper 

bound [𝑥𝑛
𝑙 , 𝑥𝑛

𝑢] where 𝑛 = 1,2,3, … , 𝑗, 𝑥𝑛
𝑙  and 𝑥𝑛

𝑢 are the lower and upper bounds of the 𝑛𝑡ℎ design 

parameter, respectively. The range of each design parameter is partitioned into 𝑁 + 1 equally spaced 

number of intervals (levels) such that [𝑥𝑛
𝑙 = 𝑥𝑛

1 , 𝑥𝑛
2, 𝑥𝑛

3, … . . , 𝑥𝑛
𝑁 , 𝑥𝑛

𝑁+1 = 𝑥𝑛
𝑢], where 𝑁 is the sampling 

scale. The 𝑁 + 1 number of partitions of each dimension divides the design space into 𝑁𝑗 number of 

sub-spaces (stratums). LHS samples the designs from the stratums of design space and creates a design 

array (𝑇) which contain the sampled designs (see Figure 2 (c)). 
 

During the search process of LHS to generate design array 𝑇, 𝑡 is the number of trials that are performed 

on the basis of LH-rule and 𝑡 = 𝑁. The LH-rule states that in any trial one and only one design can be 

selected from each interval of the design space. In the other trials, designs cannot be selected from a 

stratum of interval which is contiguous to the previous selected stratum (as case in Figure 2 (a)). For 

example, there are two designs (mark in black) are selected in the first trial as seen in the upper image 

of Figure 2 (a) which violated the LH-rule. During the second trial, a design is selected from the stratum 

that is contiguous to the previously selected stratum during trial-1 (see the lower image of Figure 2 (a)). 

This also violated the LH-rule. The Figure 2 (b) shows the sampling in the two dimensional design space 

satisfying the LH-rule.  
 

There are feasible and infeasible designs in the constrained design space. The feasible design is one 

which satisfy the all geometrical constraints 𝜑1, 𝜑2, 𝜑3, … , 𝜑𝑚 which define relationships between the 

design parameters and 𝑚 is integer. Infeasible design is one which does not satisfy at least one of the 

geometrical constraints. The design constraints in this work can be equality or inequality constraints. As 

LHS selects the designs randomly in the design space, selected designs can be infeasible. Therefore, 

random selection nature of LHS is modified in the current research. A systematic method is proposed 



Khan and Günpınar/ Anadolu Univ. J. of Sci. and Technology  A – Appl. Sci. and Eng. 18 (2) – 2017 
 

304 

for the selection of feasible designs based on LHS and for higher dimensional design space with equality 

and inequality constraints.  

 

 
 

Figure 2. Implementation of LHS in the two dimensional design space with the sampling scale 𝑁 = 5. 
The red circle in the design space represents the sampled design. (a) Sampling is done while 

violating the LH-rule. (b) Sampling is done while satisfying the LH-rule. (c)  Design array 

generated from the LHS implemented in image (b).   

 

4. METHODOLOGY 

 

The developed method gets a feasible design and its design space as input. Recall that a design space is 

formed using design parameters, design constraints and lower/upper bounds of each design parameter. 

Depending on the number of design to be sampled, 𝑁 (sampling scale) is also given. ELHS starts 

sampling the designs by performing trials in the design space. During a trial, candidate positions for 

each design parameter are enumerated and the candidate position having minimum cost value and 

satisfying the LH-rule is selected.  
 

To obtain designs with distinct geometries, a similarity threshold 𝜇 is utilized. During each trial, at most 

a feasible design is obtained and its distance to other previously selected designs should be greater than 

𝜇. By doing this, we can store designs distinct from the previously obtained ones. Euclidean distance is 

utilized to compute distance between two designs 𝑝 and 𝑞 and calculated as follows: 𝐷𝑝𝑞 =

√∑ ||𝑥𝑛
𝑝

− 𝑥𝑛
𝑞

||
2𝑗

𝑛=1  . 𝑥𝑛
𝑝
 and 𝑥𝑛

𝑞
 represents scaled parameter values for the designs 𝑝 and 𝑞 in the 𝑗 −th 

dimension of the design space. The scaled parameter values are obtained after normalizing the parameter 

values between 0 and 1. These scaled parameter values forms the scaled design space. If all distances 

between the newly selected design and other previously obtained designs are greater than 𝜇, then newly 

selected design is stored. Otherwise it is rejected.  

 

Below pseudo-code summarizes the ELHS algorithm.  
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ELHS Algorithm: 

1: //Input: initial feasible design 𝑋𝑖𝑛𝑖𝑡𝑖𝑎𝑙: [𝑥1 … 𝑥𝑗], lower and upper bounds [𝑥𝑛
𝑙 , 𝑥𝑛

𝑢] of each 

design parameter 

2: Set the first design as 𝑋1 = 𝑋𝑖𝑛𝑖𝑡𝑖𝑎𝑙 

3: for 𝑡 = 1 𝑡𝑜  𝑁 do 

4: Set 𝑥1 equal to 𝑡 

5: for 𝑛 = 2 𝑡𝑜 𝑗 do 

6: for 𝑝 = 1 𝑡𝑜 𝑁 do 

7: Set 𝑥𝑛 = 𝑝 

8: Calculate cost value for design 𝑋𝑡 

9: if cost value = 0 and LH-rule satisfied then 

10: Preserve 𝑝 for 𝑥𝑛 

11: else  

12: Reject 𝑝 

13: end else  

14: end if  

15: end for 

16: end for 

17: // ℎ is total number of stored designs 

18: for 𝑘 = 1 𝑡𝑜 ℎ  

19: Calculate distance 𝐷𝑡𝑞 between 𝑋𝑡 and the 𝑘𝑡ℎ stored design 𝑋𝑞 

20: if 𝐷𝑡𝑞 > 𝜇 then 

21: Insert  𝑋𝑡 into the design array 𝑇 

22: else 

23: Reject 𝑋𝑡 

24: end else 

25: end if 

26: end for  

27: end for 

 

Here we illustrate the ELHS algorithm for a 3-dimensional design space. Therefore, design variables 

are denoted by  𝑥1, 𝑥2 and 𝑥3 representing each dimension of the design space (see Figure 3). Each 

dimension is divided into 𝑁 + 1 divisions, where 𝑁 = 5. There are 125 stratums (𝑁𝑗 = 125) and five 

trials will be performed (𝑡 = 5). Suppose the parameter set of initial input feasible design is 

𝑋𝑖𝑛𝑖𝑡𝑖𝑎𝑙[2 3 4]. During the sampling process, positions of the first design variable are fixed from 1 

to 5 in order to decrease the total number of enumerations (see Figure 3 (a)). Using the input parameter 

set in the first trial 𝑥2 is enumerated for its available candidate positions 1, 2, … , 𝑁. During this 

enumeration, position of 𝑥1 is set equal to 1 and position of 𝑥3 to 4 which is selected from input 

parameter set. On the basis of cost function, 𝑥2 = 2 is selected (see Figure 3 (a)). Proceeding to 𝑥3, 

number of available candidate positions for the design parameter 𝑥3 are 1, 2, … , 𝑁. Enumeration is 

performed for 𝑥3 between its candidate positions while taking 𝑥1 = 1 and 𝑥2 = 2. During this 

enumeration 𝑥3 = 3 is selected on this basis of the cost function. 
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Figure 3. (a) Selection of candidate position during the trials. In which candidate position which 

minimizes the cost function is selected. (b) Design array containing the design. (c) 3-D plot 

of sampled designs. 
 

In the second trial, 𝑥1 is set to 2 and enumeration is performed for 𝑥2 between its candidate positions 

1, 3, 4, 5. According to LH-rule, as 2 is already selected for 𝑥2 in the first trial, it cannot be selected in 

the current trial. Therefore, 2 is eliminated from the candidate positions of 𝑥2 in second trial to validate 

the LH-rule. In this trial, the candidate positions for 𝑥3 are 1, 2, 4, 5. The position 3 is eliminated to 

validate the LH-rule, as it is selected in the first trial. Accordingly, the selection is done for the next 

three trials. Notice that in Figure 3 (a), number of candidate positions for design variables decreases as 

the number of trial increases because of the LH-rule. In the proposed technique, sampling process starts 

by taking 𝑋𝑖𝑛𝑡𝑖𝑎𝑙(input design) into account. As the proposed method is highly dependent on the input 

design, different inputs will apparently produce different designs.  
 

4.1. Cost Function 
 

Selection of designs during enumeration is done based on the cost function 𝐶𝑓 consisting of both equality 

and inequality design constraints. During each trial, cost value is computed for all the candidate positions 

of a design parameter. The one which minimizes the cost function is selected. The cost function is 

formulated as follows:  
 

𝐶𝑓 = ∑ 𝐺(𝜑𝑚)
𝑙

𝑚=1
 (1) 

 

𝜑𝑚 represents a design constraint and 𝐺(𝜑𝑚) is the penalty function to penalize the design parameter 

value that does not satisfy the constraint. Let 𝐹(𝜑𝑚) represents the equation of the design constraint 𝜑𝑚 

which can be either 0 or greater/smaller then 0 for equality or inequality constraints, respectively. 𝐺(𝜑𝑚) 

gets 0 if the equality or inequality constraint is satisfied. Otherwise, it is absolute value of  𝐹(𝜑𝑚) (see 

Equation 2). With such formulation, 𝐶𝑓 is 0 for feasible designs and positive for infeasible ones.  
 

𝐺(𝜑𝑚) = 0 𝑖𝑓 𝜑𝑚   𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑

𝐺(𝜑𝑚) = |𝐹(𝜑𝑚)| 𝑖𝑓 𝜑𝑚  𝑛𝑜𝑡 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑
   (2) 
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4.2. Multiple Run of the ELHS Algorithm 

 

The ELHS algorithm is executed multiple times to increase the number of designs obtained. Number of 

designs obtained may not be equal to number of divisions 𝑁 after applying the ELHS algorithm. The 

algorithm runs multiple times until no design with distinct geometries are produced. The proposed 

method is dependent on the input design as previously stated. Different designs can be obtained by 

feeding different input designs to the ELHS algorithm.  

 

Figure 4 illustrates the usage scenario of the ELHS algorithm. In the first run, the input design is the 

initial feasible design (𝑋𝑖𝑛𝑡𝑖𝑎𝑙) provided by the designer. The output of the first run is two variant 

feasible designs. In the second run, input to the ELHS algorithm-1 is the first design obtained from the 

first run. In third run, input is the second design obtained during the first run. Accordingly, multiple runs 

are performed until no distinct input design is obtained. Recall that distinctness is computed based on 

the similarity threshold 𝜇 in Section 4. 

 

 
 

 
 

 

Figure 4. Usage scenario of the ELHS algorithm  
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5. EXPERIMENTAL STUDIES 

 

Several experiments have been conducted to check the efficiency of the proposed technique. Three 

different CAD models are selected as test models as seen Figure 5: Vase, glass and bowl. 

 

 
 

Figure 5. Selected input CAD models to the proposed technique. (a) Surface models. (b) 2D 

wireframe models 
 

5.1. Design Parameters 
 

Number of design parameters and design constraints are kept same for the all three designs in order to 

verify and to gain better perspective of the behavior of the proposed method under the same design 

space. Each input design is composed of two cubic Bezier curves in X-Y plane and consists of fourteen 

design parameters (see Figure 5(b)). 3-D surfaces for these models are created by performing the revolve 

operation on the cubic Bezier curves around Y-axis. For better visual appearance, 𝐺0 and 𝐺1 continuity 

is maintained at the connection of curve-1 and curve-2 of all three input designs. Design parameters 

(𝑥1, 𝑥2, 𝑥3, … , 𝑥14) are defined on the control points of curves as shown in Figure 5 (b). The design 

parameters with odd integer numbered subscript represents the X-coordinate and design parameters with 

even integer numbered subscript represents the Y-coordinate of control points. For example, 𝑥1 and 𝑥2 

are the X and Y-coordinate of  the control point (𝑥1, 𝑥2), respectively.   

 

5.2. Design Constraints 
 

Seven design constraints are defined in Table 1 for the input CAD models that represents relationship 

between design parameters. 𝜑1, 𝜑2, … , 𝜑6 are the inequality constraints and 𝜑7 is the equality constraint. 

𝜑7 is a nonlinear and maintains the 𝐺1 continuity between the curves at their connection point. �⃑�1 is the 

vector between control points (𝑥5, 𝑥6) and (𝑥7, 𝑥8), and �⃑�2 is the vector between  control points (𝑥7, 𝑥8)  

and (𝑥9, 𝑥10). 𝜃 is the angle in radian between vector �⃑�1 and �⃑�2. If 𝜃 is zero, the connecting polygon 

segments of curve-1 and curve-2 are collinear so that there is a 𝐺1continuity. Note that determination of 

the design constraints should be carefully done. Lower and upper bounds of each design parameter 

specify the length of dimensions of the design space which are shown in Table 2. 
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Table 1. Design constraints for the input CAD models 

 
Design Constraints 

𝜑1 = 𝑥2 − 𝑥4 > 0 𝜑4 = 𝑥8 − 𝑥10 > 0 

𝜑2 = 𝑥4 − 𝑥6 > 0 𝜑5 = 𝑥10 − 𝑥12 > 0 

𝜑3 = 𝑥6 − 𝑥8 > 0 𝜑6 = 𝑥12 − 𝑥14 > 0 

𝜑7 = 𝜃(�⃑�1, �⃑�2) = 0 

 

Table 2. Lower and upper bounds of design parameters of input CAD models 

 
Vase input design 

0.50 ≤ 𝑥1 ≤ 7.50 0.23 ≤ 𝑥5 ≤ 6.74 0.14 ≤ 𝑥9 ≤ 6.14 0 ≤ 𝑥13 ≤ 0.50 

7.75 ≤ 𝑥2 ≤ 9.95 3.00 ≤ 𝑥6 ≤ 4.62 0.25 ≤ 𝑥10 ≤ 1.75 0 ≤ 𝑥14 ≤ 0.70 

0.50 ≤ 𝑥3 ≤ 7.50 0.30 ≤ 𝑥7 ≤ 6.32 1.25 ≤ 𝑥11 ≤ 2.75  

4.75 ≤ 𝑥4 ≤ 7.25 1.70 ≤ 𝑥8 ≤ 3.00 0 ≤ 𝑥12 ≤ 0.80  

Glass input design 

0.50 ≤ 𝑥1 ≤ 7.5 0.25 ≤ 𝑥5 ≤ 6.25 0.04 ≤ 𝑥9 ≤ 6.50 0.50 ≤ 𝑥13 ≤ 3.50 

8.25 ≤ 𝑥2 ≤ 10.75 5.43 ≤ 𝑥6 ≤ 8.28 3.30 ≤ 𝑥10 ≤ 6.30 0.25 ≤ 𝑥14 ≤ 2.75 

0.5 ≤ 𝑥3 ≤ 7.5 0.5 ≤ 𝑥7 ≤ 6.50 0.04 ≤ 𝑥11 ≤ 6.50  

7.30 ≤ 𝑥4 ≤ 9.80 5.76 ≤ 𝑥8 ≤ 8.50 1.16 ≤ 𝑥12 ≤ 3.50  

Bowl input design 

2.15 ≤ 𝑥1 ≤ 10.5 3.08 ≤ 𝑥5 ≤ 13.0 0.87 ≤ 𝑥9 ≤ 8.87 0 ≤ 𝑥13 ≤ 1.35 

11.25 ≤ 𝑥2 ≤ 14.75 8.14 ≤ 𝑥6 ≤ 11.64 3.60 ≤ 𝑥10 ≤ 7.15 0.60 ≤ 𝑥14 ≤ 1.75 

0.45 ≤ 𝑥3 ≤ 12.45 2.50 ≤ 𝑥7 ≤ 11.50 1.50 ≤ 𝑥11 ≤ 10.5  

10.30 ≤ 𝑥4 ≤ 13.45 6.71 ≤ 𝑥8 ≤ 9.29 0.75 ≤ 𝑥12 ≤ 3.25  

 

6. RESULTS AND DISCUSSIONS 

 

Figure 6 shows the test results obtained after inputting cup, glass and bowl models for 𝑁 = 200 and  

𝜇 = 0.5 settings. The number of designs obtained after the single run of the ELHS algorithm are eight 

for the vase, 12 for the glass and seven for the bowl models. And the number of designs obtained by the 

multiple runs of ELHS algorithm are 223 for the vase, 293 for the glass and 169 for the bowl models. 

Naturally, greater number of designs are obtained for the multiple runs of the ELHS algorithm. The 

difference in the number of obtained designs for each input model is due to two factors. First, each input 

model has different design features, and secondly, the value ranges for the design parameters differs 

according to each input model. Notice that in Figure 6, distinct designs are obtained from both single 

run and multiple runs of the ELHS algorithm. The 𝐺0 and 𝐺1 continuity is maintain at the connection 

points of curve-1 and curve-2 of the obtained designs. 

 

Parameter Setting: Number of designs generated depends on the number of divisions of the design 

space. Figure 7 (a) shows the number of designs obtained for the vase model when using different values 

of 𝑁. Results here are obtained using the single run of the ELHS algorithm. For 𝑁 = 200, eight designs 

are obtained and 14 designs are obtained for the 𝑁 = 2000 setting. The maximum number of designs 

are obtained for 𝑁 = 1200 and remains constant for 𝑁 = 1700.  

 

The similarity threshold 𝝁 is taken as 0.5 in the experiments that are shown in Figure 6. Note that 

diagonal of the scaled design space generated for the test models is √𝟏𝟒. With the increase in 𝝁, number 

of designs obtained decreases but distinction between these designs increases. Table 4 shows results for 

𝝁 = 𝟎. 𝟓 and 𝝁 = 𝟏. 𝟎 settings when 𝑵 = 𝟐𝟎𝟎. For 𝝁 = 𝟎. 𝟓, 226 designs are obtained for the vase 

model when multiple runs of the ELHS algorithm is applied. And for 𝝁 = 𝟏. 𝟎, only two designs are 

obtained. 
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Figure 6. Designs obtained by running the ELHS algorithm single and multiple times (𝑁 = 200 and 

𝜇 = 0.5) 
 

 
 

Figure 7. (a) Graph between number of designs obtained and number of design space divisions (𝑵) for 

vase model inputted to ELHS algorithm. (b) Graph between Computational Time and 𝑵 for 

vase model inputted to ELHS algorithm 
 

Computational Time: A PC having the Intel Core i7 6700, 3.4 GHz processor and 16 GB memory is 

used for the experiments in this study. It is observed that computational time increases as the value of 

𝑁 increases. Table 3 shows the processing time of the results provided in Figure 6. When 𝑁 is high, 

number of trials to be performed is also high and more number of candidate positions are available to 

enumerate in each trial. The computation for different values of 𝑁 for single run of the ELHS algorithm 

is shown in Figure 7 (b).   
 

Table 3. Computational time of the results provided in Figure 6 
 

 
Single run of ELHS Multiple runs of ELHS 

𝑁 = 200 𝜇 = 0.5 𝑁 = 200 𝜇 = 0.5 

Input Design Computational Time (sec) Computational Time (sec) 

Vase  0.547 134 

Glass 0.453 206 

Bowl 0.625 81.5 
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However, processing time decreases when 𝜇 is closer to 1 and increases when 𝜇 is closer to 0 for multiple 

runs of the ELHS algorithm. This is because of the fact that total number of runs depends on the size of 

the design array. When value of 𝜇 is high, less designs are obtained in each run. And less number of 

runs are performed which results in less processing time. Table 4 shows computational times for 𝜇 =
0.5 and 𝜇 = 1.0 when vase model is inputted to ELHS algorithm. Multiple runs of the algorithm are 

done. In table 4, processing time is 0.585 minutes and number of obtained designs are 226 for the 𝑁 =
100 and 𝜇 = 0.5 settings. It means there are 266 number of runs are performed. On the other hand, 

processing time is 0.00571 minutes for 𝑁 = 100 and 𝜇 = 1.0 because only two algorithm runs are 

performed.  

 

Table 4: Computational time and number of obtained designs for 𝜇 = 0.5 and 𝜇 = 1.0 
 

 𝜇 = 0.5 𝜇 = 1.0 

𝑁 
Conputational 

Time (minutes) 

Number of 

designs 

obtained 

Conputational 

Time (minutes) 

Number of 

designs 

obtained 

100 0.585 226 0.00571 2 

200 2.2 235 0.07 7 

300 5.541 257 0.23 12 

400 10.23 276 0.321 11 

500 15.34 272 0.46 10 

 

Distribution of obtained designs in the Scaled Design Space:  In order to verify similarity between 

obtained designs Multidimensional scaling (MDS) is used [21]. The parameter values of designs in the 

design array (𝑇) are scaled between 0 to 1, and plotted on the 2-dimensional graph as shown in Figure 

8. The red points in the graphs represents designs and line between two black points indicates the 

diagonal of the scaled space. The closeness of two point indicated their geometrical similarity. In Figure 

8, image (a) and (b) and has better distributions of designs than image (c). Image (c) shows that in case 

of the bowl as input model, designs are not selected from the entire design space. This can occur because 

of different reasons, mainly: the empty region could be an infeasible region in the design space or the 

designs in this region may not satisfy the similarity constraints and get eliminated. 

 

 
 

Figure 8. Multidimensional scaling of designs obtained by inputting (a) Vase model (b) Glass model 

and (c) Bowl model in order to observe the similarity 
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Limitation: A sampling technique is considered to have good space filling property, if the sampled 

designs are uniformly distributed throughout the design space. The designs obtained by ELHS does not 

guarantee the space filling property as it depends on the input design. However, the objective of current 

research to provide designers with a variety of design options for their product within the product’s 

design space is achieved. 

 

7. CONCLUSIONS AND FUTURE WORKS 

 

Latin Hypercube Sampling technique is extended in order to perform sampling in the high dimensional 

constrained design space with equality and inequality constraints. Designs space is formed by the 

designs parameters, designs constraints and lower/upper bounds for each design parameter. Each 

dimension of design space is divided into certain number of intervals to start the sampling process. The 

LH-rule is considered during sampling. ELHS starts the sampling process by performing enumeration 

during the trials. In every trial, all the candidate positons of each design parameter are enumerated and 

the one which minimizes the cost is selected. Designs with similar geometries are eliminated on the 

basis of similarity constraint and design with variant geometries are obtained.  

 

As a future work, authors of current research will try to further improve the space filling property of the 

ELHS algorithm. Methods for the iterative improvements [22] will be studied and implemented in order 

to polish the sampling quality. Enumeration based operators can also be proposed for better uniformity 

of sampled designs. Other sampling techniques such as centroidal Voronoi tessellation and Latinization 

[23] will also be studied in order to check if these techniques can provide improved results.   
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