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Abstract

The main aim of this study is to examine the spectral analysis of q-difference equation with point interaction. We first find Jost solution and
Jost function of this problem. Next, we establish the resolvent operator, continuous spectrum and discrete spectrum of the problem. At last,
we demonstrate that the quantum boundary value problem with point interaction has finite number of eigenvalues and spectral singularities
with finite multiplicities under certain conditions.
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1. Introduction

Spectral analysis of discrete equations with spectral singularities have been investigated intensively by many mathematicians [1],[13], [14],
[15], [16], [17], [18], [19], [25], [28], [33]. In recent years quantum calculus has received a lot of attention because it has wide applications
in several mathematical areas such as orthogonal polynomials, number theory, combinatorics, fractal geometry, basic hypergeometric
functions, mathematical physics [28], [37], [39]. Quantum calculus does not use the concept of classical limit. Hence the functions that
are not differentiable in the classical sense can be quantum differentiable and it also provides some physical applications which consist
some definitions and theorems of q-calculus, we refer the readers to [20], [21], [23], [26], [27]. Note that spectral analysis of quantum
difference equations has been investigated by some researchers [2], [3], [4], [5], [6], [8], [9], [10], [38]. On the other hand, spectral analysis
of q-difference equations with spectral singularities and point interactions has not been investigated yet. There are also only a few papers
about the scattering analysis of q-difference equations with point interactions [7], [8], [9], [10], [11] which are related to scattering analysis.
As is well known, difference equations with point interactions serve as basic models to study the dynamics of processes that are related to
sudden changes in their states. These changes are so short as to be negligible when compared to the whole duration. In order to explain these
processes mathematically, some conditions are applied to the discontinuous points. These points are called impulsive conditions or some
other names such as jump conditions, interface conditions, point interactions and transmission conditions. The theory of difference equations
with point interactions depends on the theory of differential equations with point interactions. They have been extensively studied in the past
several years; see [12], [29], [32], [35], [36] and the references cited therein. In this paper, we shall investigate the spectral analysis of a
discrete quantum Sturm-Liouville problem with point interactions in terms of Jost solution, Jost function, resolvent operator and continuous
spectrum. We will present a condition that guarantees the finiteness of eigenvalues and spectral singularities of the problem with finite
multiplicities. The set up of this paper is as follows: The next section features some introduction and notations on the q-difference problem
with point interactions under consideration. In Section 3, we present some auxiliary results about the Jost solution and Jost function of the
problem. Section 4 contains the resolvent operator and continuous spectrum which are needed in the proof of our main results in Section 5
with the results given in Section 3 together. The main results are related to the qualitative properties of eigenvalues and spectral singularities.
In Section 6, we make some conclusions.

2. Preliminaries

Notation 2.1. Let q > 1, N and N0 denote the set of the natural numbers and the set of nonnegative integers, respectively. Moreover, use the
notations

qN := {qn : n ∈ N} qN0 := {qn : n ∈ N0} .
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A q-difference equation is an equation that contains q-derivatives of a function defined on qN0 . The q−derivative of a function f : qN0 → C
is defined by

f4 (t) :=
f (qt)− f (t)

µ (t)
,

where µ (t) = (q−1) t is the graininess function [20].

Let `2
(
qN0
)

be the Hilbert space of all complex-valued functions with the inner product

< f ,g >q:= ∑
t∈qN0

µ (t) f (t)g(t), f ,g : qN0 → C

and the norm

‖ f‖q :=

 ∑
t∈qN0

µ (t) f (t)2

 1
2

, f : qN0 → C

for all t ∈ qN0 . Consider the following q-difference problem with point interactions (QP). For this problem, we will consider a second order
q-difference equation

qa(t)y(qt,z)+b(t)y(t,z)+a
(

t
q

)
y
(

t
q
,z
)
= λy(t,z) , t ∈ qN\

{
qm0−1,qm0 ,qm0+1

}
(2.1)

with the boundary condition

y(1,z) = 0 (2.2)

and the point interaction y
(
qm0+1,z

)
4y
(
qm0+1,z

)
=

 y
(
qm0−1,z

)
5y
(
qm0−1,z

)
 , B =

[
δ1 δ2
δ3 δ4

]
, (2.3)

where λ = 2
√

qcosz is a spectral parameter, detB 6= 0 for i = 1,2,3,4 and δi are complex numbers. 4 denotes the backward difference
operator,5 denotes the forward difference operator and defined by

4y(t,z) = y(t,z)− y
(

t
q
,z
)

and

5y(t,z) = y(qt,z)− y(t,z) ,

respectively. Throughout this study, we will assume that the complex sequences {a(t)}t∈qN0 and {b(t)}t∈qN satisfy the following condition

∑
t∈qN

ln t
lnq
{|1−a(t)|+ |b(t)|}< ∞ (2.4)

and a(t) 6= 0 for all t ∈ qN0 . Furthermore, we will denote by T the q-difference operator generated in `2
(
qN
)

by the q-difference expression

(ly)(t) := qa(t)y(qt,z)+b(t)y(t,z)+a
(

t
q

)
y
(

t
q
,z
)
, t ∈ qN0\

{
qm0−1,qm0 ,qm0+1

}
with the boundary condition (2.2) and the point interactions (2.3).
Let us define two semi-strips

Π+ :=
{

z ∈ C : Imz > 0, − π

2
≤ Rez≤ 3π

2

}
and

Π := Π+∪
[
−π

2
,

3π

2

]
.

We will show the fundamental solutions of (2.1) for z ∈Π and t ∈
{

1,q,q2, . . . ,qm0−1} by R(t,z) and Q(t,z) satisfying the initial conditions

R(1,z) = 0 , R(q,z) = 1

and

Q(1,z) =
1

a(1)
, Q(q,z) = 0,
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respectively. The Wronskian of two solutions y = {y(t,λ )}t∈qN0 and u = {u(t,λ )}t∈qN0 of (2.1) is defined by

W [y,u] (t) = µ (t)a(t){y(t,λ )u(qt,λ )− y(qt,λ )u(t,λ )} , t ∈ qN0 .

It follows from that W [R(t,z) ,Q(t,z)] =−1 for all t ∈ qN0 . It is easily seen that R(t,z) and Q(t,z) are entire functions of z. On the other
hand, (2.1) admits another solution

e(t,z) = ρ (t)
ei ln t

lnq z√
µ (t)

(
1+ ∑

r∈qN
A(t,r)ei lnr

lnq z

)
, t ∈ qN0

satisfying the condition

lim
t→∞

e(t,z)e
−i

ln t
lnq

z√
µ (t) = 1, z ∈Π,

where ρ (t) and A(t,r) are expressed in terms of {a(t)} and {b(t)} [2]. Moreover, under the condition (2.4), A(t,r) satisfies the following
inequality

|A(t,r)| ≤C ∑

s∈
[

tqb
lnr

2lnqc,∞
)
∩qN

{|1−a(s)|+ |b(s)|} , (2.5)

here C > 0 is a positive constant and
⌊

lnr
2lnq

⌋
is the integer part of lnr

2lnq . Therefore, e(t,z) is analytic with respect to z in C+ :=

{z ∈ C : Imz > 0} and continuous in C+ := {z ∈ C : Imz≥ 0}. From the definition of Wronskian, we easily obtain that

W [e(t,z) ,e(t,−z)] =− 2i
√

q
sinz, z ∈

[
−π

2
,

3π

2

]
\{0,π} .

Also, there exists an unbounded solution of the equation (2.1) in
{

qm0+1,qm0+2, . . .
}

denoted by ê(t,z) fulfilling the condition

lim
t→∞

ê(t,z)e
i
ln t
lnq

z√
µ (t) = 1, z ∈ C+.

By using the bounded and unbounded solutions of (2.1), we get the Wronskian of these solutions as

W [e(t,z) , ê(t,z)] =− 2i
√

q
sinz, z ∈ C+, t ∈

{
qm0+1,qm0+2, . . .

}
.

3. Jost Solution and Jost Function of T

In this section, we will obtain the Jost solution and the Jost function of T . Let us define the solutions of QP (2.1)-(2.3) by y−j and y+j ,
j = 1,2,3, respectively

ϕ1 (t,z) =


y−1 (t,z) = M− (z)R(t,z)+N − (z)Q(t,z) , t ∈

{
1,q, . . . ,qm0−1}

y+1 (t,z) = M+ (z)e(t,z)+N + (z)e(t,−z) , t ∈
{

qm0+1,qm0+2, . . .
}

for z ∈Π,

ϕ2 (t,z) =


y−2 (t,z) = K− (z)R(t,z)+L− (z)Q(t,z) , t ∈

{
1,q, . . . ,qm0−1}

y+2 (t,z) = K+ (z)e(t,z)+L+ (z)e(t,−z) , t ∈
{

qm0+1,qm0+2, . . .
}

for z ∈
[
−π

2
,

3π

2

]
\{0,π} and

ϕ3 (t,z) =


y−3 (t,z) = P− (z)R(t,z)+S− (z)Q(t,z) , t ∈

{
1,q, . . . ,qm0−1}

y+3 (t,z) = P+ (z)e(t,z)+S+ (z) ê(t,z) , t ∈
{

qm0+1,qm0+2, . . .
}

for z ∈Π\{0,π}. If we consider the solution ϕ1 (t,z) firstly, we get the following equation with the help of condition (2.3) M+

N +

=U

 M−

N −

 , (3.1)

where

U :=

 U11 (z) U12 (z)

U21 (z) U22 (z)

= H−1BD (3.2)
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such that

D =

 R
(
qm0−1,z

)
Q
(
qm0−1,z

)
5R

(
qm0−1,z

)
5Q

(
qm0−1,z

)


and

H−1 =−
√

qµ
(
qm0+1)a

(
qm0+1)

2isinz

 4e
(
qm0+1,−z

)
−e
(
qm0+1,−z

)
−4 e

(
qm0+1,z

)
e
(
qm0+1,z

)
 .

In accordance with (3.2), the components of U are given by

U21 (t,z) =−
√

qµ
(
qm0+1)a

(
qm0+1)

2isinz


−4 e

(
qm0+1,z

)[
δ1R

(
qm0−1,z

)
+δ25R

(
qm0−1,z

)]
+e
(
qm0+1,z

)[
δ3R

(
qm0−1,z

)
+δ45R

(
qm0−1,z

)]
 (3.3)

and

U22 (t,z) =−
√

qµ
(
qm0+1)a

(
qm0+1)

2isinz


−4 e

(
qm0+1,z

)[
δ1Q

(
qm0−1,z

)
+δ25Q

(
qm0−1,z

)]
+e
(
qm0+1,z

)[
δ3Q

(
qm0−1,z

)
+δ45Q

(
qm0−1,z

)]
 . (3.4)

Now, we will define the following function using the solution ϕ1 (t,z)

F (t,z) =


M− (z)R(t,z)+N − (z)Q(t,z) , t ∈

{
1,q,q2, . . . ,qm0−1}

e(t,z) , t ∈
{

qm0+1,qm0+2, . . .
} (3.5)

for z ∈Π. F (t,z) is the Jost solution of QP (2.1)-(2.3). Since the function F (t,z) is the Jost solution of (2.1)-(2.3), we find

M+ (z) = 1, N + (z) = 0.

If we apply the point interaction (2.3) to F (t,z), we obtain

M− (z) =
U22 (t,z)

detU
, N − (z) =−U21 (t,z)

detU
. (3.6)

By using the boundary condition (2.2) and (3.5), we can write the Jost function of (2.1)-(2.3) as follows:

F (z) := F (t,z) =−U21 (t,z)
a0 detU

.

Then, we will consider the following solution of (2.1)-(2.3) for z ∈
[
−π

2
,

3π

2

]
\{0,π}

G (t,z) :=


R(t,z) , t ∈

{
1,q,q2, . . . ,qm0−1}

K+ (z)e(t,z)+L+ (z)e(t,−z) , t ∈
{

qm0+1,qm0+2, . . .
}

.

Since the solution G (t,z) satisfies the boundary condition (2.2), we get

K− (z) = 1, L− (z) = 0.

By the help of (2.3), we also find

K+ (z) =U11 (t,z) , L+ (z) =U21 (t,z) . (3.7)

Lemma 3.1. For z ∈
[
−π

2
,

3π

2

]
\{0,π}, the Wronskian of the solutions F (t,z) and G (t,z) is given by

W [F (t,z) ,G (t,z)] =


−µ (1)

detU
L+ (z) , t ∈

{
1,q,q2, . . . ,qm0−1}

−2isinz
√

q
L+ (z) , t ∈

{
qm0+1,qm0+2, . . .

}
.
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Proof. By the help of the definition of Wronskian, we obtain

W [F (t,z) ,G (t,z)] = µ (1)a(1)
{ [

M− (z)R(1,z)+N − (z)Q(1,z)
]

F (q,z)
−
[
M− (z)R(q,z)+N − (z)Q(q,z)

]
R(1,z)

}

for t ∈
{

1,q,q2, . . . ,qm0−1}. Since R(1,z) = 0, R(q,z) = 1, Q(1,z) =
1

a(1)
and Q(q,z) = 0, we find

W [F (t,z) ,G (t,z)] = µ (1)N − (z) .

In view of (3.6) and (3.7), the last equation can be arranged as

W [F (t,z) ,G (t,z)] =−µ (1)
detU

L+ (z) , t ∈
{

1,q,q2, . . . ,qm0−1
}

.

The Wronskian of these solutions also given by

W [F (t,z) ,G (t,z)] =−2isinz
√

q
L+ (z)

for t ∈
{

qm0+1,qm0+2, . . .
}

in a similar way.

4. Resolvent Operator and Continuous Spectrum of T

In this section, we will present the resolvent operator of (2.1)-(2.3) firstly and then, we will give the continuous spectrum of QP (2.1)-(2.3). It
is necessary for us to define another solution H (t,z) of (2.1)-(2.3) for z ∈Π\{0,π}.

H (t,z) :=


R(t,z) , t ∈

{
1,q,q2, . . . ,qm0−1}

P+ (z)e(t,z)+S+ (z) ê(t,z) , t ∈
{

qm0+1,qm0+2, . . .
}

,

where ê(t,z) denotes the unbounded solution of (2.1) given in Section 2. Similar to solution G (t,z), it is possible to write P− (z) = 1,
S− (z) = 0 by using the boundary condition (2.2) and to find the coefficients P+ (z), S+ (z) uniquely. By using the point interaction (2.3), we
get P+ (z)

S+ (z)

= Y−1B

 R
(
qm0−1,z

)
5R

(
qm0−1,z

)
 ,

where

Y−1 =−
√

qµ
(
qm0+1)a

(
qm0+1)

2isinz

 4ê
(
qm0+1,z

)
−ê
(
qm0+1,z

)
−4 e

(
qm0+1,z

)
e
(
qm0+1,z

)


and it gives

P+ (z) =−
√

qµ
(
qm0+1)a

(
qm0+1)

2isinz

{
4ê
(
qm0+1,z

)[
δ1R

(
qm0−1,z

)
+δ25R

(
qm0−1,z

)]
−ê
(
qm0+1,z

)[
δ3R

(
qm0−1,z

)
+δ45R

(
qm0−1,z

)] } (4.1)

and

S+ (z) =
√

qµ
(
qm0+1)a

(
qm0+1)

2isinz

{
4e
(
qm0+1,z

)[
δ1R

(
qm0−1,z

)
+δ25R

(
qm0−1,z

)]
−e
(
qm0+1,z

)[
δ3R

(
qm0−1,z

)
+δ45R

(
qm0−1,z

)] } , (4.2)

respectively. From (3.3), (3.7) and (4.2), it is seen that S+ (z) can be written as L+ (z), i.e.,

S+ (z) = L+ (z) . (4.3)

Similar to Lemma 3.1 and by the help of (4.3), we obtain

W [F (t,z) ,H (t,z)] =


−µ (1)

detU
L+ (z) , t ∈

{
1,q,q2, . . . ,qm0−1}

−2isinz
√

q
L+ (z) , t ∈

{
qm0+1,qm0+2, . . .

}
.

for z ∈Π\{0,π}.
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Lemma 4.1. For all z ∈Π\{0,π} with L+ (z) 6= 0 and t 6= qm0 , we define the Green function of T by

Gt,r (z) :=


−

µ

(
r
q

)
H (r,z)F (t,z)

W [F ,H ]
, r = qk, k ∈ N0

−
µ

(
r
q

)
H (t,z)F (r,z)

W [F ,H ]
, r = tqk, k ∈ N

(4.4)

and it gives the resolvent operator T as

R(T )h(t) := ∑
r∈qN0

Gt,rh(r) , h ∈ `2

(
qN
)

.

Proof. To find the resolvent operator, we need to get the general solution of the equation

qa(t)y(qt,z)+b(t)y(t,z)+a
(

t
q

)
y
(

t
q
,z
)
−λy(t,z) = h(t,z) , (4.5)

where h ∈ `2
(
qN
)
. Since the solutions of F (t,z) and H (t,z) are linearly independent fundamental solutions of the equation (2.1), we can

write the solution of (4.5) as linear combination of these solutions as follows

g(t,z) = m(t)F (t,z)+n(t)H (t,z) ,

where m(t) and n(t) are coefficients and are different from zero. In order to get the coefficients m(t) and n(t), we use the method of variation
of parameters. Then, we have

m(t) = m(1)− ∑
r∈qN

h(r,z)H (r,z)µ

(
r
q

)
W [F ,H ]

, r 6= qm0

and

n(t) = η− ∑
r∈[qt,∞)∩qN

h(r,z)F (r,z)µ

(
r
q

)
W [F ,H ]

, r 6= qm0 ,

here lim
s→∞

n(qs) = η and m(1) , η are real numbers. It is known that the solution g(t,z) is in `2
(
qN
)

and provides the boundary condition

(2.2). For this reason, m(1) and η are equal to zero. It completes the proof, because it gives (4.4) and it is clear to write resolvent operator by
using (4.4).

Theorem 4.2. If (2.4) holds, then σc (T ) =
[
−2
√

q,2
√

q
]
, where σc (T ) denotes the continuous spectrum of T .

Proof. To get the continuous spectrum of T , we introduce the difference operators T0 and T1 generated by the following q-difference
expressions in `2

(
qN
)

together with (2.2) and (2.3)

(T0y)(t) = qy(qt,z)+ y
(

t
q
,z
)
,

(T1y)(t) =
(

a
(

t
q

)
−1
)

y
(

t
q
,z
)
+b(t)y(t,z)+q(a(t)−1)y(qt,z)

for t ∈ qN\
{

qm0−1,qm0 ,qm0+1}, respectively. It is easily seen that T = T0 +T1 and T1 is a compact operator in `2
(
qN
)

[31]. We also obtain
that T0 is a selfadjoint operator with σc (T0) =

[
−2
√

q,2
√

q
]

[2]. Then, by using Weyl Theorem [24] of a compact perturbation, we find the
continuous spectrum of the operator T .

5. Main Results

In this section, we will obtain the sets of eigenvalues and spectral singularities of T . Then, we examine the properties of these sets. By the
help of (4.4) and the definition of eigenvalues [34], the set of eigenvalues of T is

σd (T ) =
{

λ ∈ C : λ = 2
√

qcosz, z ∈Π+, L+ (z) = 0
}

. (5.1)

Since spectral singularities are the poles of the kernels of resolvent operator, the set of spectral singularities of T is defined as follows

σss (T ) =
{

λ ∈ C : λ = 2
√

qcosz, z ∈
[
−π

2
,

3π

2

]
\{0,π} , L+ (z) = 0

}
. (5.2)

Let S1 denote the set of all zeros of the function L+ in Π+ and S2 denote the set of all zeros of the function L+ in
[
−π

2
,

3π

2

]
. It is obvious

that

S1 :=
{

z : z ∈Π+, L+ (z) = 0
}

S2 :=
{

z : z ∈
[
−π

2
,

3π

2

]
, L+ (z) = 0

}
.
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Theorem 5.1. The function L+ (z) satisfies the following asymptotic for |z| → ∞, under the condition (2.4)
i) If δ1 +δ2 +δ3 +δ4 6= 0, then

L+ (z) = e4iz [A+o(1)] ,

ii) If δ1 +δ2 +δ3 +δ4 = 0, then

L+ (z) = e5iz [B+o(1)] ,

where

A :=

√
µ
(
qm0+1

)
a
(
qm0+1)

q
m0−2

2 a(q) . . .a
(
qm0−2

) {(δ1 +δ2 +δ3 +δ4)ρ

(
qm0+1

)}
and

B :=
q

1−m0
2 µ

(
qm0+1)a

(
qm0+1)ρ

(
qm0+1)

a(q) . . .a
(
qm0−3

) {
(δ1 +δ2)

a
(
qm0+1)

a
(
qm0−2

) +(δ2 +δ4)q
3
2

}
.

Lemma 5.2. Assume (2.4). Then

i) The set S1 is bounded and has at most countable number of elements and its limit points can lie only in
[
−π

2
,

3π

2

]
.

ii) The set S2 is compact and µ (S2) = 0.

Proof. i) Theorem 5.1 proves the boundedness of the sets S1 and S2. Furthermore, it is known that L+ is analytic in C+, then the set S1 has

at most countable number of elements, the limit points of the zero of L+ only lie in
[
−π

2
,

3π

2

]
.

ii) By means of boundary uniqueness theorems of analytic functions, we find that S2 is a closed set and Privalov Theorem [22] proves that its
linear Lebesgue measure is zero.

Let us give the following theorem as a result of (5.1), (5.2) and Lemma 5.2.

Theorem 5.3. Assume (2.4). Then,
i) The set σd is bounded and has at most a countable number of elements and its limit points can lie only in

[
−2
√

q,2
√

q
]
,

ii) The set σss is compact and its linear Lebesgue measure is zero.

Definition 5.4. The multiplicity of a zero of L+ (z) in Π is called the multiplicity of the corresponding eigenvalue or spectral singularity of
T .

Theorem 5.5. If

sup
t∈qN

{
exp
(

ε
ln t
lnq

)
(|1−a(t)|+ |b(t)|)

}
< ∞, ε > 0, (5.3)

then the operator T has a finite number of eigenvalues and spectral singularities and each of them is of finite multiplicity.

Proof. It follows from (2.5) and (5.3) that

|A(t,r)| ≤C exp
(
− ε

8
lnr
lnq

)
, t ∈ {1,q} , r ∈ qN, (5.4)

where C is an arbitrary constant. For the sake of simplicity, let us define

J (z) = L+ (z)2isinz. (5.5)

In accordance with (3.3), (3.7) and (5.5), we write

J (z) =−√qµ

(
qm0+1

)
a
(

qm0+1
)

K

1+ ∑
r∈qN

A
(

qm0+2,r
)

e
i

(
lnr
lnq

)
z

 (5.6)

−√qµ

(
qm0+1

)
a
(

qm0+1
)

L

1+ ∑
r∈qN

A
(

qm0+1,r
)

e
i

(
lnr
lnq

)
z

 ,

where

K =−
(δ1 +δ2)R

(
qm0−1,z

)
ρ
(
qm0+2)ei(m0+2)z√

µ
(
qm0+2

)
+

δ2R
(
qm0−2,z

)
ρ
(
qm0+2)ei(m0+2)z√

µ
(
qm0+2

)
−

(δ2 +δ4)R
(
qm0−2,z

)
ρ
(
qm0+1)ei(m0+1)z√

µ
(
qm0+1

)
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and

L =
(δ1 +δ2 +δ3 +δ4)R

(
qm0−1,z

)
ρ
(
qm0+1)ei(m0+1)z√

µ
(
qm0+1

) .

By the help of (5.4) and (5.6), we find that the function J has an analytic continuation to the half-plane Imz >− ε

8
. Thus, the limit points

of all zeros of the function J in Π can not lie in
[
−π

2
,

3π

2

]
. So we find that the bounded sets σd (T ) and σss (T ) have no limit points by

Theorem 5.3, i.e., the sets S1 and S2 have a finite number of elements. Analyticity of J in Imz >− ε

8
proves that all zeros of J in Π have

finite multiplicity. Consequently, all eigenvalues and spectral singularities of T have a finite multiplicity under the condition (5.3).

Now, we denote the sets of all limit points of S1 and S2 by S3 and S4, respectively and the set of all zeros of J with infinite multiplicity in Π

by S5. By the help of the uniqueness theorem of analytic functions, we obtain that

S1∩S5 = /0, S3 ⊂ S2, S4 ⊂ S2, S5 ⊂ S2, S3 ⊂ S5, S4 ⊂ S5

and

µ (S3) = µ (S4) = µ (S5) = 0.

In the following, we will assume that

sup
t∈qN

{
exp
(

ε

(
ln t
lnq

)γ)
(|1−a(t)|+ |b(t)|)

}
< ∞, ε > 0,

1
2
≤ γ ≤ 1 (5.7)

which is weaker than (5.3). Under the condition (5.7), the function J is still analytic in C+ and infinitely differentiable on the real axis.
Before giving our main result, we need following two lemmas.

Lemma 5.6. Under the condition (5.7), the following inequality is provided∣∣∣J(n) (z)∣∣∣≤ An, z ∈Π, n ∈ N0,

where

An ≤C4n + D̃dnn!n
n

(
1
γ
−1

)

and D̃ and d are positive constants depending on C, ε and γ .

Proof. By means of (2.5) and (5.7), we have

|A(t,r)| ≤C exp
(
− ε

8

(
lnr
lnq

)γ)
, t ∈ {1,q} , r ∈ qN. (5.8)

By using (5.6) and (5.8), we obtain

J (z) =−Z̃

δ2ρ
(
qm0+2)ei(m0+2)z√

µ
(
qm0+2

) −
(δ2 +δ4)ρ

(
qm0+1)ei(m0+1)z√

µ
(
qm0+1

)
 Ã(z) H̃ (z)

− Z̃

− (δ1 +δ2)ρ
(
qm0+2)ei(m0+2)z√

µ
(
qm0+2

)
 Ã(z)M̃ (z) (5.9)

− Z̃

 (δ1 +δ2 +δ3 +δ4)ρ
(
qm0+1)ei(m0+1)z√

µ
(
qm0+1

)
 B̃(z)M̃ (z) ,

where the polynomial function rm0 (z) is of m0-th degree, Z̃ =
√

qµ
(
qm0+1)a

(
qm0+1) ,

Ã(z) =

1+ ∑
r∈qN

A
(

qm0+2,r
)

e
i

(
lnr
lnq

)
z

 ,

B̃(z) =

1+ ∑
r∈qN

A
(

qm0+1,r
)

e
i

(
lnr
lnq

)
z

 ,
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M̃ (z) =


(
eiz + e−iz)m0−2

qm0−2
m0−2

∏
i=1

a(qi)

+ rm0−3 (z)


and

H̃ (z) =


(
eiz + e−iz)m0−3

qm0−3
m0−3

∏
i=1

a(qi)

+ rm0−4 (z)

 .

In view of (5.9), we get

∣∣∣J(n) (z)∣∣∣≤ 4n
∣∣√qµ

(
qm0+1)a

(
qm0+1)∣∣∣∣∣√µ

(
qm0+2

)
qm0−3a(q) . . .a

(
qm0−3

)∣∣∣
(∣∣(δ1 +δ2)ρ

(
qm0+1)∣∣∣∣qa

(
qm0−2

)∣∣
)

Ã(z)

+
4n
∣∣√qµ

(
qm0+1)a

(
qm0+1)∣∣∣∣∣√µ

(
qm0+2

)
qm0−3a(q) . . .a

(
qm0−3

)∣∣∣
(∣∣∣(δ1 +δ2)ρ

(
qm0+1

)∣∣∣) B̃(z)

+
4n
∣∣√qµ

(
qm0+1)a

(
qm0+1)∣∣∣∣∣√µ

(
qm0+2

)
qm0−3a(q) . . .a

(
qm0−3

)∣∣∣
(∣∣δ1 +δ2 +δ3 +δ4ρ

(
qm0+1)∣∣∣∣qa

(
qm0−2

)∣∣
)

B̃(z) .

By using (5.8), we arrive at

∣∣∣J(n) (z)∣∣∣≤C4n +C4n
∑

r∈qN

(
lnr
lnq

)n
e
−

ε

8

(
lnr
lnq

)γ

, n ∈ qN0 .

Moreover, if we define

Dn :=
∞

∑
m=1

mne
−

ε

8
mγ

by using Gamma function, we estimate

Dn ≤
∞∫

0

tne
−

ε

8
tγ

dt =
22n+ 3(1+n)

γ

γε
n+1

γ

(
n+1

γ
−1
)

Γ

(
n+1

γ
−1
)

.

Then, using the inequalities
(

1+
1
n

)n
γ ≤ e

1
γ , (n+1)

1
γ
−1

< e

n
γ and nn < n!en, we write

Dn ≤ D̃dnn!n
n
(

1
γ
−1
)

, n ∈ N,

here D̃ and d are positive constants depending on ε and γ .

Lemma 5.7. Assume that the 2π-periodic function h is analytic in C+, all of its derivatives are continuous in C+ and

sup
z∈Π

∣∣∣h(n) (z)∣∣∣≤ An, n ∈ N0.

If the set V ⊂ [0,2π] with Lebesgue measure zero is the set of all zeros of the function h with infinity multiplicity in Π, and if

w∫
0

ln t (s)dµ (Vs) =−∞,

where t (s) = inf
n∈N0

Ansn

n!
and µ (Vs) is the Lebesque measure of the s−neighborhood of V and w > 0 is an arbitrary constant, then h≡ 0 in

C+.

Theorem 5.8. If (5.7) holds, then S5 = /0.
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Proof. By the help of Theorem 5.3 since the function J is not equal to zero identically, it is clear that

w∫
0

ln t (s)dµ (S5,s)>−∞, (5.10)

where t (s) = inf
n∈N0

Ansn

n!
, µ (S5,s) is the Lebesgue measure of the s−neighborhood of S5 and An is defined in Lemma 5.6. In accordance with

Lemma 5.6, we obtain

t (s) = D̃exp
{
−1− γ

γ
e−1 (ds)−

γ

1−γ

}
. (5.11)

From (5.10) and (5.11), we get

w∫
0

s−
γ

1−γ dµ (S5,s)< ∞.

Since
γ

1− γ
≥ 1, the integral on the left hand-side is convergent for arbitrary s if and only if

µ (S5,s) = 0,

i.e., S5 = /0. It completes the proof.

6. Conclusions

In this study, we examine the spectral properties of the q-difference equation with point interaction given by (2.1)-(2.3). This paper is
important because it is the first study to investigate the spectral properties of a q-difference equation with point interaction. Firstly, we find
the Jost solution and Jost function of T . Then, we obtain the resolvent operator, Green function and continuous spectrum of (2.1)-(2.3). By
the help of uniqueness theorems, we also discuss the structure and finiteness of eigenvalues and spectral singularities of the problem. In this
study, the main result is to show the finiteness of eigenvalues and spectral singularities of this q-problem under sufficient conditions and to
prove that their multiplicities are finite. This paper prepares a groundwork for many researchers working on spectral analysis. For next study,
one can consider the impulsive condition as a matrix form that will be the general form of this problem.
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