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Abstract 

The detection of iron and copper ions is very important for environmental and biological processes. In this work, a novel pyrene-functionalized 

Schiff base chitosan (Chit-Pyr) was synthesized, and this hybrid material was used as a “turn-off” fluorescence sensor for the detection of Fe2+, 

Fe3+, and Cu2+ ions. FTIR, UV-Vis, TGA, and SEM were used to examine for structural, thermal, and morphological properties of Chit-Pyr. This 

sensor exhibited a selectivity towards Fe2+, Fe3+, and Cu2+ ions among several common metal cations in the DMF dispersion. The results showed 

that the proposed “turn-off” fluorescence sensing mechanism of Chit-Pyr was simple and sensitive for the determination of Fe2+, Fe3+, and Cu2+ 

ions. 
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1. Introduction

Improving sensors for the detection and determination 

of transition metal ions is very important for 

environmental and biological processes [1]. Iron and 

copper ions, which are biological metals, play significant 

roles in these processes [2–4]. Iron exists in the form of 

ferrous (Fe2+) and ferric (Fe3+) ions and is indispensable 

in physiological processes such as oxygen binding, 

respiration, and enzymatic reactions [5–8]. Although it is 

of great importance in physiological processes, iron 

deficiency causes diabetes, anemia, liver, heart, and 

kidney damage, and iron accumulation causes serious 

diseases such as cancer, Parkinson’s, and Alzheimer’s 

[9–11]. Copper is the third most abundant transition 

metal in the human body, and excess copper in the 

human body causes diseases such as vomiting, increased 

blood pressure and respiratory rate, acute hemolytic 

anemia, and liver damage [12]. Therefore, it is very 

important to improve simple, sensitive, fast, cost-

effective, and portable alternating for metal ion 

definition [13]. Many analytical techniques such as high-

performance liquid chromatography (HPLC), anodic 

stripping voltammetry, inductively coupled plasma-

mass spectrometry (ICP-MS), and atomic absorption 

spectrometry (AAS) have been improved for the 

definition of iron and copper [14–21]. In addition to 

traditional analytical methods, fluorescence probes have 

been widely used in recent years for the detection of any 

analyte [22]. Fluorescence probes are of great interest for 

applications such as optical imaging and analytical 

sensing due to their high sensitivity, simplicity, and fast 

response times [23]. Fluorescence detection, which has 

turned into an effective tool for real-time detection and 

monitoring of biological species and physiological 

processes, is non-invasive, well-operative, and 

extremely susceptible [24].  

Biopolymers, which can be divided into natural and 

synthetic based on their origin, are long chain-like 

molecules containing repeating monomer units that are 

environmentally degradable [25,26]. Cellulose, chitosan, 

and chitin are polysaccharide derivative biopolymers in 

the natural biopolymer class [27]. Chitosan, the second 

most abundant biopolymer on Earth after cellulose, is a 

polycationic polysaccharide derived from chitin, 

consisting of N-acetyl-d-glucosamine units linked by β-

(1,4)-glycosidic bonds [28,29]. It is soluble in aqueous 

solutions such as acetic acid and lactic acid, and its 

solubility depends on the degree of deacetylation (DD) 

and molecular weight [30]. It is used in many 

applications due to its non-toxic, low-cost, versatility, 
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biodegradability, biocompatibility, digestibility, 

antibacterial, anti-tumor, hemostatic, and antioxidant 

properties [31–34]. Chitosan has shortcomings such as 

low mechanical properties, thermal stability, and high 

sensitivity to moisture. To overcome these shortages, 

chitosan is functionalized using physical, chemical, and 

biological modification methods [30]. Also, in 

fluorescence sensor applications, the fact that it does not 

have fluorescence properties requires modification with 

new groups. 

Pyrene, one of the polyaromatic hydrocarbon family, 

is widely used as a fluorescence probe in many 

applications. It is well-known that pyrene and its 

derivatives show both monomeric and excimer 

fluorescence emission [35]. The pyrene displays the 

monomer emission wavelength in the range of ~380–410 

nm and the excimer emission wavelength in the range of 

~450–500 nm [36]. The formation of the excimer causes 

the emission wavelength of the pyrene compound to 

exhibit a bathochromic shift to a longer wavelength [37]. 

Excimer emission of pyrene due to interactions between 

pyrene units, one of which is excited, both in the solution 

and in the solid state under different conditions, may 

result from an intermolecular or intramolecular process 

[38]. Although pyrene-modified chitosan biopolymers 

have been reported in the literature, they differ from our 

study in terms of synthesis and application. Jatunov et al. 

synthesized a biopolymer expressing molecules with 

different physicochemical properties by adding 

equimolar amounts of aldehydes (4-N,N-

diphenylaminobenzaldehyde, 4-N,N-dimethylamino-1- 
naphthaldehyde, and 1-pyrenecarboxaldehyde) to a 

methanolic suspension of chitosan [39]. Franconetti et al. 

developed aromatic and heteroaromatic aldehydes with 

malononitrile, a symmetric active methylene compound. 

Then, the catalytic activities of organocatalysts, chitosan 

hydrogel beads, and hydrogel disks formed by ureidyl-

chitosan derivatives were evaluated as a function of pH, 

temperature, and catalyst concentration [40]. Sirajunnisa 

et al. synthesized the β-amino derivative of lawsone 

using chitosan and 1-pyrenecarboxaldehyde via the 

Mannich reaction. Also, they prepared quaternization of 

a Mannich base and following intercalation into 

bentonite clay produced the organic-inorganic hybrid 

systems [41]. However, as far as we know 1-

pyrenecarboxaldehyde-modified chitosan prepared as a 

fluorescence sensor for the detection of metal ions is not 

yet available in the literature. In addition, chitosan and 

its derivatives are used in the fluorometric 

determination of various analytes. Although chitosan 

compound containing 1-pyrenecarboxaldehyde is not 

available in the literature, these biopolymers containing 

different fluorescent groups are used as a fluorescence 

sensor for the detection of metal ions [42–44]. 

In this work, novel pyrene-functionalized Schiff base 

chitosan was synthesized as a “turn-off” fluorescence 

determination of Fe2+, Fe3+, and Cu2+ ions. The 

characterization, morphological, and thermal properties 

of Chit-Pyr were investigated by FTIR, SEM, and TGA. 

The photophysical and fluorescence sensor properties 

were measured by UV-Vis and fluorescence 

spectroscopies. Also, the change of color was observed 

by adding Fe2+ and Fe3+ ions to the dispersion of Chit-Pyr 

in DMF. As a result, new photophysical, thermal, and 

morphological properties were gained to the biopolymer 

by functionalizing the chitosan with the pyrene 

compound. 

2. Experimental 

2.1. Materials and equipments 

Chitosan, 1-pyrenecarboxaldehyde, glacial acetic acid, 

absolute ethanol (EtOH), dichloromethane (DCM), 

tetrahydrofuran (THF), acetonitrile (ACN), dimethyl 

sulfoxide (DMSO), dimethylformamide (DMF), AgNO3, 

BaCl2, CaCl2, CdCl2, CsCl, CuCl2, FeCl2, FeCl3, HgCl2, 

KCl, LiCl, MgCl2, MnCl2, NaCl, PbCl2, and ZnCl2 metal 

salts were obtained from commercial suppliers. 

Ultrapure water (18.2 MΩ) was used for chemical 

reaction and sensor measurements. 

Fourier-transform infrared spectroscopy (FTIR) 

spectra were recorded on a Perkin Elmer Spectrum 100 

spectrophotometer. Scanning Electron Microscopy (FEI, 

Nova Nano SEM 450) was used for the analysis of 

surface morphological properties. Thermogravimetric 

analysis (TGA) was performed by Thermal Analysis 

System (Mettler Toledo STARe) and the heating rate was 

adjusted to 10 °C/min when the N2 flow rate was kept at 

50 mL/min. Absorption spectra were recorded with a 

Shimadzu 2101 UV-Vis spectrophotometer. 

Fluorescence emission spectra were obtained by a Varian 

Eclipse spectrofluorometer.  

2.2. Synthesis of pyrene-modified chitosan (Chit-Pyr) 

0.50 g of low molecular weight chitosan was dissolved in 

20 mL of ultrapure water and five drops of glacial acetic 

acid (AcOH). It was stirred at 50 ˚C for two hours to 

completely dissolve the chitosan. Then, an excess 

amount of 1-pyrenecarboxaldehyde dissolved in 10 mL 

of ethanol was added to the reaction mixture under an 

inert atmosphere and refluxed for 24 hours. After that 

time, the reaction solvent was removed and the solid 

product was washed several times with THF, DCM, and 

ethanol to remove unreacted 1-pyrenecarboxaldehyde. 

The light-yellow product was dried in a vacuum oven at 

55 ˚C. 
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2.3. “Turn-off” fluorescence sensor measurements 

Absorption and emission changes upon the addition of 

metal ions (Ag+, Ba2+, Ca2+, Cd2+, Cs+, Cu2+, Fe2+, Fe3+, Hg2+, 

K+, Li+, Mg2+, Mn2+, Na+, Pb2+, Zn2+) to the Chit-Pyr 

dispersion were determined using a UV-Vis and 

fluorescence spectrophotometer. Absorption and 

fluorescence emission spectra in “turn-off” fluorescence 

sensor measurements were performed Chit-Pyr in the 

DMF dispersion (0.4 mg/mL) at room temperature. The 

aqueous solutions of the metal chlorides (nitrate 

derivative for Ag+ ion, 0.1 M) were used as the source of 

metal ions in these measurements. Spectra were 

routinely acquired at 25 °C in a 1 cm path-length quartz 

cuvette by adding 0.1 M different metal ions (Ag+, Ba2+, 

Ca2+, Cd2+, Cs+, Cu2+, Fe2+, Fe3+, Hg2+, K+, Li+, Mg2+, Mn2+, 

Na+, Pb2+, Zn2+) to 2 mL solution. The metal solutions 

used in the measurements were prepared as 0.1 M stock 

solutions in ultrapure water using metal salts (AgNO3, 

BaCl2, CaCl2, CdCl2, CsCl, CuCl2, FeCl2, FeCl3, HgCl2, 

KCl, LiCl, MgCl2, MnCl2, NaCl, PbCl2, and ZnCl2).  

3. Results and discussion 

3.1. Synthesis and characterization 

Chitosan containing primary amine was substituted 

with pyrene, a fluorophore group with good 

photophysical properties, using a chemical modification 

method and utilized in the fluorescence detection 

platform. The pyrene-modified chitosan (Chit-Pyr) was 

synthesized via Schiff base reaction as a fluorescent 

sensor for “turn-off” fluorescence determination of Fe2+, 

Fe3+, and Cu2+ (Scheme 1). 

The chemical, thermal, and morphological 

characterizations of the final product Chit-Pyr are given 

in Fig. 1. 

 
Scheme 1.  The synthetic procedure of pyrene-modified chitosan (Chit-Pyr) 

 

 
Figure 1. (a) FTIR spectra, (b) TGA diagrams of 1-pyrenecarboxaldehyde, Chit, Chit-Pyr and SEM images of (c) Chit and (d) Chit-Pyr surfaces 

with X1000 magnification 
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Also, the chemical and thermal characterizations of the 
starting compounds Chit and 1-pyrenecarboxaldehyde 
are shown in Fig. 1a–b. In the FTIR spectra (Fig. 1a), the 
peaks representing the 1-pyrenecarboxaldehyde 
structure, which is one of the starting materials, were 
detected by the literature. The presence of aldehyde C-H 
peaks at 2858–2713 cm-1 and C=O peak at 1676 cm-1 
support the structure [45]. The characteristic peaks of the 
Chit structure, N-H and O-H peaks at 3353–3293 cm-1, 
symmetrical and asymmetrical C-H stretching 
vibrations at 2880 cm-1, C=O at 1657 cm-1 and C-O 
stretching vibrations at 1059 cm-1 confirm the structure 
[46]. In the FTIR spectrum of Chit-Pyr, which is the 
product obtained after modification, the peaks of 
chitosan are prominently present, while at the same 
time, the peak modification at 1623 cm-1 for the C-N bond 
vibration, which indicates the formation of Schiff base, 
confirms the modification [45]. 

Changes in the thermal properties of materials are 
also one of the important characterizations supporting 
whether the modification has taken place. Therefore, for 
this study, the thermal properties of the study groups 
were examined, and the thermal diagrams obtained are 
given in Fig. 1b. It has been determined that chitosan 
undergoes thermal decomposition at approximately    
350 °C with a significant mass loss of 48%. 1-
pyrenecarboxaldehyde lost about 90% of its mass at 323 
°C. The temperature at which mass loss of Chit-Pyr was 
observed also showed similar characteristics with Chit. 
The fact that the thermal decomposition temperatures of 

the bonded organic group and Chit structures were very 
close caused the obtained product to undergo thermal 
decomposition at a similar temperature point. However, 
some variation in the percent mass loss was detected. A 
mass loss of 40% indicates that the thermal properties of 
the Chit structure increase after modification. In 
addition, the difference in the thermal course after the 
temperature range (350-800 °C) where rapid mass loss is 
observed supports the modification [47,48].  

For morphological characterization, the images of 
chitosan particles before (Fig. 1c) and after (Fig. 1d) were 
modified with 1-pyrenecarboxaldehyde were examined. 
The surface of the chitosan particles appears to be 
smoother and relatively more homogeneous. In 
addition, it was determined that the surface of Chit-Pyr 
particles changed considerably to support the 
modification and had a rougher and non-homogeneous 
surface. 

Normalized absorption spectra of 1-
pyrenecarboxaldehyde, Chit, and Chit-Pyr in DMF were 
given in Fig. 2. As seen in Fig. 2, no apparent absorption 
peaks were monitored in the region of 270–570 nm in the 
UV-Vis absorption spectrum of Chit. After the chitosan 
was modified with pyrene (Chit-Pyr), the novel hybrid 
material showed a new absorption peak at 275–293 nm 
and 340–396 nm which were attributed to π-π* 
transitions of the pyrene moieties [49]. Thus, the 
absorption spectrum of the hybrid material (Chit-Pyr) 
confirmed that the pyrene has been modified to the 
chitosan surface. 

 

 
Figure 2. (a) Normalized UV-Vis absorption spectra of 1-pyrenecarboxaldehyde, Chit, and Chit-Pyr in DMF, (b) UV-Vis absorption spectra of     

0.4 mg/mL  Chit-Pyr   in  different solvents,  and  (c)  fluorescence  emission  spectra  of  0.4  mg/mL  Chit-Pyr  in  different  solvents  (λex=345 nm) 
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3.2. Photophysical studies  

The absorption and fluorescence properties of pyrene-

modified chitosan hybrid (Chit-Pyr) were investigated 

in different water-miscible solvents such as THF, ACN, 

EtOH, DMF, DMSO, and water at the same 

concentration (0.4 mg/mL, Fig. 2b–c). In addition, 

absorption and emission spectra of Chit-Pyr at different 

concentrations from 0.4 mg/mL to 0.1 mg/mL and in 

different solvents were measured to examine the effect 

of on the UV-Vis and emission absorption properties of 

Chit-Pyr. The absorbance values were decreased 

comparatively when the concentration of Chit-Pyr was 

decreased without a significant change in the absorption 

wavelength (Fig. 3). 

 

 
Figure 3.  UV-Vis  absorption  spectra  of  Chit-Pyr  in  (a)  THF,  (b)  ACN,  (c)  EtOH,  (d)  DMF,  (e) DMSO, and (f) water at different concentrations 
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The emission characteristic of Chit-Pyr was 

investigated at different concentrations from 0.4 mg/mL 

to 0.1 mg/mL and in different solvents when excited at 

345 nm (Fig. 4). It was determined that the excimer 

emission of Chit-Pyr obtained in ethanol and water, 

which are polar protic solvents, was blue-shifted 

compared to polar aprotic solvents [50]. In addition, 

emission bands of both monomer and excimer                     

of the Chit-Pyr were obtained in solvents such as THF, 

ACN, EtOH, and DMSO.  The  emission  intensity  of  the 

 

monomer emission (398 and 418 nm) was determined as 

DMSO higher than the excimer emission (481 nm) 

compared to other solvents. Also, the excimer vs. 

monomer emission intensity ratio (Ie/Im) of Chit-Pyr in 

DMSO was calculated as ~0.6, and this ratio remained 

the same with increasing or decreasing concentration. 

Among all solvents studied, DMF was chosen as the 

solvent in “turn-off” fluorescence sensor studies, 

because Chit-Pyr showed a high emission peak in DMF 

which is miscible in water. 

 

 

 
Figure 4. Fluorescence emission spectra of Chit-Pyr in (a) THF, (b) ACN, (c) EtOH, (d) DMF, (e) DMSO, and (f) water at different concentrations (λex=345 nm) 
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3.3. “Turn-off” fluorescence sensor studies 
The pyrene-modified chitosan (Chit-Pyr) was dispersed 
in DMF and “turn-off” fluorescence sensor studies were 
performed at a concentration of 0.4 mg/mL. Chit-Pyr 
was dispersed in DMF with an ultrasonic bath and 5 μL 
of 0.1 M of various metal ions (Ag+, Ba2+, Ca2+, Cd2+, Cs+, 
Cu2+, Fe2+, Fe3+, Hg2+, K+, Li+, Mg2+, Mn2+, Na+, Pb2+, Zn2+) 
were added to the dispersion of Chit-Pyr. Then, the 
absorption and emission responses of Chit-Pyr were 
evaluated after adding metal ions (Fig. 5). As seen in    
Fig. 5a, absorption properties of Chit-Pyr considerably 
changed after the addition of Fe2+, Fe3+, and Cu2+ ions to a 
dispersion of Chit-Pyr. The absorption peaks of Chit-
Pyr, observed at 277 and 288 nm, were increased 2.9- and 
2.3-fold for Fe2+, 3.6- and 2.7-fold for Fe3+, and 4.9- and 
3.4-fold for Cu2+, respectively. Also, the absorption peaks 
of Chit-Pyr, monitored at 363 and 392 nm, were 
increased 2.1- and 2.0-fold for Fe2+, 2.4- and 2.0-fold for 
Fe3+, and 1.5- and 1.5-fold for Cu2+, respectively. No blue 

or red shifts were detected in the absorption bands with 
the addition of metal ions (Ag+, Ba2+, Ca2+, Cd2+, Cs+, Cu2+, 
Fe2+, Fe3+, Hg2+, K+, Li+, Mg2+, Mn2+, Na+, Pb2+, Zn2+). 

The emission spectra of Chit-Pyr were obtained 
towards Fe2+, Fe3+, and Cu2+ ions at the same analytical 
conditions with absorption measurements. As shown in 
Fig. 5b, the emission bands of Chit-Pyr with moderate 
emission intensity at 482 nm were decreased 15.8-fold 
for Fe2+, 37.4-fold for Fe3+, and 10.3-fold for Cu2+. No 
significant changes were determined in the emission 
band with the addition of other metals (Ag+, Ba2+, Ca2+, 
Cd2+, Cs+, Hg2+, K+, Li+, Mg2+, Mn2+, Na+, Pb2+, Zn2+). The 
addition of other metals did not cause any significant 
changes in the emission band of Chit-Pyr. 

As seen in Fig. 6a, the relative fluorescence response 

of Chit-Pyr confirmed the high selectivity of Chit-Pyr 

against Fe2+, Fe3+, and Cu2+ ions and showed that it was 

unaffected by competitive species. The addition of Fe2+  

 

 
Figure 5. (a) UV-Vis absorption spectra and (b) fluorescence emission spectra of Chit-Pyr (0.4 mg/mL in DMF λex = 345 nm) upon addition                  

of 0.1 M of various metal ions (Ag+, Ba2+, Ca2+, Cd2+, Cs+, Cu2+, Fe2+, Fe3+, Hg2+, K+, Li+, Mg2+, Mn2+, Na+, Pb2+, Zn2+) 

 

 

 
Figure 6. (a) Fluorescence signal change of Chit-Pyr in DMF addition of various competitive ions, the color change of Chit-Pyr in DMF (0.4 mg/mL) 

(b) daylight, and (c) UV light 
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and Fe3+ ions to Chit-Pyr solution dispersed in DMF 

caused significant color changes to the naked eye 

(colorless to light brown, Fig. 6b) and under UV light 

(blue/green to colorless, Fig. 6c). While there was no 

visible color change after addition of Cu2+ was added, a 

color change from blue/green to colorless was observed 

under UV light (Fig. 6c). Thus, it was determined that the 

newly synthesized pyrene modified chitosan hybrid 

(Chit-Pyr) indicated “turn-off” fluorescence sensor 

properties against these metals. Also, the color change 

after the addition of Fe2+ and Fe3+ ions indicated that this 

hybrid material can be used as both a colorimetric and 

fluorometric sensor platform.  

Fluorescence titration of Chit-Pyr with an increased 

amount of Fe2+, Fe3+, and Cu2+ ions was measured in DMF 

to define the linear “turn-off” response of the Chit-Pyr 

towards the selective metal ions (Fig. 7). The 

fluorescence signals of Chit-Pyr were gradually “turn-

off” upon the addition of Fe2+, Fe3+, and Cu2+ ions, 

respectively. 

The linear regression equation for selective metal ions 

was calculated as y = - 8.1857 [Fe2+] + 401.14 (R2 = 0.9971), 

y = - 9.4774 [Fe3+] + 424.94 (R2 = 0.985), and y = - 8.9291 

[Cu2+] + 393.32 (R2 = 0.9948) (Fig. 8). The limit of detection 

(LOD) is calculated with 3σ/K where σ and K represent 

the standard deviation of the blank sample and slope of 

calibration curves, respectively. LODs were determined 

as 2.52 μM for Fe2+, 1.74 μM for Fe3+, and 1.96 μM for 

Cu2+. Also, the limit of quantification (LOQ) for Fe2+, Fe3+, 

and Cu2+ were calculated as 7.56 μM, 5.21 μM and 5.89 

μM with 9σ/K, respectively. 

 

 

 

 
Figure 7. Fluorescence titration of Chit-Pyr (0.4 mg/mL) (a) Fe2+, (b) 

Fe3+, and (c) Cu2+ with a gradually increased concentration in DMF    

(λex = 345 nm) 

 

 

 

 
Figure 8. The linear relationship between fluorescence responses of 

Chit-Pyr and metal ions (a) Fe2+, b) Fe3+, and (c) Cu2+. 
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Heavy metals such as iron and copper, which chelate 

with the -OH and -NH2 groups in chitosan, cause a 

change in the emission signal due to the photoinduced 

electron transfer (PET) mechanism. Electron transfer 

occurs from the excited compound to the electron-

deficient metal ions with Lewis acid character and 

quenches the emission signal of the fluorescence 

compound [51]. The -OH groups that provide charge 

transfer from the ligand to the metal ion were 

deprotonated after the interaction of Chit-Pyr with Fe2+, 

Fe3+, and Cu2+. The coordination between Fe2+, Fe3+, Cu2+, 

and Chit-Pyr was accomplished through the hydroxyl 

oxygen atom and the imine nitrogen atom [2,52].  

Scheme 2 indicates the proposed “turn-off” fluorescence 

sensing mechanism of Fe2+, Fe3+, and Cu2+. 

4. Conclusion 

Interest in biopolymer-based fluorescent sensors is 

increasing, as they exhibit cost-effective, biodegradable, 

and environmentally friendly properties. Also, 

biopolymers with new properties are obtained by 

functionalization with alternative groups. In this study, 

novel, sensitive, and simple “turn-off” fluorescence 

studies were performed using pyrene-modified chitosan 

hybrid (Chit-Pyr) against Fe2+, Fe3+, and Cu2+ ions. FTIR, 

UV-Vis, TGA, and SEM were used to examine for 

structural, thermal, and morphological properties of 

Chit-Pyr. Photophysical properties of Chit-Pyr were 

determined by UV-Vis absorption and fluorescence 

studies. The selective “turn-off” fluorescence response 

for Chit-Pyr was obtained towards Fe2+, Fe3+, and Cu2+ 

ions in different competitive species. It is thought that 

this study will contribute to the preparation of stable, 

economical, and sustainable new hybrid biopolymers for 

use in fluorescence sensor studies. 
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