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For human beings to survive, there are basic ne-
eds such as breathing, shelter, and nutrition [1]. 

Agricultural production holds strategic importance 
in meeting the nutritional requirement of these ne-
eds. However, agricultural production faces various 
risks from production to marketing. The ability of 
agriculture to effectively meet nutritional needs is 
directly linked to controlling these risks. Crop losses 
caused by diseases, weeds, and pests are significant 
risks in production. Effective measures are required 
to mitigate these risks, which are considered plant 
protection issues. Failure to combat diseases, pests, 
and weeds results in an average yield loss of 36.5% 
(10.2% caused by insects) [2]. Integrated Pest Mana-
gement (IPM) studies, incorporating the use of the 
least harmful methods to humans and the environ-
ment, are crucial in preventing losses caused by pests. 
Artificial intelligence-based fields such as computer 
vision, data mining, and expert systems play a pivotal 
role in IPM.

Artificial intelligence-based systems developed 
for plant health protection are particularly valuable for 
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the production of economically significant cereal crops. 
Among these crops, wheat holds the top position glo-
bally as well as in Turkey in terms of cultivation area and 
production volume, highlighting its strategic importan-
ce. According to Polat [3], data from the United States 
Department of Agriculture (USDA) indicates that whe-
at production accounts for 28% of the world's grain pro-
duction, totaling 2.7 billion tons. The same study also 
highlights Turkey's crucial role in global wheat exports, 
ranking ninth during the 2019-2020 production season. 
Compared to other cereal crops, wheat, which occupies 
the top position among 162 crops worldwide, is an indis-
pensable commodity due to its substantial production 
volume and trade value [4]. These facts underscore the 
significance of wheat for the global economy, particu-
larly for Turkey.

In order to sustain wheat production, it is crucial 
to develop production techniques that increase the yi-
eld per unit area and effectively mitigate product losses. 
Wheat pests have garnered the attention of researchers 
due to their detrimental impact on wheat production, 
resulting in economic challenges and yield reductions. 

A B S T R A C T

Artificial intelligence-based systems play a crucial role in Integrated Pest Management 
studies. It is important to develop and support such systems for controlling wheat 

pests, which cause significant losses in wheat production is of strategic importance, par-
ticularly in Turkey. This study employed various pre-trained deep learning approaches to 
identify key wheat pests in the Central Anatolia, namely Aelia spp., Anisoplia spp., Eurygaster 
spp., Pachytychius hordei, and Zabrus spp. The models' classification success was determined 
using open and original datasets. Among the models, the ResNet-18 model outperformed 
others, achieving a classification success rate of 99%. Furthermore, each model was tested 
with original images collected during field studies to assess their effec-tiveness. The results 
demonstrate that pre-trained deep learning models can be utilized for the identification of 
important wheat pests in Central Anatolia as part of Integrated Pest Management.
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models, namely AlexNet, ResNet-18, and InceptionV3 CNN 
networks. Open access datasets containing images of the-
se significant wheat pests were utilized to train the models. 
The contributions of this study are evident in its application 
of modern deep learning techniques, its emphasis on iden-
tifying crucial wheat pests, the evaluation of deep learning 
models, its utilization of open-access and original datasets, 
and its potential to enhance agriculture and advance agri-
cultural research in the Central Anatolia.

The remainder of the paper is organized as follows: the 
second section provides a detailed description of the dataset 
and methodology employed, the third section discusses the 
findings and presents a comparative performance analysis, 
and the final section presents the concluding remarks on 
the study.

MATERIAL AND METHODS

Dataset

The Agricultural Control Technical Instructions [6] 
provide a comprehensive overview of the definition, life 
cycle, economic significance, distribution, and control 
measures for wheat pests. Through field surveys, origi-
nal images of the Eurygaster spp. pest were obtained and 
used for the final testing of the best model. However, the 
limited quantity and diversity of the original data hinde-
red the ability to train and validate the models effectively. 
To address this issue, open data sets have been employed.

The Global Biodiversity Information Facility (GBIF) 
is an international data network funded by governments, 
aiming to provide open access to various life-related data 
[23]. GBIF encompasses numerous data sets. In this study, 

There exist significant wheat pests that adversely affect both 
the yield and quality of wheat. In regions with a high popula-
tion density, these pests, if left uncontrolled, can cause crop 
losses of up to 100% [5]. The Agricultural Control Technical 
Instructions provide a clear overview of the definition, life 
cycle, economic significance, distribution, and control mea-
sures for wheat pests [6]. Researchers and producers rely on 
these instructions to effectively manage major wheat pests. 
Fig. 1 presents images of these key wheat pests.

In recent years, significant progress has been made in 
using Machine Learning (ML) for pest detection and iden-
tification for crop protection. These works encompass both 
traditional approaches and modern Deep Learning (DL) 
techniques, such as Convolutional Neural Networks (CNN). 
CNN, being a prominent DL method, has gained extensive 
popularity, particularly in object identification tasks invol-
ving images [8-10]. CNN models possess a deep neural arc-
hitecture comprising convolutional, pooling, and connected 
layers. Current agricultural studies based on deep learning 
provide evidence that CNN can effectively recognize disea-
ses and pests in plant protection [11-22].

The successful outcomes of deep learning-based studi-
es have served as the motivation for this research. Howe-
ver, the development of a successful and high-quality CNN 
model necessitates a well-curated dataset. Unfortunately, li-
mited data availability and insufficient open access datasets 
pose as restricting factors when training CNN models.

This study employed modern deep learning approac-
hes to identify crucial wheat pests in the Central Anatolia, 
including Eurygaster spp., Aelia spp., Anisoplia spp., Pachyt-
ychius hordei, and Zabrus spp. The classification success of 
the models was evaluated using pre-trained deep learning 

Figure 1. The important wheat pests in Central Anatolia, a: Aelia spp., b: Anisoplia spp., c: Eurygaster spp., d: Pachytychius hordei, e: Zabrus spp. [7].

Table 1. The raw dataset statistics [24-28].

Aelia Anisoplia Eurygaster Pachytychius Zabrus TOTAL

333 301 310 108 183 1235

Figure 2. Sample images from the dataset, (a): Aelia [24], (b): Anisoplia [25], (c): Eurygaster [26], (d): Pachytychius [27], (e): Zabrus [28].
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the raw data utilized for training, validation, and testing of 
the models were obtained from GBIF open data sets. Table 1 
presents the statistics of the raw data set, while Fig. 2 show-
cases sample images for each pest species. In the experimen-
tal studies, each pest was denoted by its scientific name.

The number of data sets was sufficient for training the 
deep learning models. However, in order to avoid issues such 
as overfitting and underfitting, it was necessary to balance 
the amount of data in each class. Particularly, due to the dis-
parity in the amount of data between the Pachytychius and 
Zabrus classes, data augmentation techniques were emplo-
yed, which are widely used in such cases [29-31]. This appro-
ach helped equalize the number of images in each class and 
achieve a balanced distribution of data across classes.

The final data set, created through data augmentation, 
was divided into three groups: training (70%), validation 
(10%), and test (20%). The models developed during the tra-
ining and validation process were subsequently tested using 
the independent test dataset (20%), and the results were 
compared with the validation outcomes. Table 2 provides 
details regarding the number of final datasets generated as 
a result of the data augmentation process, while Fig. 3 show-
cases augmented versions of a sample Aelia image.

In addition, a total of 423 original Eurygaster images 
were collected through field surveys conducted in March 
2022. These images served as the original dataset for the 
study and were used for testing the models, in addition to 

the designated test dataset. Note that due to field and weat-
her conditions, only images of Eurygaster could be acquired. 
Sample images from the original Eurygaster dataset are pre-
sented in Fig. 4.

Convolutional Neural Networks and Transfer 
Learning

A Convolutional Neural Network (CNN) is a deep lear-
ning model composed of interconnected layers that can 
automatically learn features from images within diffe-
rent classes. CNNs are extensively utilized, particularly 
in multi-class image classification tasks. Recent research 
demonstrates that CNN approaches can mimic human 
learning from images, achieving performance on par 
with or even surpassing human capabilities.

A CNN network can be trained from scratch or use 
"pre-trained" models that have been trained on large-scale 
datasets for specific tasks. This technique, known as "Trans-
fer Learning," allows for improved performance with redu-
ced training time, especially for tasks that require extensive 
datasets [32]. Numerous pre-trained CNN models, such as 
AlexNet [33], ResNet-18 [34], and InceptionV3 [35], are avai-
lable, each suitable for identifying important wheat pests. In 
this study, we employed the AlexNet, ResNet-18, and Incep-
tionV3 models.

AlexNet, introduced by Krizhevsky et al. [33], demons-
trated superior performance in the ImageNet image classifi-

Table 2. Final dataset statistics.

Aelia Anisoplia Eurygaster Pachytychius Zabrus TOTAL

Training 350 350 350 350 350 1750

Validation 50 50 50 50 50 250

Test 100 100 100 100 100 500

TOTAL 500 500 500 500 500 2500

Figure 3. Augmented forms of a sample Aelia image: (a) original image, (b) brightness modified, (c) contrast modified, (d) horizontal flipped, (e) 
vertical flipped, (f) random rotated.

Figure 4. Sample images of the Eurygaster original dataset.
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cation task. AlexNet achieved victory in the 2012 ImageNet 
competition by attaining a top-5 error rate of 15.3%, surpas-
sing the second-place error rate of 26.2%. It has a total of 8 
learned layers. These layers include 5 convolutional layers 
and 3 fully connected layers. The activation function used 
on the AlexNet network is ReLU (Rectified Linear Unit), 
and maximum pooling is employed to reduce the dimen-
sionality of the hidden layers. The output of the last fully 
connected layer is fed into the SoftMax function for class 
prediction.

ResNet [34], introduced by He et al., achieved first pla-
ce in the ImageNet classification with a top-5 error rate of 
3.57% in 2015. ResNet-18 consists of 18 layers in total, out of 
which 16 layers are trainable. The other two layers are the 
input layer and the final fully connected layer. ResNet-18, an 
enhanced version of the basic model.

Inception [36], also known as GoogLeNet, outperfor-
med other models in the ImageNet classification task, achie-
ving a top-5 error rate of 6.67% in 2014. InceptionV3 [35], an 
improved and optimized version of GoogLeNet, and it has a 
total of 48 trained layers. These layers include convolutional 
layers, pooling layers, fully connected layers, and auxiliary 
classifiers. InceptionV3 offers higher efficiency compared to 
previous models and requires less computational cost.

Freezing Layers

During training, specific layers' weights within the CNNs 
are immobilized, remaining unchanged throughout the 
fine-tuning process. This technique is commonly emplo-
yed for the initial layers, which primarily capture funda-
mental features. In opposition, the upper layers concent-
rate on extracting task-specific discriminative features 
and therefore remain unfrozen.

The Proposed Model

This paper presents a deep learning model based on 
transfer learning, utilizing pre-trained CNN models. 
The task involves the identification of important wheat 
pests in the Central Anatolia. The pre-trained CNN 
models used in this study include AlexNet, Res-Net-18, 
and InceptionV3. Data augmentation was performed

Figure 5. Proposed model workflow: pest images are passed to the CNN (Deep Learning Model), which automatically learns features and classifies 
pests.

using the Python programming language and the 
OpenCV (Open Computer Vision) library, while MAT-
LAB software was employed for training, validation, and 
testing of the models.

The training process involved utilizing 1750 pest ima-
ges of significant wheat pests obtained from open datasets. 
During training, each model was validated using 250 ima-
ges. The final models were created upon completion of the 
training process. Fig. 5 provides a visual representation of 
the main steps in the workflow of the proposed deep lear-
ning-based classification model.

Performance Metrics

To assess the performance of the CNN models, a confusi-
on matrix was computed to evaluate both the average and 
classwise performance. As the proposed model predicts 
one of the five pest types, the resulting confusion matrix, 
denoted as C(m,n), is a 5x5 matrix. Based on the confu-
sion matrix, various performance metrics were measured 
to determine the accuracy, precision, sensitivity, and F1-
Score values of the models, providing insights into their 
overall performance and class-specific performance.

RESULTS

Throughout the experiments, the AlexNet, ResNet-18, 
and InceptionV3 CNN models were trained and valida-
ted using the open dataset. However, it was observed that 
the models based on ResNet-18 and InceptionV3 achie-
ved the highest accuracy values. The validation accuracy 
of these models is presented in Table 3.

From the analysis of Table 3, it is evident that the Res-
Net-18 and InceptionV3 models performed comparably well. 
However, in this case, the focus shifts towards the complexi-

Table 3. The validation accuracy rates (%).

Model Accuracy

AlexNet 97.6

ResNet-18 99.6

InceptionV3 99.2
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ties of the models and the associated workloads rather than 
their success rates. Despite InceptionV3's strong performan-
ce in previous studies, it possesses a more complex structure 
when compared to the ResNet-18 architecture. Additionally, 
considering the number of layers (ResNet-18 has 18 layers, 
while InceptionV3 has 48 layers), ResNet-18 offers a lightwe-
ight architecture. Herein, it is worth noting that the training 
of the ResNet-18 model was completed in approximately 12 
minutes, whereas the InceptionV3 model required around 
84 minutes for training. Thus, despite the close average ac-
curacy values between the models, the ResNet-18 model is 
considered more successful due to its shorter training time 
and lightweight architecture.

The parameter settings of the learners used for training 
and testing in this study are presented in Table 4. The main 
parameters employed for configuring the learners' settings 
include InitialLearnRate, MaxEpoch, and MiniBatchSize. 
In the domain of machine learning and statistics, the lear-
ning rate serves as a critical tuning parameter within opti-
mization algorithms, governing the magnitude of each step 
taken during iterations to approach the minimum of a loss 
function. One MaxEpoch entails a complete iteration of a 
training algorithm across the entire training dataset. Con-

versely, a MiniBatchSize refers to the number of images pro-
cessed within each individual iteration.

Following multiple rounds of experimentation, the 
chosen MaxEpoch for this research is 20. Given the limited 
quantity of training datasets, the mini-batch size is typically 
opted to be small, falling between 4 to 64, preferably in po-
wers of 2. This selection aims to ensure effective utilization 
of the datasets while minimizing wastage. As a result, the 
MiniBatchSize designated for this study is 8.

After each fully connected layer, batch normalization 
and dropout techniques are implemented. Hyperparame-
ters, including a learning rate of 0.00001, along with the 
utilization of the Adam optimizer, were defined. While the 
initial 12 convolutional and separable convolution layers 
remained unchanged (frozen) throughout the training pro-
cess, the upper layers underwent fine-tuning.

Both training and validation accuracy graphs were 
plotted using categorical cross-entropy as the loss function 
for ResNet-18, see Fig. 6.

During the training process, it was observed that both 
the training and validation accuracy consistently improved 
over time. Furthermore, a loss graph was generated to visu-
alize the training process, as depicted in Fig. 7. The training 
loss and validation loss graphs demonstrate a decreasing 
trend throughout the training iterations, and their behavior 
closely resembles each other.

Relying solely on average accuracy is not sufficient to 
determine the success of CNN models. To address this limi-
tation, a separate test was conducted for each model using 
500 pest images (20% of the total dataset) listed in Table 2. 
These images were not encountered by the models during 
the training process. It was observed that the test perfor-
mance of all models closely aligned with their average accu-

Table 4. Hyperparameters of the models: Hyperparameters were defi-
ned such as the learning rate was assigned 0.00001, and also Adam was 
used as an optimizer.

Optimizer Adam

Loss function Categorical cross entropy

Momentum 0.9

Inıtial Learning rate 1.0000e-05

Early stopping patience 10

Maximum epoch 20

Mini batch size 8

Shuffle Every epoch

Figure 6. The ResNet-18 model was trained for 20 epochs and the trai-
ning-validation accuracies were presented after each epoch.

Figure 7. The ResNet-18 model was trained for 20 epochs and the trai-
ning-validation loss values were presented after each epoch.
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racy performance (Table 5). This result indicates that each 
model exhibited good generalization capabilities for the 
given problem. Note that the ResNet-18 model, which de-
monstrated the best performance in terms of training time, 
achieved an average test accuracy (99.4%) that was almost 
identical to the average accuracy.

The confusion matrix, is a table commonly used to vi-
sualize the performance of supervised learning algorithms 
in ML. Each row of the matrix corresponds to instances in 
a true class, while each column represents instances in a 
predicted class. For classification problems, the confusion 
matrix summarizes the count or percentage of correct and 
incorrect predictions. The term 'confusion' in the name ari-
ses from the matrix's ability to reveal whether the system is 
causing confusion between classes.

In Fig. 8, we present the confusion matrix, providing a 
detailed analysis of the performance of the most successful 
models for each class. The diagonal cells, highlighted in blue 
within the confusion matrix, indicate the number of accu-
rate classifications made for each respective class. Note that 

the InceptionV3 model misclassified 3 images belonging to 
the Eurygaster pest class. However, both models achieved 
100% accuracy in recognizing the Aelia pest class.

On the other hand, the confusion matrix was utilized 
to calculate the average test accuracy, as well as metrics such 
as precision, recall, and F1-Score. These metrics, along with 
the average accuracy, consistently supported the notion 
that the models were capable of effectively classifying the 
important wheat pests. A comprehensive breakdown of the 
performance of the ResNet-18 model for each class can be 
found in Table 6.

The models were subsequently subjected to testing 
using the original dataset of 423 Eurygaster images (see 'Da-
taset' section). The experimental results revealed that the 
best-performing models, ResNet-18 and InceptionV3, achi-
eved accuracies of 97% and 92% respectively. These findings 
demonstrate that the models exhibit robust generalization 
capabilities and can be effectively applied to real-world sce-
narios.

Table 5. The test accuracy rates (%).

Model Accuracy Precision Recall F1-Score

AlexNet 97.6 0.97 0.98 0.97

ResNet-18 99.4 0.99 0.99 0.99

InceptionV3 99.0 0.99 0.99 0.98

Figure 8. The confusion matrix for the best models trained on the dataset, on the left by ResNet-18 and on the right by InceptionV3.

Table 6. Classwise performance comparison for ResNet-18.

Metric Aelia Anisoplia Eurygaster Pachytychius Zabrus TOTAL

Precision 1.0 0.98 0.99 1.0 1.0 0.99

Recall 1.0 0.99 0.99 1.0 0.99 0.99

F1-Score 1.0 0.98 0.99 1.0 1.0 0.99
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DISCUSSION

Based on the experimental results, it is evident that the 
pre-trained CNN models successfully identified signifi-
cant wheat pests in Central Anatolia. The dataset, comp-
rising five crucial pests, was utilized across all methodo-
logies. The best performance achieved was 99.4%. The 
same hyperparameters were employed for all classifica-
tions to ensure a fair comparison.

The confusion matrix provided a detailed analysis of 
the performance of the models for each class. Therefore, it 
can be concluded that the models successfully classify each 
class.

Utilizing transfer learning (TL) as a deep learning tech-
nique involves employing a pre-trained model from an ex-
tensive dataset for a specific task within a certain domain. 
This pre-trained model serves as a foundation for tackling 
a different task within a similar domain, even when there 
is limited labeled data available. Models based on transfer 
learning (pre-trained) require a shorter training duration 
when compared to models trained entirely from scratch [32]. 
The popular pre-trained CNN classification models are do-
cumented in the literature [37], including AlexNet, ResNet, 
and Inception. These models are robust methods for image 
classification and effective object identification [33-36]. It 
has also been demonstrated that these models exhibit better 
accuracy and computational efficiency compared to other 
CNN models in some studies. The pre-trained CNN mo-
dels most frequently employed in pest classification studies 
[11-22] serve as the foundation of our deep learning strategy.

Finally, the results of this paper and related studies are 
presented in Table 7. The contribution of deep models to 
classification performance is evident in both other studies 
as the study. Consequently, CNN models can serve as a fo-

undational component of a portable system integrated with 
hardware, which can be utilized by farmers or researchers 
to identify various pest species in real-world environments.

Pest classification is a novel and increasingly popular 
field within the realm of computer vision. While there exist 
methodological similarities, our study exhibits notable dis-
tinctions when considering the dataset employed. Impor-
tantly, we assert that our research carries national signifi-
cance, as it identifies critical pest species within the Central 
Anatolia. Furthermore, the chosen pest species are those 
that impose the most substantial damage upon wheat.

CONCLUSION AND SUGGESTIONS

This study demonstrated the effectiveness of pre-trained 
CNN models for the identification of important whe-
at pests in Central Anatolia. The results of the analysis, 
which involved a five-way classification task using trans-
fer learning, indicated an average test accuracy of appro-
ximately 99% (see Table 5). Furthermore, metrics such as 
precision, recall, and F1-Score, provided in Table 6, furt-
her supported the success of the models.

Comparing the accuracy and loss graphs, as well as 
considering the performance on the original dataset, it can 
be concluded that CNN models integrated into mobile 
systems for real-world applications can be reliably employed 
to identify significant wheat pests in Central Anatolia. Fu-
ture works could involve testing and comparing the perfor-
mance of these models using original datasets that include 
other pests. Additionally, it would be valuable to explore the 
use of traditional models alongside deep learning models 
and compare their performances. Encouraging the continu-
ation of similar research endeavors is crucial for effectively 
managing factors that pose a serious threat to wheat pro-
duction.

Table 7. Related work and accuracy results (%) summary.

Study Other CNN AlexNet ResNet Inception Class

Proposed work - 97.6 99.4 99 5

Zhu et al. [11] 99.60 100 - - 22

Xia et al. [13] 89.22 - - - 24

Thenmozhi and Reddy [16] 97.47 94.23 95.95 - 24

Nanni et al. [18] 92.10 92.43 - 90.77 10

Ayan et al. [19] 98.81 - 92.18 97.06 40

Visalli et al. [20] 98.39 - - - 11

Kasinathan et al. [21] 91.5 9

Kasinathan et al. [21] 90 - - - 24

Zheng et al. [22] 98.4 89.0 92.0 - 30

Note: Best results of the studies were represented; models (if used) and their performance are presented for each study.
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