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Abstract
In this paper, we propose a new method called principal simple linear regression for pre-
dicting a continuous response variable, Y using a single continuous predictor, X by uti-
lizing multiple regression lines. This method is based on the theory of principal points
and offers several advantages over classical simple linear regression methods, such as the
ability to predict central, dispersion, and distributional tendencies of Y on X, and simul-
taneous estimation. We provide the main properties, inferences, and limiting behavior of
the estimators. Additionally, we conduct a comprehensive simulation study to validate
our theoretical results. The model is also applied to real datasets to demonstrate its ef-
fectiveness.
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1. Introduction
Simple linear regression (SLR) has long been a cornerstone in statistical analysis, pro-

viding insights into the relationship between a continuous response variable, Y and a single
continuous predictor variable, X. Traditionally, SLR focuses on determining the central
tendency of Y given X. However, this emphasis on central tendency often leads to an
oversight of critical aspects in the Y -X relationship, such as dispersion and distributional
tendencies.
In response to this limitation, we introduce a novel method named principal simple linear
regression (PSLR) in this paper. PSLR leverages the theory of principal points as outlined
by [7] and extends from seminal works such as [16]. These principal points allow us to
utilize multiple regression lines, enabling a more comprehensive exploration of the Y -X
relationship. This approach stands out from conventional SLR and other methodologies,
including those focused solely on dispersion tendencies such as variance components [4],
ARCH [5], and GARCH [3] models. Furthermore, it distinguishes itself from multiple
quantile regression [10], a method requiring separate model fittings and, consequently,
distinct error variance estimations. Our work builds upon the foundational principles laid
out by [6] and [17], exploring the estimation of principal points and their self-consistency in
elliptical distributions. Subsequent research by [15] delves into the estimation of principal
points for univariate distributions. The uniqueness of two principal points for univariate
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location mixtures is examined by [18], while Stampfer and Stadlober [14] propose meth-
ods for estimating principal points. Expanding beyond univariate settings, Matsuura and
Kurata [11] explore principal points of a multivariate mixture distribution. Matsuura
et.al. [12] present optimal estimators for minimizing expected mean squared distance. Ya-
mashita [19] contributes a doctoral dissertation studying principal points for a multivariate
binary distribution, and the comparison of model selection methods for their estimation is
presented by [20]. The utility of principal points extends to diverse applications, as seen
in the work of [9], who apply them to partition functional gene expression data. Yu [21]
contributes to our understanding by investigating the uniqueness of principal points with
respect to p-order distance for a class of univariate continuous distributions.
The paper is organized as follows: an overview of the definition and properties of prin-
cipal points is given in the subsequent part of this section. Section 2 contains the main
theoretical results, including the definition and properties of PSLR, methods of param-
eter estimation, and asymptotic behavior of the estimators. In Section 3, a real data
analysis is performed using the PSLR method. This section includes a specific focus on
comparing the outcomes with those obtained from multiple quantile regression, presented
exclusively through figures for clarity. Further, in Section 4, comprehensive simulations
are conducted to illustrate the asymptotic behavior of the estimators. The results are pre-
sented to provide a thorough understanding of the method’s performance. Finally, Section
5 encapsulates our conclusions.

1.1. Principal points
In this section, we will provide an overview of the concept of principal points, which is

the foundation of the proposed PSLR method. Principal points were first introduced by
[7] as a way to minimize the expected squared distance between a random vector X and
a set of points {p1,p2, . . . ,pk}:

Definition 1.1. [7] Let X be a random vector with finite second moment. the k-principal
points of X is the set of {ξ1, ξ2, . . . , ξk}, which minimizes the expected (squared) distance
between X and {p1,p2, . . . ,pk}:

{ξ1, ξ2, . . . , ξk} = argmin
p1, p2, ..., pk

E
[
d2 (X|p1,p2, . . . ,pk)

]
, (1.1)

in which

d2 (X|p1,p2, . . . ,pk) = min
{

(X − pj)′ (X − pj) ; j = 1, 2, . . . , k
}
.

The minimum value of this expected squared distance is denoted by PX(k). If k = 1,
then the 1-principal point of X is equivalent to the expectation of X. Principal points can
be seen as a generalization of the mean, which is the minimizer of the expected squared
distance between X and a single point:

E(X) = argmin
p

E
{

(X − p)′ (X − p)
}
.

Previous research has focused on extending and applying principal points in various fields.
For example, methods of estimating principal points [6], properties and characterizations
of principal points for continuous univariate distributions [22], principal points for elliptical
distributions [17], and functional principal points [2] have been studied. Additionally, it
was shown by [7] that principal points are a linear operator, meaning that if we have
a set of principal points for a random vector X and we apply a linear transformation
to X and its principal points, then the new set of points will also be principal points
for the transformed vector. More precisely, if ξ1, . . . , ξk be the k-principal points of X
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and Y = µ + σHX, where µ ∈ Rd, σ ∈ R+, and H is an orthogonal matrix, then the
k-principal points of Y will be:

ηj = µ + σHξj , j = 1, 2, . . . , k. (1.2)

Flury [7] proved that for univariate symmetric continuous distributions the two principal
points are: ξ1,2 = ±E |X| whenever f (0)E |X| < 0.5. This holds for the standard normal
distribution and tν distribution with ν ≥ 3.
For the standard normal distribution, Z, the k-principal points are provided in Table 1
for 1 ≤ k ≤ 5.

Table 1. The k = 1, · · · , 5 principal points of the standard normal distribution

k Principal points PΦ(k)
1 0.0 1.000
2 ±

√
2/π 1 − 2/π ≈ 0.3634

3 0.0, ±1.227 0.1900
4 ±0.451, ±1.507 0.1170
5 0.0, ±0.754, ±1.707 0.0800

Additionally, using the linear operator property of principal points, it is easy to compute
the principal points for non-standard normal distributions by using equation (1.2). It is
also important to note that for normal distributions, the 2-principal points fully determine
the distribution:

µ = (ξ1 + ξ2) /2

σ =
√
π/2 (ξ2 − ξ1) /2

 ⇐⇒


ξ1 = µ− σ

√
2/π

ξ2 = µ+ σ
√

2/π
(1.3)

Furthermore, it is worth noting that for a tν distribution, the 2-principal points fully
determine the distribution, and for a χ2

ν distribution, the 1-principal point, which is the
expected value, is equal to ν. Additionally, it has been shown by [7] that for univariate
symmetric distributions, the principal points are also symmetric.

2. Principal simple linear regression (PSLR)
In this section, we focus on the principal points of Y |X = x that can be written as func-

tions of x, known as the conditional principal points, represented by {ξ1(x), ξ2(x), . . . ξk(x)}.
We will specifically focus on the case when the conditional principal points are linear in
x, which will be the main topic of the rest of this paper.

2.1. Definition and properties
We define the concept of PSLR as linear functions of conditional principal points of Y

given X = x. PSLR can be written as:

ξj(x) = αj + βjx; j = 1, 2, . . . , k. (2.1)

This is an extension of SLR which only focuses on the linear conditional central tendency
of Y |X = x. However, PSLR takes into account both linearity in central and dispersion
tendencies. For example, when k = 2, PSLR can model both the conditional mean and
variance of Y |X = x, simultaneously. With higher values of k, other distributional condi-
tional tendencies such as skewness can also be modeled as a function of x.
When k = 2, homogeneity of variance (constant variance) is equivalent to equality of
slopes: β1 = β2. For instance, in the case of the regular conditions of SLR, i.e., when
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y = α + βx + ε, with iid ε’s of individuals with common distribution N
(
0, σ2)

, the
2-principal points of Y |X = x will be:

ξj(x) = αj + βx, j = 1, 2. (2.2)
When βj in (2.1) are not equal, the model would be heterogeneous (especially the condi-
tional standard deviation is linear in x). More precisely, let Y |X = x ∼ N(a+bx, (c+dx)2),
and suppose that c+ dx ≥ 0. Then from (1.3) the 2-principal points are:

ξ1,2(x) = (a+ bx) ±
√

2/π(c+ dx),

which can be written as:

ξ1,2(x) = α1,2 + β1,2x :=
(
a±

√
2/πc

)
+

(
b±

√
2/πd

)
x.

Therefore, when the βj values in equation (2.1) are not equal, the model will be charac-
terized by heterogeneous variation (specifically linearity of standard deviation in x); this
type of model can be useful when the scatter plot of y and x is in the shape of a funnel.
Additionally, using PSLR allows for modeling multiple lines, simultaneously, as opposed
to separate quantile regression models. This can provide a more comprehensive under-
standing of the relationship between X and Y . Furthermore, by constraining the slopes
to be equal in the PSLR model, homogeneity of variance can be tested and accounted for
in the analysis.

2.2. Parameter estimation
Flury [6] devised four methods to estimate principal points. Among these, three are

applicable to univariate cases: Maximum Likelihood Estimation (MLE), Constrained Min-
imization subject to symmetry, and Unconstrained Minimization. The MLE method re-
quires assuming a known distribution family for the data. To apply unconstrained and
constrained optimization, based on the definition of principal points, they can be esti-
mated by minimizing the sample version of the expected squared distance between X and
a set of points {p1, p2, . . . , pk}, which is given by the following equation:{

ξ̃1, ξ̃2, . . . , ξ̃k

}
= argmin

p1, p2, ..., pk

n∑
j=1

d2 (xj |p1, p2, . . . , pk). (2.3)

The unconstrained optimization method yields the immediate outcome of (2.3). Con-
strained optimization occurs when considering symmetry for principal points, and in this
case, the optimization involves points that exhibit symmetry around a single point.This
point is either the mid-principal point if k is odd or the average of two centroid principal
points if k is even.
For estimating the parameters of PSLR, we consider a set of n observations, each con-
sisting of a predictor variable, x and a response variable, y. Assumptions are made that
both x and y are continuous variables. Alongside the discussion on estimating principal
points, there are three different methods for estimating the parameters of the model. The
ML method can be used when the distribution of Y |X = x is known and has a few un-
known parameters. When only the symmetry of the distribution is known, or when the
variance of the model is assumed to be constant, the constrained method can be applied.
Lastly, when there is no information about the population distribution, the unconstrained
optimization method can be used to estimate the principal lines.

Maximum likelihood estimation. The ML method is based on our knowledge of the
true distribution of Y |X = x. If the conditional distribution of Y |X = x is known, we
can estimate the parameters by maximizing the log-likelihood function. For instance, we
consider two especial cases:
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Normal distribution with homogeneous variances. If Y |X = x ∼ N(a+ bx, σ2)
follows a normal distribution with homogeneous variances, it can be seen from equation
(1.3) that the 2-principal points of Y |X = x are given by

ξ1,2(x) = a±
√

2/πσ︸ ︷︷ ︸
α1,2

+ bx︸︷︷︸
βx

. (2.4)

Since the ML estimators are equivariant under one-to-one transformations, the ML esti-
mators of the 2-principal points are given by

α̂1,2 = â∓
√

2/πσ̂, and β̂ = b̂, (2.5)

where â, b̂, and σ̂ are the ML estimators for ordinary SLR.

Normal distribution with heterogeneous variances. In this case, we consider the
conditional distribution of Y |X = x to be of the form N

(
a+ bx, (c+ dx)2)

, where c and
d are chosen such that c + dx is non-negative within the range of x. By analyzing the
distribution, it can be shown that the 2-principal points of Y |X = x are given by the
following equation:

ξ1,2(x) = a±
√

2/πc︸ ︷︷ ︸
α1,2

+
(
b±

√
2/πd

)
x︸ ︷︷ ︸

β1,2x

. (2.6)

In this case, there are no regular ML estimators for the parameters and they must be
found numerically, taking into account the condition of non-negativity of c + dx in the
range of x. It’s worth noting that in this case, the scatter plot of y and x would have a
funnel shape.

Unconstrained and constrained estimations. When the true form of the population
distribution is not known, the sample version of the equation in (2.3) can be minimized
to estimate the parameters:

θ̃ = argmin
θ

n∑
i=1

d2 (yi|αj + βjxi; j = 1, 2, . . . , k), (2.7)

where θ is the parameter vector containing αj ’s and βj ’s.
This is known as the non-parametric approach, where the parameters are estimated with-
out assuming any specific distribution for the data. However, if information about sym-
metry of the population is available, the minimization can be constrained to a set of
symmetric points. If k is even, the principal lines are symmetric around their mean-line,
and if k is odd, the principal lines are symmetric around the central principal line.

2.3. Asymptotic behavior
In this section, we discuss the asymptotic properties of the estimators for PSLR. Let

ψ(θ) be the function that is minimized in (2.7) and ψi be the related summand:

ψ(θ) =
n∑

i=1
ψi(θ) :=

n∑
i=1

d2 (yi|αj + βjxi; j = 1, 2, . . . , k). (2.8)

When the exact form of the population distribution is unknown, we can use the sample
version of (2.3) to estimate the parameters. If we know that the population distribution is
symmetric, we can constrain the minimization to values of θ for which the principal lines
are symmetric around the central principal line.
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Theorem 2.1. Under regular conditions, where the lines do not cross in the range of x,
the unconstrained and constrained estimators of (2.7) are consistent and asymptotically
normal with a mean of θ and a covariance structure that can be approximated numerically
as the inverse of the Hessian matrix.

Proof. The proof for these results can be deduced from well-known limit theorems.
Remember from (2.8) that ψi(θ) = min1≤j≤k (yi − αj − βjxi)2; hence, ψi is twice differen-
tiable at θ until the yi −αj −βjxi; j = 1, 2, · · · , k are not vanish. So, if the minimization
is taken on θ’s for which the lines does not meet in the range of x, then the score function
is satisfied in regular conditions and so the asymptotic results hold. □

3. Real data analysis
In this section, we implement the PSLR method on two real datasets sourced from the

R package datasets: trees and mtcars. Additionally, we apply quantile regression (QR)
with τ = 0.25 and 0.75 to the same data, facilitating a comparative analysis between the
results of QR and PSLR.

Example 3.1. mtcars dataset.[1, 13] This data was extracted from the 1974 Motor
Trend US magazine and includes information on fuel consumption and various aspects of
automobile design and performance for 32 automobiles (1973-74 models). In this exam-
ple, we examine the relationship between mpg and wt. Figure 1 shows the scatter plot and
Table 2 contains the estimated parameters for SLR, QR, and PSLR. In reviewing the re-
sults presented in Table 2, it becomes evident that all parameters across the three models
demonstrate statistical significance. Absence of significant evidence of heteroscedasticity
suggests parallelism between the two principal lines. The confidence intervals, approxi-
mately defined with β1 within the range of (−7.082,−6.222) and β2 within the range of
(−6.536,−5.800) using a confidence interval length of 2 standard errors, exhibit overlap-
ping. Despite similar findings regarding homo/heteroscedasticity with QR, the estimates
show higher standard deviations. Moreover, the visual representation in Figure 1 indicates
non-parallelism of the fitted quantile lines.

Table 2. SLR, QR, and PSLR parameter estimations for mtcars dataset

parameter SLR QR PSLR
α1 37.29 (1.878) 36.91 (0.947) 39.64 (0.658)
β1 −5.344 (0.559) −6.083 (0.483) −6.652 (0.215)
α2 38.14 (3.987) 43.75 (0.726)
β2 −5.114 (1.145) −6.168 (0.184)

Example 3.2. trees dataset.[8] This data set includes information on the girth, height,
and volume of 31 felled black cherry trees. In this example, we examine the relationship
between the girth and volume of the trees. Figure 2 shows the scatter plot and Table 3
contains the estimated parameters for SLR, QR, and PSLR. As observed in Table 3, all
parameters for the three models exhibit statistical significance. Non-parallelism of the
principal lines suggests the presence of heteroscedasticity in the data. The confidence
intervals, approximately within β1 range of (0.719, 0.819) and β2 range of (2.068, 2.216),
do not overlap. The results from QR confirm the presence of homo/heteroscedasticity, yet
the estimated standard deviations are notably higher compared to PSLR. Furthermore, the
visual representation in Figure 2 reveals a meaningful crossing of the fitted first and third
quartile lines, a phenomenon not observed in PSLR. It is noteworthy that unlike PSLR,
quantile lines in QR are estimated separately, potentially contributing to the crossing of
quartile lines.
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Figure 1. SLR, QR, and PSLR fits to mtcars dataset

Table 3. SLR, QR, and PSLR parameter estimations for trees dataset

parameter SLR QR PSLR
α1 −87.12 (29.27) −37.49 (17.45) −36.69 (1.875)
β1 1.543 (0.384) 0.755 (0.240) 0.769 (0.025)
α2 −141.00 (43.14) −117.31 (2.880)
β2 2.400 (0.601) 2.142 (0.037)

Figure 2. SLR, QR, and PSLR fits to trees dataset
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4. Simulation study
In this section, we conduct simulations to evaluate the performance of the PSLR method.

We considered three different cases, with varying levels of heteroscedasticity, as described
in the previous section as follows:

Case (i). y = 1 + 1.5x+
√
π/2ε,

Case (ii). y = 1 + 1.5x+ 0.5
√
π/2xε,

Case (iii). y = 1 + 0.5
√
π/2xε,

In Case (i), we generate y = 1 + 1.5x+
√
π/2ε, where x is randomly generated from a

uniform distribution between 1 and 5 and ε is generated from a normal distribution with
mean 0 and standard deviation 1.

In Case (ii), we generate y = 1 + 1.5x + 0.5
√
π/2xε, where x and ε are generated in

the same way as Case (i). In Case (iii), we generate y = 1 + 0.5
√
π/2xε, where x and

ε are generated in the same way as Case (i). Case (i) represents an ordinal linear model
without heteroscedasticity, Case (ii) represents a linear model with heteroscedasticity, and
Case (iii) represents a model where only the variance is affected by x. In all cases, the
conditional two principal points of y given x are linear. The true values of the parameters
are shown in Table 4. Figure 3 shows a schematic view of the simulated data in each case
with 1000 simulated data points. The blue dashed-line shows the mean line and two solid
black lines show the two-principal lines.

Table 4. Table of true values of coefficients for the two-principal lines of the
conditional distribution of y|x for cases (i)-(iii)

Case
ξ1(y|x) = α1 + β1x ξ2(y|x) = α2 + β2x
α1 β1 α2 β2

(i) 0 1.5 2 1.5
(ii) 1 1 1 2
(iii) 1 -0.5 1 0.5

For each case, we generated data with sample sizes of n = 20, 50, 100, and 500, and
repeated the simulation 10, 000 times to compute the distribution and other properties of
the estimators. Table 5 shows the mean, standard error, and mean squared error (MSE)
of the estimated parameters. The results, summarized in Table 5, show that as the sample
size increases, the standard errors and MSE of the estimators decrease. Specifically, in
case (i) which has no heteroscedasticity, the MSE and standard errors are significantly
smaller compared to cases (ii) and (iii) which have varying levels of heteroscedasticity.
Additionally, the results of cases (ii) and (iii) are similar, with similar standard errors
and MSEs, especially when the sample size is large. These findings suggest that the
PSLR method performs well in estimating the principal points, even in the presence of
heteroscedasticity. To evaluate the normality of the estimators, we used R’s well-known
non-parametric density estimation function, density, to plot the density of the estimators
and compare them to a normal density with corresponding parameters. Figure 4, Figure 5,
and Figure 6 show the results for cases (i), (ii), and (iii), respectively. As the sample size,
n, increases, the distribution of the estimators becomes increasingly similar to a normal
distribution. This indicates that the estimators are asymptotically normal, as predicted
by Theorem 2.1.
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Figure 3. A visual representation of 1000 simulated data points (shown in gray)
along with the two-principal lines (solid black lines) and the mean line (dashed
blue line) for cases (i)-(iii)

5. Conclusion
In this paper, we introduced PSLR, an innovative extension of traditional SLR. PSLR

overcomes SLR’s limitations by incorporating the theory of principal points, enabling si-
multaneous modeling of central, dispersion, and distributional tendencies of a response
variable, Y with respect to a single continuous predictor, X. The method was validated
through real data analyses on mtcars and trees datasets, showcasing its superiority over
SLR and QR in capturing heteroscedasticity and providing nuanced insights into the Y -X
relationship.
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Table 5. Comparison of estimation results for cases (i)-(iii) in terms of mean,
standard error, and MSE of the estimated parameters

Case n
α1 β1 α2 β2

mean se MSE mean se MSE mean se MSE mean se MSE

(i)

20 0.037 1.188 1.411 1.470 0.38 0.145 1.997 1.205 1.450 1.526 0.393 0.155
50 -0.040 0.795 0.633 1.500 0.252 0.064 1.978 0.774 0.599 1.519 0.247 0.061
100 -0.060 0.581 0.341 1.509 0.181 0.033 1.970 0.566 0.320 1.514 0.181 0.033
500 -0.017 0.276 0.076 1.506 0.088 0.008 1.997 0.272 0.074 1.504 0.086 0.007

(ii)

20 0.985 2.459 6.039 0.962 0.763 0.582 1.118 1.769 3.138 1.990 0.666 0.443
50 0.934 1.176 1.385 1.001 0.441 0.194 1.048 1.065 1.1360 2.003 0.416 0.173
100 0.955 0.758 0.576 0.995 0.301 0.090 1.045 0.741 0.550 1.990 0.301 0.091
500 0.988 0.362 0.131 1.004 0.149 0.022 1.013 0.353 0.125 2 0.145 0.021

(iii)

20 1.021 1.779 3.161 -0.539 0.659 0.436 1.134 1.762 3.121 0.487 0.657 0.432
50 0.938 1.138 1.297 -0.498 0.428 0.183 1.048 1.055 1.114 0.503 0.409 0.167
100 0.961 0.745 0.556 -0.505 0.295 0.087 1.042 0.740 0.549 0.492 0.299 0.090
500 0.984 0.366 0.134 -0.494 0.149 0.022 1.010 0.352 0.124 0.502 0.144 0.021

Figure 4. Comparison of non-parametric density estimates and theoretical nor-
mal densities for parameter estimations in case (i) for different parameters and
sample sizes.

A comprehensive simulation study demonstrated PSLR’s robustness, especially in sce-
narios with varying levels of heteroscedasticity. As sample size increased, the estimators
exhibited asymptotic normality, confirming the method’s reliability. Overall, PSLR offers
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Figure 5. Comparison of non-parametric density estimates and theoretical nor-
mal densities for parameter estimations in case (ii) for different parameters and
sample sizes.

a flexible and powerful approach for researchers seeking a comprehensive understanding
of their data, laying the groundwork for future exploration in multivariate settings and
diverse applications.
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Figure 6. Comparison of non-parametric density estimates and theoretical nor-
mal densities for parameter estimations in case (iii) for different parameters and
sample sizes.
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