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Abstract: In this new study, which deals with the different properties of ℓp(F̂ (r, s)) (1 ≤ p < ∞)

and ℓ∞(F̂ (r, s)) spaces defined by Candan and Kara in 2015 by using Fibonacci numbers according to

a certain rule, we have tried to review all the qualities and features that the authors of the previous

editions have found most useful. This document provides everything needed to characterize the matrix

class (ℓ1, ℓp(F̂ (r, s))) (1 ≤ p <∞) . Using the Hausdorff measure of non-compactness, we simultaneously

provide estimates for the norms of the bounded linear operators LA defined by these matrix transformations

and identify requirements to derive the corresponding subclasses of compact matrix operators. The results

of the current research can be regarded as to be more inclusive and broader when compared to the similar

results available in the literature.

Keywords: Sequence spaces, Fibonacci numbers, compact operators, Hausdorff measure of noncompact-
ness.

1. Elementary Classical Concepts

As always, our aim is to use the matrix domain and to remind readers about the information they

will need to use calculus effectively in their work in later sections. To achieve this, we retained the

paper’s mathematical level, the orientation of the new sequence space to the Hausdorff measure,

its concentration on previous works, and variety of the theorems, and continued to adapt some of

the methods used in measurement theory. Although many of the presentations in this new paper

are noticeably more general than those in earlier articles, the level of rigor is about the same. As

part of the overall review plan, it is going to be helpful for beginners to review the five notable

books given in [1–5] with accessible material, without sacrificing the standards or scope their users

want to see. Let us start by trying to explain some of the essentials without exaggerating the

obvious. The history of numbers is almost as old as the existence of humanity and was created to
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meet the mathematical needs of all people and scientists. This was true in the beginnings of the

subject, and it is true today. In much of our work, the sequences will have domains and ranges

that are sets of naturel numbers N = {0,1,2, ...} and real numbers R , respectively. We will write

limk , supk , infk and ∑k instead of limk→∞ , supk∈N , infk∈N and ∑∞k=0 , respectively.

We will now consider two related topics that will be used in the next sections: infinite

sequences and infinite series. An infinite sequence of numbers is a function whose domain is the set

of natural numbers. The word series always implies an infinite number of term to be combined by

adding in a definite order. The vector space of all real sequences is expressed by ω . We are quite

familiar with that each subspace of ω is said a sequence space. In order to use in this work, a few

additional notations concerning sequences are needed. The sets of all finite sequences, bounded

sequences, convergent sequences, and null sequences, respectively, should be denoted by, φ, ℓ∞,

c and c0 . For any real number p with 1 ≤ p < ∞ , the sequence space {x ∈ ω ∶ ∑k ∣xk ∣p <∞} is

denoted by the notation ℓp . In addition to these, the sequence (1,1, ...) and for each natural

number n , the sequence with 1 only in the nth term and 0 in all other terms is denoted by the

notations e and e(n) , respectively. The sum ∑n
k=0 xke

(k) is indicated by x[n] and is referred to as

the n -section of any sequence x . Series whose partial sums sequence are convergent and bounded

are also shown with cs and bs notations, respectively.

A complete normed space is referred to as a B − space . A K − space , on the other hand,

is a topological sequence space in which all coordinate functionals πk , given by πk(x) = xk , are

continuous. A BK − space is essentially a Banach space with continuous coordinates, meeting the

requirements of both a K − space and a B − space . If all sequences x = (xk) ∈ X share the same

representation, then a BK − space denoted as X ⊃ φ is said to possess AK , where x = ∑k xke
(k) .

To provide an example, the sequence space ℓp (1 ≤ p < ∞) can be regarded as a BK − space

with the norm ∥x∥p = (∑k ∣xk ∣p)
1/p . Furthermore, c0 , c , and ℓ∞ also qualify as BK − spaces ,

possessing the norm ∥x∥∞ = supk ∣xk ∣ . Additionally, the BK − spaces c0 and ℓp exhibit AK ,

where 1 ≤ p <∞ .

If there exists a singular sequence (αn) consisting of scalars such that x = ∑n αnbn , meaning

that limm ∥x −∑m
n=0 αnbn∥ = 0 , then the sequence (bn) in a normed space X is referred to as a

Schauder basis for all x ∈X .
The β -dual of a sequence space X is defined as follows:

Xβ = {a = (ak) ∈ ω ∶ ax = (akxk) ∈ cs for all x = (xk) ∈X} .

An infinite matrix of real numbers, denoted by A = (ank)∞n,k=0 , where n, k ∈ N , can be

represented as An , which denotes the sequence in the nth row of A . Furthermore, if x = (xk)∞k=0 ∈
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ω , the A -transform of x is defined as the sequence Ax = {An (x)}∞n=0 , where

An(x) =
∞
∑
k=0

ankxk (n ∈ N) , (1)

provided that the series on the right-hand side converges for each n ∈ N .

We denote (X,Y ) as the class of all infinite matrices that map from X to Y , where X

and Y are subsets of ω . In other words, A ∈ (X,Y ) if and only if An ∈ Xβ for every n ∈ N and

Ax ∈ Y for every x ∈X .

One way to create a new sequence space is by utilizing the matrix domain, and a thorough

comprehension of it requires substantial expertise. Let X be any sequence space. Then the domain

XA of an infinite matrix A in X is defined by

XA = {x = (xk) ∈ ω ∶ Ax ∈X} . (2)

Let us also mention here that XA is also a sequence space. The reader can refer to the recent

papers [6–10] on the domains of certain triangles in the classical sequence spaces and related topics.

The following results are fundamental and often used [11, 12].

Lemma 1.1 Let X ⊃ ϕ and Y be a BK –space.

(a) Therefore, for any matrix A ∈ (X,Y ) , we get (X,Y ) ⊂ B(X,Y ) , so indicating that for any

x ∈X , LA(x) = Ax describes an operator LA ∈ B(X,Y ) .

(b) If X has AK , and after that B(X,Y ) ⊂ (X,Y ) , meaning that there is a A ∈ (X,Y ) with any

operator having L ∈ B(X,Y ) and L(x) = Ax for every x ∈X .

2. The Hausdorff Measure of Non-Compactness

In this part, our aim is to describe the Hausdorff measure used in theory and practice that

characterizes compact operators between Banach spaces. For this purpose, this section stars with

clear expressions of relative definitions, guidelines and theorems together with explanatory and

other demonstrative subject. It follows proven and supplementary theorems. The proven theorems

give to demonstrate and magnify the theory, and to reiterate the fundamental principles that are

crucial for effective learning. The concept of Hausdorff measure of non-compactness appears in

some branches of mathematics. Recently, this concept has been used to characterize compact

matrix operators between BK –spaces under certain conditions.

The Hausdorff measure of non-compactness χ concept stems largely from the investigations

of Goldenštein, Gohberg and Markus [13] and in the following years this concept was taken up and

studied by Goldenštein and Markus [14]. Yet some of its ideas date back to the time of Kuratowski
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[15]. Later, Darbo [16] took this measure and generalized another concept besides the classical

Schauder fixed point principle.

In the context of infinite-dimensional Banach spaces X and Y , it is important to restate

the definition of a compact operator. A linear operator L that maps from X to Y is considered

compact if it encompasses the entire domain of X and, in addition, if the sequence (L(xn))

representing the images of all bounded sequences (xn) in X under L has a convergent subsequence.

In the field of functional analysis, the collection of all compact operators in B(X,Y ) is denoted

by C(X,Y ) .

Let (X,d) be a metric space. We define the open ball B(x, r) as the set {x ∈X ∶ d(x,x0) <

r} , where r represents the radius and x0 denotes the center. Furthermore, let M(X) denote

the collection of all bounded subsets of X . If Q ∈ M(X) , then the Hausdorff measure of non-

compactness of the set Q , denoted by χ(Q) , is defined as follows:

χ(Q) = inf {ϵ > 0 ∶ Q ⊂
n

⋃
k=1

B(xk, rk), xk ∈X, rk < ϵ (k = 1,2, ...), n ∈ N} .

The Hausdorff measure of non-compactness is defined as the function χ ∶MX → [0,∞) .

In previous works such as [11, 17–20], the applications of the Hausdorff measure theorems

to condensing operators, compact matrix operators on some BK -spaces, and measures of non-

compactness in Banach spaces are further explored.

The objective of this paragraph is to provide a concise description of the Hausdorff measure

of non-compactness operators between Banach spaces. Let X and Y be Banach spaces, and let χ1

and χ2 be the Hausdorff measures of non-compactness on X and Y , respectively. If L(Q) ∈M(Y )

for all Q ∈ M(X) , and if there exists C ≥ 0 such that χ2(L(Q)) ≤ Cχ1(Q) for all Q ∈ M(X) ,

then the operator L ∶X → Y is referred to as (χ1 ,χ2)-bounded. The quantity

∣L∣(χ1, χ2) = inf{C ≥ 0 ∶ χ2(L(Q)) ≤ Cχ1(Q) for all Q ∈MX }

is defined as the (χ1, χ2)–measure of non-compactness of L if the operator L is (χ1 , χ2)-bounded.

It is important to note that if both χ1 and χ2 are denoted as χ , then ∣L∣(χ1, χ2) = ∣L∣χ .

Our primary objective in this context is to provide a comprehensive explanation of the

applications of the Hausdorff measure of non-compactness in characterizing compact operators

between Banach spaces. Let X and Y be Banach spaces, and let L be an element of B(X,Y ) ,

indicating that L is a bounded linear operator from X to Y . If L is non-compact, the Hausdorff

measure of non-compactness of L , denoted as ∥L∥χ , is defined as follows ([20, Theorem 2.25]):

∥L∥χ = χ(L(SX)). (3)
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Furthermore, L is characterized as a compact operator if and only if the Hausdorff measure of

non-compactness ∥L∥χ is equal to zero, as expressed in ([20, Corollary 2.26]):

∥L∥χ = 0. (4)

The determination of the Hausdorff measure of non-compactness, denoted as χ(Q) , for

bounded sets Q in a Banach space X is based on the identities presented in (3) and (4). These

identities simplify the characterization of compact operators L ∈ B(X,Y ) . Estimates, or even

identities, for χ(Q) can be obtained when X possesses a Schauder basis.

Theorem 2.1 ([13] or [20, Theorem 2.23]) Let X be a Banach space with a Schauder basis

(bk)∞k=0 , Q ∈ MX , Pn ∶ X → X will be the projectors onto the linear span of {b0, b1, . . . , bn} and

Rn = I −Pn for n = 0,1, . . . , in which I indicates the identity map on X . Under these conditions,

the following inequality is satisfied

1

a
⋅ lim sup

n→∞
(sup
x∈Q
∥Rn(x)∥) ≤ χ(Q) ≤ lim sup

n→∞
(sup
x∈Q
∥Rn(x)∥) ,

in which a = lim supn→∞ ∥Rn∥ .

The following result, in especially, demonstrates how to calculate the Hausdorff measure of

non-compactness in the BK -spaces with AK , c0 and ℓp (1 ≤ p <∞) .

Theorem 2.2 ([20, Theorem 2.15]) A bounded subset of the normed space X , in which X is ℓp

for 1 ≤ p <∞ or c0 , is defined as Q . We can have

χ(Q) = lim
n→∞

(sup
x∈Q
∥Rn(x)∥) (5)

if Pn ∶X →X is the operator described by Pn(x) = x[n] for every x = (xk)∞k=0 ∈X and Rn = I −Pn

for n = 0,1, . . . .

It is highly reasonable to deduce both necessary and sufficient criteria for matrix operators

between a Schauder basis and a BK -space by employing the aforementioned discoveries, as well

as the Hausdorff measure of non-compactness. Matrix mappings across BK -spaces give rise to

bounded linear operators between these Banach spaces, rendering AK as compact operators.

Presently, numerous researchers have embraced this approach in multiple research publications

(see, for instance, [21–31]. The significance of these concepts will become evident in subsequent

discussions. In this work, we provide a description of the matrix classes (ℓ1, ℓp(F̂ (r, s))) (1 ≤

p <∞) . Moreover, we establish conditions for deriving the relevant subclasses of compact matrix
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operators through the utilization of the Hausdorff measure of non-compactness. Additionally, we

derive an identity for the norms of the bounded linear operators LA that are determined by these

matrix transformations.

3. The Fibonacci Difference Sequence Spaces

ℓp(F̂ (r, s)) and ℓ∞(F̂ (r, s))

Although infinite sequences were used extensively in the early history of the calculus, especially,

they have appeared in the history of mathematics since antiquity. In the middle ages the mathe-

matician Fibonacci, in his work Liber Abaci (1202) used sequences of numbers 1,1,2,3,5, . . . . You

may already be familiar with Fibonacci sequences, but if not, you will understand the following

formula easy follow. For convenience, the steps in the sequence are usually labeled 1,1,2,3,5, . . .

and so on. In a much clearer way, the Fibonacci sequences f = (fn) starts with f0 = f1 = 1 and

uses the recursion formula
fn = fn−1 + fn−2; n ≥ 2.

The use of Fibonacci sequences is widely available and give opportunity for hands-on expe-

rience. When the most striking differences in art and architecture, plants and some living things in

nature were carefully examined, it was seen that they were related to the Fibonacci numbers. Let

me also point out here that, many applications of Fibonacci sequences are beyond the scope of this

work, but the material in this section can prepare you for later study as well as provide knowledge

that you can use as needed. Reference number [32] can be examined for a lot of information about

Fibonacci numbers, including the Golden ratio.

Let 1 ≤ p ≤ ∞ and q represent the conjugate of p throughout, that is, q = p/(p − 1) for

1 < p <∞ , that is, q = p/(p − 1) for 1 < p <∞ , q =∞ for p = 1 or q = 1 for p =∞.

In 2015, right after Kara [33], Candan and Kara [34] introduced the generalized Fibonacci

difference sequence spaces ℓp(F̂ (r, s)) and ℓ∞(F̂ (r, s)) , as follows;

ℓp(F̂ (r, s)) = {x = (xn) ∈ ω ∶∑
n

∣r fn
fn+1

xn + s
fn+1
fn

xn−1∣
p

<∞} ; 1 ≤ p <∞

and

ℓ∞(F̂ (r, s)) = {x = (xn) ∈ ω ∶ sup
n∈N
∣r fn
fn+1

xn + s
fn+1
fn

xn−1∣ <∞} .

When we use the equivalent notation of (2) for the sequence spaces ℓp(F̂ (r, s)) and

ℓ∞(F̂ (r, s)) , related sequence spaces becomes

ℓp(F̂ (r, s)) = (ℓp)F̂ (r,s) (1 ≤ p <∞) and also ℓ∞(F̂ (r, s)) = (ℓ∞)F̂ (r,s), (6)
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in which the matrix F̂ (r, s) = (f̂nk(r, s)) is described by

f̂nk(r, s) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

s fn+1
fn

(k = n − 1)
r fn
fn+1

(k = n)
0 (0 ≤ k < n − 1) or (k > n)

(n, k ∈ N). (7)

To signal the fact that the sequence spaces ℓp(F̂ (r, s)) and ℓ∞(F̂ (r, s)) are BK -spaces according

to the

∥x∥ℓp(F̂ (r,s)) = (∑
n

∣yn(x)∣p)
1/p

(1 ≤ p <∞) and ∥x∥ℓ∞(F̂ (r,s)) = sup
n∈N
∣yn(x)∣ , (8)

norms defined on them, respectively, in which the sequence y = (yn) = (F̂ (r, s)n(x)) which is the

F̂ (r, s)-transform of any sequence x = (xn) , is used. That is

yn = F̂ (r, s)n(x) =
⎧⎪⎪⎨⎪⎪⎩

r f0
f1
x0 = rx0 (n = 0)

r fn
fn+1

xn + s fn+1
fn

xn−1 (n ≥ 1)
(n ∈ N). (9)

It should be emphasized that the findings of this study are more comprehensive than those

of Alotaibi et al. [35] in 2015.

4. Main Results
Many applications of compact operators are beyond the scope of this paper, but the material in

this section can prepare you to understand the subject and help you remember information you

can use when needed. From a historical perspective, the current concept of the Hausdorff measure

represents a culmination of the collective efforts of numerous individuals. However, the notion of

non-compactness’ Hausdorff measure was originally introduced in 1957 by Goldenštein, Gohberg,

and Markus, and was subsequently further explored by Goldenštein and Markus. In the study [36],

the sequence spaces Y , ℓ∞ , c0 and c were considered, enabling the characterization of the classes

(ℓp(F̂ ), Y ) , (ℓ∞(F̂ ), Y ) , (ℓ1(F̂ ), Y ) , as well as the compact operators (ℓp(F̂ ), ℓ1) and (ℓ1(F̂ ), ℓp) .

In this study, we introduce the classes B(ℓ1, ℓλp) for 1 ≤ p <∞ and compute the operator norms in

B(ℓ1, ℓλp) . Furthermore, leveraging the findings from the previous section, we describe the classes

C(ℓ1, ℓp) for 1 ≤ p <∞ and determine the Hausdorff measure of non-compactness for operators in

B(ℓ1, ℓλp) .

Let 1 ≤ p < ∞ . We now provide a characterization of B(ℓ1, ℓp(F̂ (r, s))) , along with the

computation of the operator norms in B(ℓ1, ℓp(F̂ (r, s))) . Additionally, we can utilize the results

presented in the previous section to both specify the Hausdorff measure of non-compactness for

operators in B(ℓ1, ℓp(F̂ (r, s))) and characterize the classes C(ℓ1, ℓp(F̂ (r, s))) for 1 ≤ p <∞ .

The following result is particularly advantageous in certain proofs.
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Lemma 4.1 ([20, Theorem 3.8]) T is a triangular matrix and with it X and Y being any two

sequence spaces; for the matrix A to be an element of the (X,YT ) class, the necessary and sufficient

condition is that C = T ⋅A and the matrix C belongs to the class (X,Y ) . In addition, if the X

and Y are BK -spaces, and also if the matrix A is an element of the class (X,YT ) , then

∥LA∥ = ∥LC∥. (10)

We then define the identities for the operator norm and the characterizations of the classes

B(ℓ1, ℓp(F̂ (r, s))) for 1 ≤ p <∞ .

Theorem 4.2 Let 1 ≤ p <∞ .

(a) We have L ∈ B(ℓ1, ℓp(F̂ (r, s))) if and only if there exists an infinite matrix A ∈ (ℓ1, ℓp(F̂ (r, s)))

such that

∥A∥ = sup
k
(∑

n

∣r fn
fn+1

ank + s
fn+1
fn

an−1,k∣
p

)
1/p

<∞ (11)

and

L(x) = Ax for all x ∈ ℓ1. (12)

(b) If L ∈ B(ℓ1, ℓp(F̂ (r, s))) , then

∥L∥ = ∥A∥. (13)

Proof For (a), when we keep in mind that ℓ1 is a BK -space with AK , for L ∈ B(ℓ1, ℓp(F̂ (r, s)))

from Lemma 1.1 under the condition 1 ≤ p <∞ hypothesis condition; the necessary and sufficient

condition is that there is an infinite matrix A such that A ∈ (ℓ1, ℓp(F̂ (r, s))) provided that the

condition (12) is met. If we denote the product of the matrices F̂ (r, s) = (f̂nk(r, s)) and A = (ank)

by C = (cnk) , that is, we can express it clearly as follows

cnk = r
fn
fn+1

ank + s
fn+1
fn

an−1,k.

Now it is quiet easy to say that from Lemma 4.1 (a) that the necessary and sufficient condition

A ∈ (ℓ1, ℓp(F̂ (r, s))) is C ∈ (ℓ1, ℓp) . If the Example 8.4.1D in the reference [12] is used at this stage

of the proof, it is seen that the necessary and sufficient condition for C ∈ (ℓ1, ℓp) is

∥C∥ = sup
k
(
∞
∑
n=0
∣cnk ∣p)

1/p

<∞,

which proves the claim. ◻
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(b) First, we show that ∥L∥ ≤ ∥A∥ . Let L ∈ B(ℓ1, ℓλp) . It is seen from (10) that ∥L∥ = ∥LC∥

for LC ∈ B(ℓ1, ℓp) is presented by the equation LC(x) = Cx for every x ∈ ℓ1 . Now, we can write

by the Minkowsky’s inequality that, we can write the following expressions

∥LC(x)∥p = (
∞
∑
n=0
∣
∞
∑
k=0

cnkxk∣
p

)
1/p

≤
∞
∑
k=0
∣xk ∣ (

∞
∑
n=0
∣cnk ∣p)

1/p

≤ ∥C∥ ⋅ ∥x∥

= ∥A∥ ⋅ ∥x∥

and from here we can write the following inequality

∥L∥ ≤ ∥A∥ (14)

for the norms of L and A . Now, let us prove the other side of the inequality. For this, when

e(k) ∈ Sℓ1 (k ∈ N) is taken, it is seen that

∥L∥ ≥ ∥A∥ (15)

from the equation below

∥LC(e(k))∥ = (
∞
∑
n=0
∣cnk ∣p)

p

.

When (14) and (15) are considered together, it is proved that (13).

The Hausdorff measure of the non-compactness of operators in B(ℓ1, ℓp(F̂ (r, s))) will be

established in the expression below. Another closely related result to be used in the first come

proof is given below.

Lemma 4.3 ([37, Theorem 4.2]) Let T be a triangle and χ and χT be the Hausdorff measures

of non-compactness on MX and MXT
, respectively. Assume that X is a linear metric space with

a translation invariant metric. If Q ∈MXT
, then χT (Q) = χ(TQ) .

Theorem 4.4 Let L ∈ B(ℓ1, ℓp(F̂ (r, s))) with 1 ≤ p < ∞ and A demonstrate the matrix which

stands for L . In that case we get

∥L∥χℓp(F̂ (r,s))
= lim

m→∞
(sup

k

∞
∑
n=m
∣r fn
fn+1

ajk + s
fn+1
fn

aj−1,k∣
p

)
1/p

.
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Proof First of all, we briefly write S = Sℓ1 , also C[m] (m ∈ N) for the matrix with the rows

C
[m]
n = 0 for 0 ≤ n ≤m and C

[m]
n = Cn for n ≥m + 1 . In this case, if we use both Lemma 4.3 and

together with (3), (5), (11) and (13) the following equations can easily be calculated

∥L∥χℓp(F̂ (r,s))
= χℓp(F̂ (r,s))(L(S))

= χℓp(LC(S))

= lim
m→∞

(sup
x∈S
∥Rm(Cx)∥p)

= lim
m→∞

(sup
x∈S
∥C[m]x∥p)

= lim
m→∞

∥C[m]∥

= lim
m→∞

(sup
k

∞
∑
n=m
∣r fn
fn+1

ajk + s
fn+1
fn

aj−1,k∣
p

)
1/p

.

◻
This is the desired result.
We are now ready to give the following theorem, which obtains the characterization of

C(ℓ1, ℓp(F̂ (r, s))) by coordinating the condition given in (4) and Theorem 4.4.

Theorem 4.5 If L ∈ B(ℓ1, ℓp(F̂ , 1 ≤ p < ∞(r, s))) and at the same time the matrix A is the

matrix representing L , a necessary and sufficient condition for L to be compact is that the following

limit is equal to zero, that is

lim
m→∞

(sup
k

∞
∑

n=m
∣r fn

fn+1
ajk + s fn+1

fn
aj−1,k∣

p
) = 0.
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