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Öz 

Bir çeşit direnç kaynağı olan punta kaynağı, metal sac birleştirme işleminde kullanılan ve üretim 
alanında yaygın olarak bulunan bir kaynak uygulamasıdır. Punta kaynak prosesi otomotiv endüstrisi 
başta olmak üzere, radyatör ve tel örgü üretimi gibi birçok üretim alanında yaygın olarak kullanılır. Araç 
üretim bantlarında punta kaynağı ağırlıklı olarak robotik uygulamalarla gerçekleştirilmektedir. Endüstri 
4.0 ve dijital dönüşüm trendleri benzeri görülmemiş bir veri büyümesine yol açmıştır. Günümüz imalat 
sektöründe kalite, bakım ve üretim süreçlerinin izlenmesi, tahmini ve optimizasyonu konularında 
makine öğrenimi ve veri bilimi algoritmalarının gücünden yararlanılmaktadır. Makine öğrenimi 
algoritmalarının uygulanması deneylerin süresini kısaltmanın yanı sıra deneysel maliyeti de 
azaltmaktadır. Bu çalışma, gerçek üretim sahasında robotik kollarla uygulanan punta kaynağının 
izlenerek, kaynak argümanlarının ideal punta normları içerisinde olup olmadığının tespitini 
amaçlamaktadır. İdeal parametre normları değerlendirilirken KNN (K-En Yakın Komşu) ve CART 
(Sınıflandırma ve Regresyon Ağacı) makine öğrenimi algoritmaları kullanılmıştır. Çalışma üretimdeki 
gerçek verileri kullanabilmek için TOFAŞ fabrikasında yapılmıştır ve pilot hat olarak gövde üretim montaj 
hattı seçilmiştir. Araştırmada kullanılan veri seti 2023 yılı güncel kaynak parametrelerinden 
oluşmaktadır. Veri kümesi üzerinde makine öğrenimi algoritmaları çalıştırılarak her bir algoritmanın 
başarım değerlendirmesine bakılmış ve en uygun tahminleme yöntemi belirlenmiştir. Yapılan 
deneylerde en iyi F1-Skor değeri %93 ile CART modeli tarafından elde edilmiştir. 

Evaluation Of The Resistance Spot Welding Process With KNN and CART 
Machine Learning Techniques 
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Abstract 

Spot welding, a type of resistance welding, is a welding application widely used in the production area 
and it is a common method for joining metal sheets. The spot-welding process is widely used in many 
production areas, especially in the automotive industry, radiator, and wire mesh production. Spot 
welding in car production lines is mainly performed by robotic applications. Industry 4.0 and digital 
transformation trends have led to unprecedented data growth. Nowadays, the manufacturing industry 
benefits from the power of machine learning and data science algorithms to monitor production 
processes and make predictions for quality, maintenance, and production optimization. Applying 
machine learning algorithms reduces the duration and cost of experiments. This study aims to confirm 
whether the spot welding, applied by robotic arms, is within the ideal spot-welding norms, in real 
production area. The ideal parameter norms were evaluated by using KNN and CART machine learning 
algorithms. To use real production data, this study was executed in the body production assembly line, 
which is selected as the pilot area, at TOFAŞ factory. The data set used in this research consists of the 
welding parameters of the current year, 2023. By running machine learning algorithms on the dataset, 
the performance evaluation of each algorithm was examined and the most appropriate estimation 
method was determined. In the experiments, the best F1-Score value was obtained by the CART model 
with 93%. 
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1. Introduction 
One of the primary objectives of the digitization 
process is the automation of activities within 
production domains. Digital transformation may be 
defined as a system that permits the rapid analysis 
and more efficient utilization of information within 
business processes employing information 
technologies (Küçükvardar and Aslan 2021). 
 
Through digitization in manufacturing processes, 
errors caused by workers can be minimized, and 
processes can be made autonomous. While various 
error modes occur in the automotive sector during 
the production stage, measures are taken to 
minimize these errors. However, sometimes errors 
cannot be detected and result in high costs. Digital 
systems can instantly detect any issues during the 
production process and necessary interventions 
can be made. When quality issues arise, 
information can be quickly shared with informed 
personnel, and production processes can be halted 
to make adjustments for quality production. In this 
way, an increase in quality and efficiency can be 
achieved in the production process (IntRes. 1). 
 
Spot welding machines can benefit from digital 
transformation processes to make production 
processes more efficient. For example, spot 
welding machines can automatically weld materials 
together using pre-defined welding parameters 
that can be adjusted automatically. This eliminates 
the need for manual adjustments and makes 
welding processes more precise and repeatable, 
eliminating the trial-and-error approach to learning 
efficiency. 
 
In the automotive industry, resistance spot welding 
machines serve as crucial welding tools. These 
machines perform the welding process by applying 
an electrical current to the metal pieces between 
two electrodes. Electrodes are the instruments 
used to join the metal parts and are brought into 
contact with the workpiece to ensure connectivity 
between the metal plates. At this stage, the applied 
pressure is slightly increased to initiate the passage 

of electrical current. The current flows in 
accordance with the predetermined current 
intensity and duration, heating the workpiece. The 
melting process commences, initiated by the 
pressure exerted by the electrodes on the 
workpiece. The molten region is allowed to cool for 
a few seconds without relieving the pressure 
applied by the electrodes. Subsequently, the 
pressure on the electrodes is released, and they 
move apart. The welding process is completed 
during this phase (IntRes. 2). The utilization of 
resistance spot welding machines in the 
automotive industry contributes to reducing 
welding costs during the manufacturing process. 
These machines operate swiftly and precisely, 
reducing production time and enhancing 
production efficiency (Dai et al. 2022). 
 

 
Figure 1.  Spot Welding Principle. (IntRes. 3). 

In the automotive industry, weld quality holds 
paramount significance as the safety and 
performance of manufactured vehicles are directly 
correlated with the quality of welding. A critical 
step in enhancing weld quality is the accurate 
determination of welding parameters. Through a 
review of literature and assistance from the expert 
system employed in the study (comprising two 
welding experts working in the factory and welding 
documentation), the parameters influencing weld 
quality have been identified as follows: welding 
current, welding duration, welding pressure, and 
electrode life. 
 
These parameters are adjusted based on the 
properties of the material to be welded. Achieving 
this balance is possible through trial and error 
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methods. Standards set by factories are also crucial 
in maintaining this balance in welding processes. 
Factories develop specific standards for welding 
parameters based on their experience. These 
standards aim to enhance the quality and reliability 
of the welding process. It is important that the 
parameters obtained through trial and error 
methods are in compliance with factory standards, 
and adjustments are made as necessary. This 
ensures that the welding connection can be 
executed according to desired standards and 
expectations. 
 
Finding the correct welding parameters is often a 
challenging and costly process. Each resistance 
welding machine has a controller that oversees 
parameter settings, and all adjustments are made 
through this system. Adaptive welding control 
systems like BOS 6000 are used to monitor, 
analyze, and automatically adjust welding 
parameters in real-time. These systems track 
welding errors within predefined tolerances 
throughout the welding process (Akgül 2017). 
 
For instance, parameters such as welding current, 
voltage, and duration can be monitored and 
automatically adjusted in real-time by adaptive 
welding control systems. This minimizes welding 
errors during the welding process and maintains a 
high level of welding connection quality (Kas and 
Das 2019). 
 
Proper adjustment of these parameters affecting 
quality can lead to energy savings, prevention of 
excessive nugget formation, reduction in cycle 
times, and improvement in product quality during 
the manufacturing process. Incorrectly set 
parameters can lead to various issues during the 
production process and even result in low-quality 
products (Selova and Aydın 2019). 
 
The objective of this study is to present machine 
learning approaches using digital solutions to 
reduce errors in resistance spot welding (RSW) 
processes, one of the primary welding applications 
utilized in the automotive industry. 
 

To achieve this goal, data analyses were conducted 
using real field data and various process 
parameters obtained by sensors in a specific 
industrial Resistance Spot Welding (RSW) scenario 
and applications at TOFAŞ, one of the leading 
manufacturing companies in the automotive 
industry. In this study, different process 
parameters acquired through sensors were 
analyzed using K-Nearest Neighbors (KNN) and 
Classification and Regression Trees (CART) machine 
learning models, and insights were gained 
regarding the status of the welding process 
conducted using real field data. 
 
2. Literature Review 
In recent years, machine learning has garnered 
substantial significance within the realm of 
industrial applications, with spot-welding machines 
representing a notable sector of interest. The 
integration of machine learning methods into spot 
welding machinery holds the promise of enhancing 
production processes, elevating operational 
efficiency, and mitigating expenditure. The 
academic literature encompasses a plethora of 
studies dedicated to the analysis of factors 
influencing welding quality. Furthermore, there has 
been a surge in research endeavors specifically 
focusing on the application of machine learning 
techniques in this domain. 
 
In a study conducted by Zhou et al. (2018), a 
comprehensive comparison of diverse machine 
learning approaches was conducted for quality 
monitoring, primarily relying on time series data 
derived from resistance spot welding processes. 
The research encompassed critical phases of data 
preprocessing and feature engineering. The study 
harnessed datasets generated through a simulation 
model. Furthermore, an iterative methodology was 
introduced within the research to amalgamate data 
collection and analysis seamlessly. 
 
In the practical application segment, rudimentary 
features were extracted from the data acquired 
through simulations. Subsequent to a meticulous 
feature selection process, three distinct machine 
learning techniques were employed to construct 



 Evaluation of the RSW Process with KNN and CART Machine Learning Techniques, Peksin  and Serttas 

135 

 

various data-driven models. These models were 
implemented using the MATLAB tool, SciXMiner. 
The study embarked on modeling endeavors by 
conducting hyperparameter selection. The findings 
from this investigation illuminated the superiority 
of the Multi-Layer Perceptron algorithm over the K-
Nearest Neighbor (KNN) algorithm.  
 
Xing et al. (2018) proposed an approach for real-
time quality monitoring of resistance spot welding 
(RSW) processes. In their research, they conducted 
modeling utilizing dynamic resistance signals 
gathered and processed from actual production 
scenarios, employing the Random Forest 
classification algorithm. The study classified 
welding quality into three distinct levels: cold 
welding, satisfactory welding, and expulsion cases. 
Cross-validation techniques were employed, and a 
rigorous 10-fold cross-validation procedure was 
executed to compare test prediction errors and 
misclassifications. The outcomes demonstrated 
that the Random Forest algorithm achieved an 
impressive performance level of 98.8%. 
 
In accordance with the findings of Gavidel et al. 
(2019), they conducted an exhaustive analysis of 
prediction models' performance using RSW data 
derived from an American automotive 
manufacturer. A comparative assessment was 
carried out among commonly utilized prediction 
algorithms. The dataset underwent rigorous 
training, validation, and testing for modeling 
purposes. The research incorporated bootstrapping 
and statistical hypothesis tests for a comprehensive 
performance evaluation. The Deep Neural Network 
(DNN) model, employed for predicting nugget 
(weld size) width, exhibited the highest accuracy 
and exhibited lower variability. Consequently, the 
DNN model was recommended for processing 
highly nonlinear and intricate data, such as that 
encountered in RSW processes. Additionally, the K-
Nearest Neighbors (KNN) and KStar models were 
also scrutinized and were noted for their 
commendable performance. The study suggested 
that future research endeavors might explore 
scenarios where welding does not occur within the 
dataset. 

Literature review reveals significant progress in 
predicting welding quality. The methods employed 
in these studies have shown promising potential in 
accurately identifying faulty welding points in the 
RSW process, as well as the ability to generalize 
with a small number of samples. This highlights 
their significance in improving the overall quality of 
spot welding. 
 
3. Materials and Methods 

Spot welding represents a widely employed 
technique within the automotive industry (Liu et al. 
2020). In this procedure, variables including the 
welding type, material characteristics, and welding 
parameters collectively dictate the welding quality. 
Given the myriad permutations of these variables, 
visual assessment of welding quality becomes a 
formidable challenge. Consequently, machine 
learning emerges as a viable approach for modeling 
spot welding data. Machine learning augments the 
learning capability of computer systems through 
the capacity to glean insights from data. Within the 
realm of spot welding machines, machine learning 
techniques encompass classification, clustering, 
and regression analysis. These methodologies offer 
valuable insights into the current state of resources 
and contribute to enhancing the efficiency of 
production processes. 

3.1 Data Set 

In the manufacturing facility, each robot arm is 
equipped with a timer controller. Real-time, 
vehicle-specific welding parameters are obtained 
through communication between the 
timers/controllers in the body production line 
section of Tofaş factory models and the PLC 
(Programmable Logic Controller). This enables the 
collection of customized welding data for each 
vehicle, which is then stored in a database. This 
dataset comprises two distinct classes of welding 
data: good welds (OK) and defective welds (Not 
OK). It is known that a modern vehicle body 
undergoes approximately 4,000 to 6,000 spot 
welds on average. Therefore, the dataset to be 
modeled is quite extensive. In machine learning, 
the significance of data cannot be overstated. If the 
data quality is low, one should not expect favorable 
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results. Hence, regardless of the task at hand, 
having high-quality data is crucial. 
 
One of the most pivotal facets of this study 
pertains to the data collection phase, given the 
pivotal role of obtaining precise data to ensure 
accurate outcomes. The process of solely collecting 
data from the factory was conducted through a 
project that combines welding parameters with 
chassis codes, which resulted in a valuable and 
unique dataset. This process involved data 
collection from 14 machines located on the body 
assembly line where the study was conducted.  The 
data obtained from the actual field is 7 GB per day.  
Processing all of the data and performing model 
training through machine learning algorithms is 
very difficult and costly. It necessitates access to 
technical equipment furnished with high GPU 
capabilities. Consequently, our study constrained 
data processing to a selected timeframe, leading to 
a dataset comprising 16,397 observation units 
(rows) and 174 variables. The memory footprint for 
this dataset approximates 21 MB. 
 
Among the 174 variables within the dataset, 137 
can be categorized as categorical, 35 as numerical, 
and 2 as cardinal variables. These variables 
primarily represent scalar magnitudes. Our 
independent variable is categorical, specifically 
categorized as "Okay" and "Not Okay" thereby 
framing our research problem as a classification 
task. 
 
The category "Good Weld" signifies a successful 
and dependable welding process that aligns with 
the desired quality standards. Conversely, the "Bad 
Weld" category denotes a welding process falling 
short of the required quality criteria, indicative of a 
flawed or unreliable weld. The visual 
representation of both "Good" and "Bad" sources 
can be found in Figure 2. 
 
The first step in this process is to determine 
whether the welding process parameters fall within 
the ideal range of parameter values. This is 
accomplished through the use of KNN and CART 
models. 

In accordance with existing literature, it is advisable 
to treat our independent variable as categorical. 
Consequently, the independent variable featuring 
categorical options, namely "Okay" and "Not okay" 
was converted into numerical format via Label 
Encoding techniques. This encoding operation 
streamlines subsequent transactions during the 
application of machine learning or data analysis 
techniques on our dataset (IntRes. 4). 

 

Figure 2.Results of spot-weld inspection. (Ambroziak 
2015). 

In the subsequent phase of the study, feature 
extraction procedures were executed. Feature 
selection, aimed at diminishing the number of 
features in the dataset to enhance model 
efficiency, contrasts with feature extraction, which 
entails the transformation of existing dataset 
features into novel features. Employing 
appropriate techniques for feature selection and 
extraction holds the potential to ameliorate the 
model's performance and render the dataset more 
comprehensible and manageable (IntRes. 5). 
 
Achieving an optimal welding connection 
necessitates a delicate equilibrium between 
current intensity and welding duration. This 
equilibrium is contingent upon the material 
properties of the workpiece and the specific 
welding requisites. The material type and thickness 
play pivotal roles in ensuring an adequate heat 
supply for the welding connection. Moreover, the 
correct welding duration should align with the 
material's capacity to melt and coalesce 
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seamlessly. The attainment of this equilibrium is 
typically realized through iterative trial and error 
methods. 
 
Conversely, the standards established by 
manufacturing facilities hold significant importance 
in achieving the requisite balance within welding 
processes. Factories formulate specific standards 
and guidelines for welding parameters, drawing 
upon their accumulated experience and expertise. 
These standards are formulated with the 
overarching goal of elevating the quality and 
dependability of the welding process. It is 
imperative that parameters derived through trial 
and error methods align consistently with these 
factory-established norms, necessitating 
adjustments whenever discrepancies arise. This 
practice ensures that welding connections are 
executed in accordance with the envisioned 
standards and anticipated outcomes. 
 
Throughout the process of feature selection and 
extraction from the dataset, variables were 
judiciously reduced based on insights provided by 
welding experts at the manufacturing facility. 
Drawing from insights offered by welding experts 
at the manufacturing facility and referencing the 
pertinent literature, novel variables were 
introduced, encompassing pivotal welding 
parameters exerting influence on weld quality. An 
exemplary parameter is Joule's Law, characterized 
as a scalar quantity. 
 
Spot welding machines operate in alignment with 
Joule's Law, which elucidates the conversion of 
electrical energy into thermal energy. As electric 
current traverses the workpieces, it generates heat 
by virtue of encountering resistance. 
 
The resistance between the two parts causes the 
electrons to lose energy due to friction and 
collisions during their passage. This energy loss 
leads to heat concentration at the junction and 
melting of the parts. 

𝑄 = (𝐼 ∗ 𝑅 ∗ 𝑡)   

Formula 1. Joule Law. 

As the formula indicates, a high current is required 
to achieve sufficient heat in the welding process. 
When the current intensity and welding time are 
properly adjusted, the necessary heat for the 
welding joint is generated. Joule's law is crucial for 
an efficient welding process. 
 
In spot welding, it is imperative to execute the 
process at specific values of current, resistance, 
and time. Within the dataset, prescribed tolerance 
values for current, resistance, and time are 
provided. Guided by this information, feature 
extraction was carried out by categorizing observed 
values as either erroneous or accurate, contingent 
upon their alignment with the prescribed tolerance 
ranges. Values falling outside these tolerance 
ranges are categorized as erroneous, as they have 
the potential to detrimentally impact weld quality. 
Conversely, values falling within the tolerance 
ranges signify that the weld aligns with the desired 
standards and can be classified as accurate. 
 
Through this feature extraction, the difference 
between the realized scalar values and the 
required scalar values is calculated, allowing for the 
classification of erroneous and accurate instances. 
As a result, the adherence of crucial parameters 
such as current, resistance, and time to the 
specified tolerance values can be evaluated, 
thereby assessing the compliance of the weld with 
the desired standards. 
 
Subsequently, these variables were incorporated 
into the dataset. Fundamental statistical attributes, 
such as mean, standard deviation, median, 
minimum, and maximum, were scrutinized for 
numerical variables within the dataset. Correlation 
analysis was conducted to gauge the 
interrelationships between variables and the target 
variable. Furthermore, new variables were 
generated using the Binary Features method, 
leveraging existing variables in the "true-false" or 
"yes-no" format. 
 
As a result of the pre-processing stage, our initial 
set of 174 variables has been notably reduced to 53 
variables. This feature selection method has had a 
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substantial impact on streamlining our training 
time. 
 
Subsequently, the next phase involved the 
implementation of One Hot Encoding (OHE). OHE is 
a widely adopted technique for numerically 
representing categorical variables, as machine 
learning models tend to perform optimally with 
numerical data. Under OHE, each distinct category 
within a categorical variable is transformed into an 
individual column, assuming binary values of 0 or 1. 
The advantages of OHE encompass its simplicity, 
versatility, and compatibility with a broad spectrum 
of machine learning algorithms. However, it is 
essential to acknowledge its disadvantages, which 
encompass an expansion in the number of 
categorical variables and the overall dataset size 
due to the creation of additional columns. This 
expansion may entail elevated computational costs 
and a heightened risk of overfitting (IntRes. 6). 
 
In the next stage, the study has advanced to the 
modeling phase, wherein the dataset was 
subjected to two distinct machine learning 
algorithms. 
 
3.2 Methodology 

Within the scope of this investigation, spot-welding 
data specific to vehicles was acquired through 
integration with Programmable Logic Controllers 
(PLCs) embedded within the production line. 
Subsequently, this spot-welding data was 
systematically stored within a PostgreSQL 
database. Throughout the entire study, the Python 
programming language served as the predominant 
tool of choice. 
 
Following the culmination of data collection, a 
series of essential data preprocessing steps were 
meticulously executed. These steps encompassed 
rectifying variable names within the dataset, 
conducting exploratory data analysis, and 
generating summary statistics. 
 

Figure 3. The architecture used in comparing different           
models for spot welding quality detection with 
machine learning techniques. 

 
Concurrently, the data underwent a thorough 
scrutiny to detect missing observations and 
outliers, while novel variables were introduced, 
and variables exhibiting low information content 
were expunged from the dataset. Subsequently, 
the variables were distinctly categorized based on 
their types, including the identification and 
classification of categorical and numerical 
variables. To facilitate subsequent analysis, 
categorical variables were converted into a 
numerical format, and standardization procedures 
were implemented. 
 
Model performance assessment was carried out 
using the cross-validation method. In addition, the 
most suitable hyperparameter combination of the 
used machine learning algorithm was found 
according to the determined success metric with 
hyperparameter optimization. The model 
complexity was balanced, and overfitting and 
underfitting were attempted to be avoided. 
Machine learning algorithms were selected as a 
result of a literature review and modeling was 
performed. 
 
In this study, K-Nearest Neighbor (KNN) and CART 
(Classification and Regression Trees) techniques 
were used to determine whether the welding 
parameters are within the ideal norm range. 
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Figure 4. Distribution of Categorical and Numerical 

Variables. 
 

3.2.1   K-Nearest Neighbors (KNN) Model 

K-Nearest Neighbors (KNN) is a machine learning 
algorithm used in classification or regression 
problems. Essentially, it finds the K nearest 
neighbours for a sample and uses the class labels 
or output values of these neighbours to make a 
prediction. KNN is a non-parametric algorithm, 
meaning there is no predefined model structure 
and it makes predictions based solely on the 
features of the training data (IntRes. 7). 
 
In the context of this study, the optimal 
hyperparameter values for the KNN algorithm were 
determined utilizing the GridSearchCV method. 
GridSearchCV systematically explores various 
hyperparameter combinations, ultimately selecting 
the configuration that yields the best performance. 
Key hyperparameters for the KNN algorithm 
encompass elements such as "n_neighbors," 
"weights," "algorithm," "p," "metric," 
"metric_params," and "n_jobs." Notably, 
"n_neighbors" specifies the number of neighbors 
considered in proximity. The term "n_neighbors" 
elucidates its role as the "number of neighbors" or 
"numeric neighbors." The "weights" 
hyperparameter enables the weighting of neighbor 
influence, with "uniform" signifying equal influence 
for all neighbors, while "distance" implies an 
inverse effect based on their proximity to the 
sample. The "metric" hyperparameter dictates the 
distance measure employed for neighbor 
identification. For instance, the "euclidean" metric 

adopts the Euclidean distance, while the 
"manhattan" metric relies on the Manhattan 
distance. The "p" hyperparameter defines the 
power value within the chosen metric for neighbor 
calculation, with "p=1" employing the Manhattan 
distance and "p=2" employing the Euclidean 
distance. 
 
Following the optimization process, the 
hyperparameters were configured as follows: 
"n_neighbors" was set to 3, "weights" to 'uniform,' 
"algorithm" to 'auto,' "p" to 2, "metric" to 
'minkowski,' "metric_params" to None, and 
"n_jobs" to None. These meticulously tuned 
hyperparameters have markedly contributed to the 
superior performance achieved by the KNN model 
in this study. 
 
3.2.2   CART (Classification and Regression Trees 

When examining the modeling and classification of 
spot-welding data, the CART (Classification and 
Regression Trees) algorithm is frequently used as 
one of the methods (Zhang et al. 2014). CART is a 
decision tree algorithm that represents data in a 
tree structure and performs classification 
operations. The CART algorithm tries to create the 
most homogeneous subgroups by dividing the data 
and performs the classification process in this way 
(IntRes. 8). 
 
Entropy and Gini are the criterias used in 
classification methods such as decision tree 
algorithm. The algorithm in Formula 2 uses Gini 
impurity and Entropy impurity criteria for 
classification problems. Gini impurity can be 
expressed as the "Gini Principle" or "Gini Purity". 
The Gini impurity criterion is the probability of 
misclassifying any randomly selected example. 

𝐺 = 1 −   𝛴(𝑝𝑖 )   

Formula 2. Gini impurity formula, which measures the 
homogeneity of classes (Smith 2015). 

 
Entropy, alternatively referred to as "Entropy" or 
"Confusion" in Turkish, represents a metric applied 
in the context of classification problems to assess 
the node's purity. Formula 3 elucidates the 
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operational principle of the Entropy algorithm. 
When a dataset comprises instances associated 
with diverse classes, it exhibits increased disorder 
and consequently registers a higher entropy value. 
In essence, the entropy metric quantifies the 
degree of disorder within a dataset, with elevated 
entropy values signifying datasets characterized by 
a more pronounced intermixing of example classes 
(IntRes. 9). 

𝐸 =  −𝛴 𝑝_𝑖 ∗  𝑙𝑜𝑔2(𝑝_𝑖)  

Formula 3. Formula for entropy, which is a measure of 
the homogeneity of classes. 

 
In the context of the CART algorithm, various 
hyperparameters were employed to fine-tune its 
performance. The optimal hyperparameter 
combination for the CART algorithm is delineated 
as follows: The 'gini' criterion was utilized in 
conjunction with the Gini impurity measure, CCP 
alpha was configured at 0.0, a maximum tree depth 
was imposed at 3 levels, leaf nodes mandated a 
minimum of 1 sample, node splitting necessitated a 
minimum of 2 samples, 'random_state' was set to 
17 to ensure reproducibility, and the 'best' strategy 
was adopted for node splitting. 
 
To enhance the model's performance, a 5-fold 
cross-validation approach and hyperparameter 
optimization through the GridSearchCV method 
were implemented. Cross-validation served as a 
means to assess the model's capacity for 
generalization. This methodology entails the 
partitioning of the dataset into training and test 
sets, a process repeated multiple times with 
varying datasets to provide comprehensive insights 
into the model's generalizability (IntRes. 10). 
 
4. Results 

In this study, the performance of various machine 
learning techniques was assessed using various 
evaluation metrics. The key metrics used in this 
evaluation include precision, recall, F1 score, and 
accuracy. These four performance criteria were 
used to evaluate the accuracy of the model. The 
study examined the differences in model 

performance outcomes between the Holdout and 
Cross Validation methods. Furthermore, 
hyperparameter optimization was leveraged to 
identify the most suitable combination of 
hyperparameters for the machine learning 
algorithm, guided by the specified performance 
metric.  

The KNN model, constructed employing the 
Holdout method, underwent performance 
assessment by partitioning the dataset into training 
and test subsets. Initially, the dataset was 
randomly bifurcated into these two segments. 

To evaluate model performance in classification 
problems, the classification report function was 
employed. This function furnishes a range of 
metrics including accuracy, precision, recall, and F1 
score, which are instrumental in the assessment of 
model performance. The outcomes of this 
evaluation are presented in Table 1. 

Table 1. Classification Report Results for Haldout 
Method Training Error 

 Precision Recall F1-Score 

0 (Okay) 0.99 0.86 0.92 
1 (Not Okay) 0.97 0.73 0.83 

 
Table 2. Classification Report Results for Haldout 
Method Test Error 

 Precision Recall F1-Score 

0 (Okay) 0.96 0.82 0.88 
1 (Not Okay) 0.93 0.65 0.76 

 

Analyzing the outcomes, high precision values are 
achieved for both the training and test errors of the 
"Okay" class. This indicates that a significant 
portion of the samples predicted as "Okay" by the 
model is indeed correct. However, there is a slight 
difference in the recall values between the training 
and test errors. The training error shows a higher 
recall value, while the test error demonstrates a 
slightly lower recall value. This suggests that the 
model fits better to the training data and may miss 
some "Okay" examples in general. 

In the case of the "Not Okay" class, both the 
training and test errors manifest elevated precision 
values. Nevertheless, the recall values are higher in 
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the training error in contrast to the test error. This 
indicates that the model adeptly identifies the 
majority of samples predicted as "Not Okay" but 
encounters challenges in capturing certain genuine 
"Not Okay" samples. 

These findings imply that the model may benefit 
from further refinement or hyperparameter 
optimization. Consequently, to enhance 
performance, hyperparameter optimization was 
executed through the GridSearchCV method, and 
the results of a 5-fold cross-validation utilizing the 
Cross Validation technique are presented in Table 
3. 

Table 3. 5-fold cross-validation model results for KNN 
algorithm. 

  
Accuracy
(%) 

F1- Score 
(%) 

Roc AUC 
(%) 

Mean 99.58 68.57 90.21 

 

Following hyperparameter optimization, the pivotal 
parameter of the algorithm, namely the number of 
neighbors, has been ascertained to be 3. The 
results derived from the 5-fold cross-validation 
utilizing the optimal parameters are delineated in 
Table 4. 

Table 4. With hyperparameter optimization 5-fold cross-
validation model results for the KNN algorithm. 

  
Accuracy
(%) 

F1- Score 
(%) 

Roc AUC 
(%) 

Mean 99.70 80.86 90.23 

 
When comparing the outcomes presented in Table 
3 and Table 4, it becomes evident that 
hyperparameter optimization has yielded a 
substantial enhancement in the model's 
performance. The "Mean" values in Table 3 were 
obtained with default parameter settings, devoid 
of any hyperparameter optimization. Under these 
circumstances, the model attained an accuracy of 
99.58%, an F1 score of 68.57%, and a Roc AUC of 
90.21%. 
 
However, subsequent to the execution of 
hyperparameter optimization, the outcomes 
illustrated in Table 4 were achieved. These findings 
manifest a significant upswing in model 

performance as a result of judicious parameter 
tuning. The accuracy (99.70%), F1 score (80.86%), 
and Roc AUC (90.23%) values in Table 4 underscore 
the substantial and superior performance gains 
realized through hyperparameter optimization. 
 
This underscores the pivotal role of selecting 
appropriate parameters in machine learning 
models, as hyperparameters wield significant 
influence over the model's performance. 
Hyperparameter optimization facilitates enhanced 
model generalization, more effective pattern 
recognition within the dataset, and ultimately 
elevates overall performance. 
 
In our model, we harnessed the Validation Curve 
function. This function orchestrates a cross-
validation procedure to scrutinize the model's 
performance across various hyperparameter values 
and elucidates how alterations in hyperparameters 
impact the model's efficacy on the training set. 
 
The function generates multiple training sets with 
varying sizes while maintaining consistent 
hyperparameter values. Subsequently, it computes 
the performance metrics for both the training and 
validation sets for each configuration. This process 
culminates in a graphical representation illustrating 
the relationship between hyperparameter 
adjustments and performance. This iterative 
analysis aids in discerning which hyperparameter 
values yield optimal model performance. 
 
In our study, we focused on the KNN model, with 
the hyperparameter "n_neighbors" under scrutiny. 
"n_neighbors" represents a crucial hyperparameter 
in the KNN algorithm as it determines the number 
of neighbors considered for classification. We 
systematically calculated and compared the 
training set accuracy (train_score) and test set 
accuracy (test_score) across various values of 
"n_neighbors" ranging from 1 to 10. 
 
In Figures 5, there are two lines representing the 
scores on the training set (usually higher) and the 
test set.  Generally, increasing the value of k is a 
good choice for improving model performance and 
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achieving better generalization. However, very high 
k values can also affect model performance, and it 
is important to choose an optimal value to reduce 
overfitting. 
 
Therefore, a delicate equilibrium must be struck 
when selecting the optimal "k" value. Lower "k" 
values tend to imbue the model with increased 
complexity, while higher "k" values can adversely 
affect generalization performance. Finding the 
ideal "k" value necessitates a process of 
experimentation with different values, closely 
followed by meticulous evaluation of the model's 
performance. Achieving this balance is pivotal in 
attaining the finest results. 
 
Upon scrutinizing the accuracy scores of both the 
training and test sets, a discernible pattern 
emerges: as the "k" value ascends, the accuracy 
score for the training set experiences a gradual 
descent. This phenomenon is attributed to the 
model's diminishing complexity as a higher "k" 
leads to a more generalized approach. However, it 
is noteworthy that the accuracy score for the test 
set exhibits an upswing when "k" equals 3. This 
pivotal point signifies that an increment in the "k" 
value enhances the model's capacity for 
generalization, effectively optimizing its 
performance. 
 

                                                                                                  
Figure 5. F1-Score Performance of the KNN model for 

different values of n_neighbors. 
 
In summary, the optimal "k" value for our model 
was found to be "k = 3," delivering the highest 
performance. Conversely, elevating the "k" value 

excessively can detrimentally impact the model's 
performance. Hence, it is of paramount importance 
to meticulously select an appropriate "k" value, 
striking a balance to mitigate overfitting and attain 
optimal results. 
 

 
Figure 6. Roc AUC Performance of the KNN model for 

different values of n_neighbors. 
 
Similar procedures were executed for the CART 
algorithm. Table 5 exhibits the outcomes of 5-fold 
cross-validation for the CART model. 
 
Table 5. 5-fold cross-validation model results for the 

CART algorithm. 

  
Accuracy 
(%) 

F1 Score 
(%) 

Roc AUC 
c 

Mean 92.00 78.73 94.63 

 

The optimal parameter values for the CART 
algorithm were determined through GridSearchCV, 
resulting in 'max_depth' being set to 1 and 
'min_samples_split' set to 2. These parameter 
selections were made to enhance the model's 
overall performance. 

Following this, a cross-validation procedure was 
executed on the 'cart_final' model. Employing the 
cross_validate function, a 5-fold cross-validation 
was carried out, and the model's performance was 
assessed utilizing metrics such as 'accuracy,' 'f1,' 
and 'roc_auc.' 

This iterative process encompassed the 
identification of optimal parameter values for the 
CART algorithm via GridSearchCV and the 
subsequent execution of cross-validation on the 
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resultant 'cart_final' model. These steps play a 
pivotal role in optimizing the performance of the 
CART algorithm, ensuring superior generalization. 

Table 6 presents the results of 5-fold cross-
validation following hyperparameter optimization 
for the CART model. 

Table 6. With hyperparameter optimization 5-fold cross-
validation model results for the CART algorithm. 

  
Accuracy
(%) 

F1- Score 
(%) 

Roc AUC 
(%) 

Mean 99.87 92.49 93.41 

 
 

 
 
Figure 7. Performance of CART model for different 
values of 'max_depth’ hyperparameter. 
 

 
Figure 8. Roc AUC Performance of the CART model for 
different values of max_depth. 
 
4.1. KNN and CART Comparison 
 
Table 7 displays the performance metrics obtained 
from 5-fold cross-validation after the appropriate 
hyperparameters were selected for both the KNN 
and CART models within the same dataset. 

 
Table 7. Comparison of KNN and CART algorithms. 

  Accuracy 
(%) 

F1 Score (%) Roc AUC( %) 

KNN 0.99 0.80 0.90 

CART 
       
0.99 0.92 0.93 
      

 
The graph depicted in Figure 9 illustrates the Roc 
AUC values for both of the algorithms. 
 

 
Figure 9. ROC AUC values of KNN and CART models. 
 
In this study, a comparative analysis was conducted 
between the KNN and CART algorithms. Table 7 
presents the performance metrics, including 
Accuracy, F1 Score, and ROC AUC, derived from the 
5-fold cross-validation results for both models. 
Upon scrutinizing the outcomes, it becomes 
evident that both models exhibit notably high 
accuracy values. While the CART model attains an 
F1 Score of 0.92, the KNN model obtains a slightly 
lower F1 Score of 0.80. Additionally, concerning the 
ROC AUC score, the CART model outperforms the 
KNN model, displaying a higher value. These 
findings collectively suggest that, for the dataset 
employed in this study, the CART model 
outperforms the KNN model. Nevertheless, it's 
essential to recognize that results may vary when 
applied to different datasets, and various other 
factors should be taken into consideration when 
selecting an appropriate model. 
 
The study conducted by Zhou et al. (2018) involved 
a comparison of diverse machine learning 
approaches for quality monitoring in resistance 
spot welding (RSW) based on time-series data. 
Their research revealed that artificial neural 
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networks outperformed K-nearest neighbors in 
terms of the "Error Within 5%" performance 
metric. This metric assesses the percentage of 
predictions with relative errors smaller than 5% of 
the reference value, and the study reported a 
success rate of 90% for this criterion. 
 
In our study, we utilized ROC AUC as the 
performance metric. We achieved a success rate of 
90% for ROC AUC. It is important to note that these 
two studies employed different performance 
metrics, each focusing on a different aspect. Error 
Within 5% emphasizes the relative errors of 
predictions, while ROC AUC evaluates the model's 
ability to accurately distinguish between classes in 
a classification problem. 
 
Hence, directly comparing these two studies can be 
challenging due to the application of dissimilar 
performance metrics and potential disparities in 
datasets, methodologies, and research objectives. 
It is imperative to consider various factors when 
interpreting these results. Discrepancies in 
datasets, data dimensions, feature sets, and other 
experimental conditions may exist. Furthermore, 
aspects such as data partitioning, feature selection 
strategies, and hyperparameter tuning can exert a 
notable influence on the final outcomes. In 
conclusion, each study pursued its own unique 
objectives and employed specific performance 
metrics, and both studies attained significant 
success by harnessing machine learning 
techniques. 
 
5. Discussion and Conclusion 

Upon a comprehensive review of the existing 
literature, it becomes evident that the 
predominant focus of prior studies primarily 
revolves around the optimization of welding 
parameters. These studies have traditionally been 
conducted within controlled laboratory 
environments, often constrained by limited 
datasets. However, the extent to which models 
developed based on such laboratory data can be 
reliably applied to genuine industrial production 
conditions remains a subject of ongoing discourse. 

Consequently, our study makes a substantial 
contribution to the automotive sector by 
harnessing authentic production data and 
delivering results under real-world operational 
settings. Moreover, in contrast to numerous 
existing studies that compare the performance of 
various machine learning algorithms, our research 
augments the literature by evaluating these 
algorithms within the context of genuine 
production data, thereby determining which 
algorithm demonstrates superior efficacy. 
 
The results obtained using real data demonstrate 
the capability to successfully predict whether the 
quality of an occurring resource falls within the 
ideal norm range. These findings emphasize the 
potential effectiveness of managing resource 
quality processes and optimizing resource 
parameters. As a continuation of this study, further 
tests can be conducted with larger datasets, and 
techniques to address challenges such as class 
imbalance can be explored. To further enhance our 
findings, it is necessary to employ different 
machine learning algorithms and conduct model 
training under appropriate conditions. Our results 
make a significant contribution to the literature by 
demonstrating the effective prediction of resource 
parameters in the automotive sector. 
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