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Abstract. The fundamental goal of our paper is to study θ−convex contrac-

tive mappings in metric spaces. We demonstrate some fixed point results for

such mappings. Also, we give an application to integral equations of our re-
sults. Consequently, our results encompass numerous generalizations of the

Banach contraction principle on metric space.

1. Introduction and Preliminaries

Banach [1] initially gave the Banach contraction principle which is an outstanding
result in fixed point theory. Due to its significance, over the years, abounding
researchers extended and generalized this contraction in many ways.

The notion of almost contraction was introduced by Berinde [2]. Also almost
contraction was compared with other contractions and Berinde [2], [3], [4] demon-
strated some fixed point theorems related to almost contraction.

Firstly Jleli [5] gave an attractive contraction called θ−contraction and researched
the uniqueness and existence of these mappings in complete metric spaces. After
Jleli’s first article [5], some different fixed point theorems were introduced Jleli [6],
Hussain [7] and Imdad [8] by changing and relaxing the conditions of ℧.

In recent years, a remarkable generalization of the Banach contraction principle
is the theorem by Istratescu [9]. Again, Istarescu studied convex contractions in [9],
[10], [11]. Since Istratescu’s fixed point theorems, many authors studied numerous
generalizations and applications of the result of Istratescu (see [12]- [24]).
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Ciric [25] used the concept of orbitally continuous for proving the uniqueness
and existence of the fixed point mappings. Afterwards, Bisht [15] proved some
fixed point theorems by replacing the continuity condition with orbital continuity.

Merging the ideas of Istratescu [9] and Jleli [5], we introduce a generalization
of convex type contractions. The goal of our paper is to introduce generalized
θ−convex contractive mappings and to demonstrate some fixed point theorems.
Theorems that have been demonstrated in our paper are generalizations of a variety
of results in the literature.

Now, at first we mention some fundemental definitions and notions related to
our work.

F (h) = {t ∈ W : ht = t} is fixed point of h.
Bisht [15] gave the following definition instead of continuity condition to be used

their theorems.

Definition 1. [15] Let (W,ϱ) be a metric space and h be a self mapping on W .
We say that h is orbitally continuous at a point u ∈ W if lim

j→∞
hnj t = u implies

that lim
j→∞

hnj t = hu.

Berinde [2], [3], [4] gave the concepts of almost contraction, multivalued almost
contraction and the continuity of almost contractions.

Definition 2. [2] Let (W,ϱ) be a metric space and h be a self mapping on W. h
is called an almost contraction if there exists a constant ζ ∈ (0, 1) and L ≥ 0 such
that

ϱ(ht, hs) ≤ ζϱ(t, s) + Lϱ(s, ht)

for all t, s ∈ W .

Firstly, Jleli [5] gave the concept of θ−contraction mappings and the following
family.

Let ℧ denotes the set of all mappings θ : (0,∞) → (1,∞) which hold the
following conditions:

(1) θ is strictly increasing;
(2) for all sequence {ηn} ⊂ (0,∞), limn→∞ θ (ηn) = 1 if and only if limn→∞ ηn =

0;

(3) there exist ℓ ∈ (0,∞] and r ∈ (0, 1) such that limn→∞
θ(η)−1
(η)r = ℓ.

Υ be the set of nondecreasing functions ς : [0,+∞) → [0,+∞) such that
+∞∑
j=1

ςj (η) < +∞ for each η > 0, where ςj is the j−th iterate of ς.

Remark 1. Each function ς ∈ Υ satisfies limn→∞ ςn (η) = 0 and ς (η) < η for all
η > 0.

Firstly, Jleli [5] gave the definition of θ−contraction as follows.
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Definition 3. Let (W,ϱ) be a metric space and h : W → W be a self-mapping.
Then h is called θ−contraction if there exist κ ∈ (0, 1) such that

θ(ϱ(ht, hs)) ≤ [θ(ϱ(t, s))]
κ

for all t, s ∈ W , with ht ̸= hs.

Istratescu [9], [10] gave the following definitions.

Definition 4. Let (W,ϱ) be a metric space and h : W → W be a self-mapping.
Then h is called convex contraction of order 2 if there exist d1, d2 ∈ (0, 1) such that
d1 + d2 < 1 and

ϱ(h2t, h2s) ≤ d1ϱ(ht, hs) + d2ϱ(t, s)

for all t, s ∈ W .

Definition 5. Let (W,ϱ) be a metric space and h : W → W be a self-mapping.
Then h is called two-sided convex contraction mappings if there exist d1, d2, d3, d4 ∈
(0, 1) such that d1 + d2 + d3 + d4 < 1 and

ϱ(h2t, h2s) ≤ d1ϱ(t, ht) + d2ϱ(ht, h
2t) + d3ϱ(s, hs) + d4ϱ(hs, h

2s)

for all t, s ∈ W .

2. Main Results

In this chapter, we give concept of generalized θ−convex contractions in metric
spaces. We demonstrate some fixed point results for such contractions on metric
spaces. The following Theorem’s hypothesis are basically weaker than the set of
contraction type mappings.

Now, we will give the definition of generalized θ−convex contractive mappings.

Definition 6. Let (W,ϱ) be a metric space and h : W → W be a self-mapping.
Then h is called generalized θ−convex contraction if there exist L ≥ 0, ς ∈ Υ and
κ ∈ (0, 1) such that

ϱ(h2t, h2s) > 0 ⇒ θ
(
ϱ(h2t, h2s)

)
≤ [θ (ς(MI(t, s)))]

κ
+ LNI(t, s) (1)

where θ ∈ ℧ and

MI (t, s) = max
{
ϱ(t, s), ϱ(ht, hs), ϱ(t, ht), ϱ(s, hs), ϱ(ht, h2t), ϱ(hs, h2s)

}
,

NI (t, s) = min
{
ϱ(t, ht), ϱ(s, hs), ϱ(t, hs), ϱ(s, ht), ϱ(ht, h2t), ϱ(hs, h2s)

}
,

for all t, s ∈ W .

Remark 2. Every convex contraction of order 2 and two-sided convex contraction
are a generalized θ−convex contraction. Also, every θ−contraction is a generalized
θ−convex contraction. But the reverse doesn’t have to be true.

Since, our novel class of contractive type mappings is more general, it will be
more advantageous to work using this new class.

The following theorem is our first result related to generalized θ−convex con-
tractive mappings.
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Theorem 1. Let (W,ϱ) be a complete metric space and h : W → W be a generalized
θ−convex contraction. If h is either orbitally continuous on W or h is continuous,
then h has a unique fixed point.

Proof. Starting at the point t0 ∈ W, the sequence {tn} is constructed by tn =
htn−1 = hnt0, n ≥ 1. If tn0+1 = tn0

for any n0 ∈ N ∪ {0}, then it is clear that, tn0

is a fixed point of h. Consequently, assume that tn0+1 ̸= tn0 for all n0 ∈ N ∪ {0}.
Setting m = max {ϱ (t0, t1) , ϱ (t1, t2)}. First of all, we show that {ϱ (tn, tn+1)} is a
strictly nonincreasing sequence inW . Since h is a generalized θ−convex contraction,
using Remark 1 and from the first axiom of θ, we have

θ (ϱ (t2, t3)) = θ
(
ϱ
(
h2t0, h

2t1
))

≤
[
θ

(
ς

(
max

{
ϱ (t0, t1) , ϱ (ht0, ht1) , ϱ (t0, ht0) ,

ϱ
(
ht0, h

2t0
)
, ϱ (t1, ht1) , ϱ

(
ht1, h

2t1
) }))]κ

+Lmin

{
ϱ (t0, ht0) , ϱ (t1, ht1) , ϱ (t0, ht1) ,

ϱ (t1, ht0) , ϱ
(
ht0, h

2t0
)
, ϱ

(
ht1, h

2t1
) }

= [θ (ϱ (max {ϱ (t0, t1) , ϱ (t1, t2) , ϱ (t2, t3)}))]κ

≤ [θ (max {m, ϱ (t2, t3)})]κ .

If max {m, ϱ (t2, t3)} = ϱ (t2, t3), then we have

θ (ϱ (t2, t3)) ≤ [θ (ϱ (t2, t3))]
κ
.

If we take ln two both sides of the inquality, then we have

ln θ (ϱ (t2, t3)) ≤ κ ln [θ (ϱ (t2, t3))]

which is a contradiction. Hence, we get

max {m, ϱ (t2, t3)} = m = max {ϱ (t0, t1) , ϱ (t1, t2)} .

Since ς (η) < η for all η > 0, we have

θ (ϱ (t3, t4)) ≤
[
θ

(
ς

(
max

{
ϱ (t1, t2) , ϱ (ht1, ht2) , ϱ (t1, ht1) ,

ϱ(ht1, h
2t1), ϱ (t2, ht2) , ϱ

(
h2, h

2t2
) }))]κ

+Lmin

{
ϱ (t1, ht1) , ϱ (t2, ht2) , ϱ (t1, ht2) ,

ϱ (t2, ht1) , ϱ(ht1, h
2t1), ϱ

(
ht2, h

2t2
) }

≤ [θ (max {ϱ (t1, t2) , ϱ (t2, t3) , ϱ (t3, t4)})]κ .

If max {ϱ (t1, t2) , ϱ (t2, t3) , ϱ (t3, t4)} = ϱ (t3, t4), then we obtain

θ (ϱ (t3, t4)) ≤ [θ (ϱ (t3, t4))]
κ
.

If we take ln two both sides of the inequality, then we have

ln θ (ϱ (t3, t4)) ≤ κ ln [θ (ϱ (t3, t4))] .

This is one more contradiction, from which it is concluded that max {ϱ (t1, t2) , ϱ (t2, t3)} >
ϱ (t3, t4). Thus, m > ϱ (t2, t3) > ϱ (t3, t4). Hence, by induction one can get
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{ϱ (tn, tn+1)} is a strictly nonincreasing sequence in W . This implies that

θ (ϱ (tn, tn+1)) ≤
[
θ

(
ς

(
max

{
ϱ (tn−2, tn−1) , ϱ (tn−1, tn) , ϱ (tn−2, tn−1) ,

ϱ (tn−1, tn) , ϱ (tn−1, tn) , ϱ (tn, tn+1)

}))]κ
+Lmin

{
ϱ (tn−2, tn−1) , ϱ (tn−1, tn) , ϱ (tn−2, tn) ,
ϱ (tn−1, tn−1) , ϱ (tn−1, tn) , ϱ (tn, tn+1)

}
≤ [θ (max {ϱ (tn−2, tn−1) , ϱ (tn−1, tn) , ϱ (tn, tn+1)})]κ .

If max {ϱ (tn−2, tn−1) , ϱ (tn−1, tn) , ϱ (tn, tn+1)} = ϱ (tn, tn+1) then we get

θ (ϱ (tn, tn+1)) ≤ [θ (ϱ (tn, tn+1))]
κ
,

which is once again contradiction. Therefore, we have

θ (ϱ (tn, tn+1)) ≤ [θ (max {ϱ (tn−2, tn−1) , ϱ (tn−1, tn)})]κ

and

θ (ϱ (tn, tn+1)) ≤ [θ (ϱ (tn−1, tn))]
κ

≤ [θ (ϱ (tn−2, tn−1))]
κ2

...

≤ [θ (m)]
κl

,

whenever l = 2n or l = 2n+ 1, for l ≥ 1. Hence, we have

1 ≤ θ (ϱ (tn, tn+1)) ≤ [θ (m)]
κl

, for all l ≥ 1. (2)

Letting n → ∞, following two cases arise.

Case 1. 1 ≤ θ (ϱ (tn, tn+1)) ≤ [θ (m)]
κn

, for all n ≥ 2 and n is even.

Case 2. 1 ≤ θ (ϱ (tn, tn+1)) ≤ [θ (m)]
κn−1

, for all n ≥ 3 and n is odd.
From Case 1 and Case 2 we get lim

n→∞
θ (ϱ (tn, tn+1)) = 1. By the second axiom

of θ, we get lim
n→∞

ϱ (tn, tn+1) = 0. From the third axiom of θ, there exist ℓ ∈ (0,∞]

and r ∈ (0, 1)

lim
n→∞

θ (ϱ (tn, tn+1))− 1

[ϱ (tn, tn+1)]
r = ℓ.

Assume that ℓ < ∞ and ⊤ = ℓ
2 > 0. From the limit definition, there exists n0 ∈ N

such that ∣∣∣∣θ (ϱ (tn, tn+1))− 1

[ϱ (tn, tn+1)]
r − ℓ

∣∣∣∣ ≤ ⊤ for all n ≥ n0

which implies that

θϱ (tn, tn+1)− 1

[ϱ (tn, tn+1)]
r ≤ ℓ−⊤ = ⊤ for all n ≥ n0.

Therefore, we have

n [ϱ (tn, tn+1)]
r ≤ kn [θ (ϱ (tn, tn+1))− 1] for all n ≥ n0
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where k = 1
⊤ . Assume that ⊤ > 0 is an arbitrary number and ℓ = ∞. From the

limit definition, there exists n0 ∈ N such that

θ (ϱ (tn, tn+1))− 1

[ϱ (tn, tn+1)]
r ≥ ⊤ for all n ≥ n0

which implies that

n [ϱ (tn, tn+1)]
r ≤ kn [θ (ϱ (tn, tn+1))− 1] for all n ≥ n0 (3)

where k = 1
⊤ . Therefore, in two cases there exists n ≥ n0 and k > 0 such that (2.3)

is satisfied. Using (2.2), we get

n [ϱ (tn, tn+1)]
r ≤ kn

(
[θ (m)]

kl

− 1
)

for all l ≥ 2n0 + 1 or l ≥ 2n0.

Letting n → ∞, we get lim
n→∞

n [ϱ (tn, tn+1)]
r
= 0. Hence, there exists n1 ∈ N such

that

ϱ (tn, tn+1) ≤
1

n
1
r

for all n ≥ n1.

Now, we will demostrate that {tn} is a Cauchy sequence. For all p > q ≥ n1, we
get

ϱ (tp, tq) ≤ ϱ (tp, tp−1) + ϱ (tp−1, tp−2) + · · ·+ ϱ (tq+1, tq)

≤
p−1∑
j=q

ϱ (tj , tj+1)

<

∞∑
j=q

ϱ (tj , tj+1)

≤
∞∑
j=q

1

j
1
r

.

Since
∑∞

j=q
1

j
1
r

is convergent, lim
p,q→∞

ϱ (tp, tq) = 0. Hence, we get that {tn} is a

Cauchy sequence in W . Since (W,ϱ) is a complete metric space, there exists u ∈ W
such that tn → u. Assume that h is continuous. Since tn → u ∈ W and W is
complete metric space, we get

ϱ (u, hu) = lim
n→∞

ϱ (tn, htn) = lim
n→∞

ϱ (tn, tn+1) = 0.

Therefore u ∈ F (h). Again, assume that h is orbitally continuous on W , then

tn+1 = htn = h (hnt0) → hu as n → ∞.

Since W is complete metric space, hu = u that is u ∈ F (h). Now, assume that u
and v are arbitrary two fixed point of h. Then we get

θ (ϱ (u, v)) = θ
(
ϱ
(
h2u, h2v

))
≤ [θ (ς (MI (u, v)))]

κ
+ LNI (u, v)
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≤
[
θ

(
ς

(
max

{
ϱ (u, v) , ϱ (hu, hv) , ϱ (u, hu) , ϱ (v, hv) ,

ϱ
(
hu, h2u

)
, ϱ

(
hv, h2v

) }))]κ
+Lmin

{
ϱ (u, hu) , ϱ (v, hv) , ϱ (u, hv) , ϱ (v, hu) ,

ϱ
(
hu, h2u

)
, ϱ

(
hv, h2v

) }
≤ [θ (ϱ (u, v))]

κ
.

Thus we get

θ (ϱ (u, v)) ≤ [θ (ϱ (u, v))]
κ
.

If we take ln two both sides of the inquality, then we obtain

ln θ (ϱ (u, v)) ≤ κ ln θ (ϱ (u, v)) .

Since κ ∈ (0, 1), it is a contradiction. Hence u = v, that is, h has a unique fixed
point in W . □

Now, we shall give an example to illustrate the generality of Theorem 1.

Example 1. Let (W,ϱ) be a metric space, h be a self mapping on W and θ(t) = e
√
t

for t > 0, that is, θ ∈ ℧. Assume that h is a convex contraction of type−2 for all
t, s ∈ W with ϱ(h2t, h2s) > 0, B =

∑6
j=1 dj < 1 and dj ≥ 0 for all j = 1, 2, . . . , 6.

ϱ(h2t, h2s) ≤ d1ϱ(t, s) + d2ϱ(ht, hs) + d3ϱ(t, ht) + d4ϱ(s, hs)

+d5ϱ(ht, h
2t) + d6ϱ(hs, h

2s)

≤
6∑

j=1

dj max
{
ϱ(t, s), ϱ(ht, hs), ϱ(t, ht), ϱ(s, hs), ϱ(ht, h2t), ϱ(hs, h2s)

}
≤ Bmax

{
ϱ(t, s), ϱ(ht, hs), ϱ(t, ht), ϱ(s, hs), ϱ(ht, h2t), ϱ(hs, h2s)

}
,

where t, s ∈ W with ϱ(h2t, h2s) > 0. We obtain that

ϱ
(
h2t, h2s

)
≤ BMI(t, s).

Taking ς(t) = B
1
2 t, we have

e
√

ρ(h2t,h2s) ≤ eB
1
4
√

MI(t,s) =
[
e
√

ϱ(MI(t,s))
]κ

where κ = B
1
4 . Since θ(t) = e

√
t for t > 0, we deduce that

θ
(
ϱ(h2t, h2s

)
≤ [θ (ς (MI(t, s)))]

κ

≤ [θ (ς (MI(t, s)))]
κ
+ LNI(t, s),

where L ≥ 0. This shows that, h is a generalized θ−convex contractive mapping.

Remark 3. Above example show that our contraction condition generalizes Is-
tratescu’s contraction conditions [9], [10].
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Definition 7. Let (W,ϱ) be a metric space. A self-mapping h : W → W is called
an almost θ−convex contraction if there exist L ≥ 0 and κ ∈ (0, 1) such that

ϱ(h2t, h2s) > 0 ⇒ θ(ϱ(h2t, h2s) ≤ [θ(MI(t, s))]
κ
+ LNI(t, s)

where θ ∈ ℧ and

MI (t, s) = max
{
ϱ(t, s), ϱ(ht, hs), ϱ(t, ht), ϱ(s, hs), ϱ(ht, h2t), ϱ(hs, h2s)

}
,

NI (t, s) = min
{
ϱ(t, ht), ϱ(s, hs), ϱ(t, hs), ϱ(s, ht), ϱ(ht, h2t), ϱ(hs, h2s)

}
,

for all t, s ∈ W .

Definition 6 and Definition 7 generalize and merge the results derived by Jleli [5]
and Istratescu [9], [10], and some other connected results in the literature. Also,
our novel contractions can be considered as an attracted generalization of Darbo’s
fixed point problem [26], [27].

Corollary 1. Let (W,ϱ) be a complete metric space and h : W → W be an almost
θ−convex contraction. If h is either orbitally continuous on W or h is continuous,
then h has a unique fixed point that is u = hu, u ∈ W .

If we take L = 0 in Theorem 1, then we obtain the following corollary.

Corollary 2. Let (W,ϱ) be a metric space and h : W → W be a self-mapping. If
there exist ς ∈ Υ and κ ∈ (0, 1) such that

ϱ(h2t, h2s) > 0 ⇒ θ(ϱ(h2t, h2s)) ≤ [θ (ς(MI(t, s)))]
κ

(4)

where θ ∈ ℧ and

MI (t, s) = max
{
ϱ(t, s), ϱ(ht, hs), ϱ(t, ht), ϱ(s, hs), ϱ(ht, h2t), ϱ(hs, h2s)

}
,

for all t, s ∈ W . Also, assume that h is either orbitally continuous on W or h is
continuous, then u = hu, u ∈ W .

By taking L = 0 and not considering ς ∈ Υ in Theorem 1, we deduce the
following corollary.

Corollary 3. Let (W,ϱ) be a metric space and a self-mapping h on W . If there
exist κ ∈ (0, 1) such that

ϱ(h2t, h2s) > 0 ⇒ θ(ϱ(h2t, h2s)) ≤ [θ (MI(t, s))]
κ

(5)

where θ ∈ ℧ and

MI (t, s) = max
{
ϱ(t, s), ϱ(ht, hs), ϱ(t, ht), ϱ(s, hs), ϱ(ht, h2t), ϱ(hs, h2s)

}
,

for all t, s ∈ W . Also, assume that h is either orbitally continuous on W or h is
continuous, then u = hu, u ∈ W .

We get the following results as shown in Example 1.
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Corollary 4. Let (W,ϱ) be a metric space and a self-mapping h on W . For all
t, s ∈ W,

ϱ(h2t, h2s) ≤ Bmax
{
ϱ(t, s), ϱ(ht, hs), ϱ(t, ht), ϱ(s, hs), ϱ(ht, h2t), ϱ(hs, h2s)

}
where B ∈ [0, 1). Also, assume that h is either orbitally continuous on W or h is
continuous, then u = hu, u ∈ W .

Corollary 5. Let (W,ϱ) be a metric space and h is a convex contraction of type−2
on W . Also, assume that h is either orbitally continuous on W or h is continuous,
then u = hu, u ∈ W .

3. Application

Now, we give an application of our result for nonlinear integral equations.

t (u) = ϑ (u) +

∫ f

e

K (u, v, t (v)) dv (6)

where e, f ∈ R, C [e, f ] = {h : [e, f ] → R continuous functions}, t ∈ C ([e, f ] ,R),K :
[e, f ]× [e, f ]× R → R and ϑ : [e, f ] → R.

Theorem 2. Consider the integral equation (3.1). Assume that the following con-
ditions satisfy:

(i) K : [e, f ]× [e, f ]× R → R and ϑ : [e, f ] → R are continuous functions;
(ii) there exists γ ∈ [0, 1) such that

|K (u, v, ht (v))−K (u, v, hs (v))| ≤ γ

max


|t(v)− s (v)| , |ht(v)− hs (v)| ,
|t(v)− ht (v)| ,

∣∣ht(v)− h2t (v)
∣∣ ,

|s(v)− hs (v)| ,
∣∣hs(v)− h2s (v)

∣∣


f − e

for all t, s ∈ C ([e, f ] ,R) and u, v ∈ [e, f ].

Then nonlinear integral equation (3.1) has a unique solution.

Proof. W = C [e, f ], ϱ(h, g) = |h− g| = maxt∈[e,f ] |ht− gt|, for all h, g ∈ W, and
(W,ϱ) is a complete metric space. h : W → W be a continuous operator defined by

ht (u) = ϑ (u) +

∫ f

e

K (u, v, t (v)) dv.

Starting at the point t0 ∈ W, the sequence {tn} is constructed by tn = htn−1 = hnt0,
n ≥ 1. From (3.1), we get

tn+1 = htn (u) = ϑ (u) +

∫ f

e

K (u, v, tn (v)) dv.
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Now, we will demonstrate that h is a generalized θ−convex contractive mapping.
We can write∣∣h2t(u)− h2s (u)

∣∣ =

∣∣∣∣∣
∫ f

e

K (u, v, ht (v)) dv −
∫ f

e

K (u, v, hs (v)) dv

∣∣∣∣∣
≤

∫ f

e

|K (u, v, ht (v))−K (u, v, hs (v))| dv

≤ γ

f − e

∫ f

e

max


|t(v)− s (v)| , |ht(v)− hs (v)| ,
|t(v)− ht (v)| ,

∣∣ht(v)− h2t (v)
∣∣ ,

|s(v)− hs (v)| ,
∣∣hs(v)− h2s (v)

∣∣
 dv

and

ϱ
(
h2t, h2s

)
= max

u∈[e,f ]

∣∣h2t(u)− h2s (u)
∣∣

≤ γ

f − e
max
u∈[e,f ]

∫ f

e

max


|t(v)− s (v)| , |ht(v)− hs (v)| ,
|t(v)− ht (v)| ,

∣∣ht(v)− h2t (v)
∣∣ ,

|s(v)− hs (v)| ,
∣∣hs(v)− h2s (v)

∣∣
 dv

≤ γ

f − e
max

 max
c∈[e,f ]


|t(c)− s (c)| , |ht(c)− hs (c)| ,
|t(c)− ht (c)| ,

∣∣ht(c)− h2t (c)
∣∣ ,

|s(c)− hs (c)| ,
∣∣hs(c)− h2s (c)

∣∣

∫ f

e

dv

≤ γmax
{
ϱ(t, s), ϱ(ht, hs), ϱ(t, ht), ϱ(s, hs), ϱ(ht, h2t), ϱ(hs, h2s)

}
≤ γMI(t, s).

Thus

ϱ
(
h2t, h2s

)
≤ γMI(t, s).

Define θ(t) = e
√
t for t > 0 and ς(t) = γ

1
2 t. We have

e
√

ρ(h2t,h2s) ≤ eγ
1
4
√

MI(t,s) =
[
e
√

ϱ(MI(t,s))
]κ

where κ = γ
1
4 . Thus, we get

θ
(
ϱ(h2t, h2s

)
≤ [θ (ς (MI(t, s)))]

κ
+ LNI(t, s)

where L ≥ 0. This shows that, h is a generalized θ−convex contractive mapping.
That is, the conditions of Theorem 1 are hold. Thus, h has a unique fixed point in
W, and so, the nonlinear integral equation (3.1) has a unique solution. □

4. Conclusion

We present generalized θ−convex contractive mappings in this paper. This con-
tractive condition not only extends several existing contraction definitions but also
merge some existing contractions. Afterward, we investigate the existence of a fixed
point for our novel type contraction, we state some consequences. Our results gen-
eralize and merge the results derived by Istratescu [9], [10] and Jleli [5], and some
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other connected results in the literature. Our new contraction can be considered as
an interesting generalization of Darbo’s fixed point problem [26], [27]. As well as
the corollaries in this paper, to underline the novelty of our given results, we show
an example that shows that Theorem 1 is a genuine generalization of Istratescu’s
results [9]. Moreover, as a possible application, we applied our main results to
study the existence of a solution for a nonlinear integral equation. The new concept
allows for further studies and applications. By choosing the appropriate auxiliary
function such as simulation function and others, one can get several more results.
Also, one can get the analogue of our result in the set-up of cyclic mappings.
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