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ABSTRACT
The changes in planktonic foraminifera assemblages were studied in two sections composed of clayey limestone, 
limestone, claystone and marl in the Akveren Formation in the Bartın Province. Pseudoguembelina palpebra, 
Racemiguembelina fructicosa, Abathomphalus mayaroensis and Pseudoguembelina hariaensis biozones in the 
Maastrichtian and Parvularugoglobigerina eugubina, Glomobanomalina compressa/Praemurica uncinata, Praemurica 
uncinata and Morozovella angulata biozones in the Paloecene were determined using planktonic genus and species 
identified in these sections. Paleoecological interpretations in this study were completed by using the relative abundances 
of paleoecological species identified in these biozones. The abundance of Rugoglobigerina spp., Heterohelix globulosa, 
Pseudoguembelina spp., species that tolerated changes in sea water temperature and nutrition, increased in the 
Maastrichtian. In the uppermost Maastrichtian, high abundance of Racemiguembelina fructicosa, Heterohelix globulosa 
and Rugoglobigerina spp. show oligotrophic and warmer environmental conditions in this study. The abundance of 
globotruncanids are unstable due to environmental changes. The new species have smaller sizes and globular chambers 
emerged in the Paleocene. High abundance of Subbotina triloculinoides and Parasubbotina pseudobulloides show 
mesotrophic and cooler environmental conditions in the Danian. Morozovellid taxa started to dominate in the Selandian 
and environmental conditions changed from mesotrophic to oligotrophic. 
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1. Introduction

The temperature in the Late Cretaceous from 
Cenomanian to Maastrichtian was higher than today 
as determined by stable isotope studies and global 
climate models (Huber et al., 1995, 2002; Clarke 
and Jenkyns, 1999; DeConto et al., 1999; Wilson and 
Norris, 2001; Norris et al., 2002; Wilson et al., 2002; 
Bice et al., 2006; Forster et al., 2007; Bornemann et 
al., 2008; Friedrich et al., 2008; Shirazi et al., 2013; 
Kaya-Özer, 2014).

The Cretaceous climate started to cool in the 
Campanian and Maastrichtian (Huber et al., 1995, 
2002). While the decrease reached a maximum level 
in the Maastrichtian (Clarke and Jenkyns, 1999; 
Huber et al., 2002; Miller et al., 2005), a sudden 
increase in temperature occurred at the end of this 
period (Li and Keller, 1998a,b) and surface water 
temperatures increased by 2-3 oC between ~65.45 and 
65.1 Ma before the Cretaceous–Paleogene boundary 
(K–Pg) (Li and Keller 1998a,b; Barrera and Savin, 

1999). Global cooling continued in the last 100 kyr of 
the Maastrichtian and sea surface water temperatures 
decreased (Thibault and Gardin, 2007).

Climatic changes caused variations in the biota 
of planktonic foraminifera together with most fauna 
(Abramovich and Keller, 2003). An important biotic 
event that occurred in this period is a decrease in 
planktonic foraminifera species richness at about 66 
Ma in the South Atlantic and Tethys basins, coincident 
with the end-Maastrichtian global warming (Li and 
Keller, 1998a, b). This was also proven by oxygen 
isotope studies carried out on deep-sea drillings in 
the Atlantic, Pacific and Indian Oceans (Zachos et al., 
1985, 1989; D’Hondt and Lindinger, 1994; Corfield 
and Norris, 1996; Barrera et al., 1997; Li and Keller, 
1998a,b; Abramovich and Keller, 2003; Friedrich et 
al., 2012) and in the Boreal Realm (Friedrich et al., 
2008).

Keller et al. (2002) noticed the faunal decline 
crested at the K/Pg boundary with the mass extinction 
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of tropical-subtropical planktonic foraminiferal 
species whereas the cosmopolitan and ecologically 
generalist species survived into the Danian. At first, 
tropical species with complex, large and ornamental 
shells (globotruncanids, racemiguembelinids, 
planoglobulinids) and then smaller subtropical species 
(pseudotextularids, rugoglobigerinids) were affected 
during the extinction at the K/Pg boundary (Keller, 
1996)

There are lots of paleoecological studies based 
on stable oxygen and carbon isotopes and changes in 
planktonic foraminifera assemblages in Maastrichtian 
and Paleocene sediments which were collected from 
deep sea drillings and several locations worldwide 
(Huber et al., 1995; Li and Keller, 1998a). The aim 
of this study is to identify planktonic foraminifera 
biostratigraphy in the Akveren Formation and 
determine the paleoecological conditions based on 
changes in planktonic foraminifera assemblages 
between Maastrichtian and lower Paleocene period 
using samples from Bartın Province (Western 
Black Sea) in Turkey. The biostratigraphic and 
paleoenvironmental interpretations of the composition 
of the planktonic foraminifers were also discussed.

2. Geological Setting and Previous Studies

The study area is in the Western Black Sea 
Basin in the Pontides, one of the tectonic plates in 
Turkey, which is a part of the Alpine Belt. There 
are several geological studies about Bartın province 
and its surrounding. The first studies in the region 
were about its petroleum potential (Badgley, 1959; 
Saner, 1981; Gedik and Korkmaz, 1984; Robinson 
et al., 1996; Görür and Tüysüz, 1997). There are 
also several studies investigating its geological and 
tectonic characteristics. The geological map of Cide-
Kurucaşile area was drawn by Akyol et al. (1974). 
Geological structure, tectonic, petrographical and 
petrological characteristics of the region from Jurassic 
to Quaternary were investigated by Saner (1980), 
Gedik et al. (1983), Barka et al. (1983), Aydın et al. 
(1986), Derman et al. (1995), Derman (2002) and 
Tüysüz et al. (2012).

Şengör (1982) suggested that the Western Black 
Sea basin was opened as a back arc basin in relation to 
closure of the Tethys Ocean. Görür (1988) mentioned 
the Western Black Sea Basin as related to post rift 
thermal subsidence (Görür, 1988). Özçelik and 
Çaptuğ (1990) examined the tectonic characteristics 

of the region and emphasized that sedimentation was 
continuous in upper Cretaceous/Tertiary units. In 
addition, they pointed out that the Akveren Formation 
is of Maastrichtian-early Paleocene age, comprises 
marls, calciturbiditic limestones, micrites and shale.

Akman (1992) studied the stratigraphic units 
between Lutetian and Permian, and named the various 
sediments, volcano-sedimentary, and volcanic rocks 
that outcrop in the region. Tüysüz (1993) investigated 
the Pontides in detail, classified its tectonic sections 
and suggested a geological evolution model. Sunal and 
Tüysüz (2001) studied the stratigraphy and tectonics 
of the region. Tüysüz (2002) stated that deposition was 
accompanied by strong volcanism in the Cenomanian-
Maastrichtian period and this volcanism that was 
common on the Black Sea coast began at the end of 
the Campanian and ended in the Maastrichtian.

Paleontological studies completed in the study area 
and its surrounding are important. Dizer and Meriç 
(1981) defined the planktonic foraminifera zones from 
the upper Cretaceous to Paleocene in Gebze, Akçakoca, 
Devrek and Bartın areas in Northwest Anatolia. They 
stated that the sea had a deep sea characteristic in Bartın 
in the upper Cretaceous and Paleocene. Varol (1983) 
discussed the late Cretaceous-Paleocene calcareous 
nanofossils from the Kokaksu Section. Sirel (1991) 
defined a new species (Cideina n.gen.) in his study 
in the Cide region. Özkan-Altıner and Özcan (1999) 
examined the benthic and planktonic foraminifera in 
the units from late Cretaceous to early Tertiary in the 
forearc basins located in north, northwest and central 
Anatolia. 

Şener (2007) identified Neotrocholinid and 
Orbitolinid species that were benthic foraminifera in 
the İnaltı Formation outcropping in Amasra. Three new 
Neotrocholina species (Neotrocholina amasraensis, 
N. sireli, N. bartinensis) were identified, the age of the 
formation in the study area was defined as Cimmerian-
Aptian based on these identified species.

3. Stratigraphy

The oldest unit in the area consists of Amasra 
Group rocks, belonging to the Yemişliçay Upper 
Group (Tüysüz et al., 2004). The Amasra Group, 
deposited in the late Santonian and Campanian, begins 
with a marine succession that overlaps the older units 
(Tüysüz et al., 2004). At the beginning of this period, 
pelagic limestones were deposited and then volcanics 
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and pyroclastics (Kazpınar Formation) developed 
(Tüysüz et al., 2004).

3.1. Kazpınar Formation

The name of the formation was first used by Tokay 
(1954/1955). This unit was studied as the Yemişliçay 
formation (Ketin and Gümüş, 1963), Kurucaşile 
formation (Akyol et al., 1974), Lümeran formation 
(Kaya et al., 1982/1983), Cambu formation (Şahintürk 
and Özçelik, 1983; Tüysüz et al., 1997) and Dinlence 
formation (Akman, 1992) in previous studies. 
Kazpınar formation widely consists of andesitic lavas, 
pyroclastics, volcanic sandstones, siltstones, marls 
and lava blocks (Tüysüz et al., 2004).

Kazpınar formation indicates volcanic activity in 
the deep sea environment (Akman, 1992). Turbiditic 
units were deposited when the volcanism lost its 
effect (Akman, 1992). The age of the formation was 
defined as Campanian according to its stratigraphic 
position (Tüysüz et al., 2004). In another study, it was 
dated as early Campanian due to genus and species 
of planktonic foraminifera and nanofossils that were 
identified in carbonate levels in this formation (Kaya-
Özer, 2009).  

3.2. Akveren Formation

Akveren Formation overlaps the Yemişliçay group 
rocks consisting of volcanic and volcaniclastic rocks 
(Gedik et al., 2005). The Akveren Formation was 
first described by Gayle (1959) as layers of clayey 
limestone then formally defined by Ketin and Gümüş 
(1963) as widespread along the western Black Sea 
coast. 

Akveren Formation was the subject of several 
studies. Dobrucalı (1985) and Sarıca (1993) examined 
planktonic foraminifera fauna and stratigraphic 
position of the Akveren Formation. Kırcı (1998) 
stated that the Akveren Formation includes a rich 
foraminifera assemblage that consists of planktonic 
foraminifera, small benthic foraminifera and large 
benthic foraminifera in Maastrichtian and dated it as 
late Cretaceous-Paleocene. In addition, she pointed 
out that it was dominated by deepening intensity 
flows and represented a calciturbiditic succession that 
reflected deposition in the open shelf environment.   

Aydın (2005) studied nanoplankton biostratigraphy 
in detail in the units of Cretaceous-Paleogene 
age including the Akveren Formation northwest 
of İzmit. In this study, the Cretaceous-Tertiary 

boundary was determined to be continuous. Güray 
(2006) determined the Campanian-Maastrichtian 
boundary by using planktonic foraminifera. While the 
Campanian-Maastrichtian boundary was determined 
as the boundary of zones of Pseudotextularia elegans 
and Planoglobulina acervuloinides in her study, the 
Cretaceous/Tertiary boundary was determined by the 
extinction of upper Cretaceous fossils.

The Akveren Formation is initially characterized 
at the base by white-gray, medium to thickly bedded 
sandstones and greenish-gray marls that change to 
white-cream, thinly bedded micritic limestones and 
clayey limestones in the upper levels. The formation 
ends with white-beige, locally siliceous, thin to 
medium bedded limestones, claystones, and marl 
alternations and gradually passes into the Atbaşı 
Formation consisting of calcareous mudstones 
(Akman, 1992, Figure 1). 

Thickness of the Akveren Formation was 
indicated as 390 m by Akyol et al. (1974) and 
590 m by Akman (1992). The age of the formation 
was indicated as Campanian-Maastrichtian by 
Akman (1992), Maastrichtian by Ketin and Gümüş 
(1963) and Maastrichtian-Paleocene by Gedik and 
Korkmaz (1984). Kaya-Özer (2009), Kaya-Özer 
and Toker (2012)  pointed out that the age of the 
Akveren Formation age is Campanian-Selandian 
based on planktonic foraminifera and nannofossil 
biostratigraphy. 

3.3. Atbaşı Formation

The Atbaşı formation was first named by Ketin and 
Gümüş (1963) and different names have been used 
in some studies (Akyol et al., 1974; Akman, 1992). 
The unit consists of green and purple thin bedded, 
conchoidal fracture, fossiliferous siltstones, claystones 
and marls. Thin to medium bedded, green, greenish, 
gray sandstone layers and rarely white colored, thin 
bedded limestones are found in the unit. According 
to Gedik and Korkmaz (1984), its thickness is 537 
m Akyol et al. (1974) named this unit the Akgüney 
Formation and indicated its thickness as 260 m. The 
age of the unit was determined as Paleocene-Early 
Eocene (Ketin and Gümüş, 1963), Paleocene (Akyol 
et al., 1974), early Eocene (Gedik and Korkmaz, 1984) 
and Paleocene (Tüysüz et al., 1997), in various studies. 
Kaya-Özer and Çakır (2015) pointed out the age of 
the formation was Selandian-Ypresian according to 
detailed planktonic foraminifera biostratigraphy.  
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4. Material and Method
This study is based on 37 samples from two 

sections in the Akveren Formation. The study area lies 
in the Bartın area on the Black Sea coast and is shown 
on the 1:25000 Zonguldak E28-c2 map (Figure 1).

The samples of planktonic foraminifera were 
disaggregated in 10% concentrated hydrogen peroxide 
soaked with water and washed through >63 μm sieve 
until clean foraminiferal residues were recovered. 
The washed samples were dried at room temperature. 
From each Cretaceous sample, about 300 planktonic 
foraminifera were picked from random sample 
splits (Abramovich and Keller, 2003). All Paleocene 
planktonic foraminifera species were picked from 
the samples, because they are rare. The planktonic 
foraminifera species were identified under a stereo 

microscope (Leica zoom 2000). The important species 
were photographed with a scanning electron microscope 
(SEM-JEOL JSM-6490LV)) at the Turkish Petroleum 
Company (TPAO) and are presented in the plate. 

Mesozoic taxonomic concepts for planktonic 
foraminifera identification were applied in this study 
according to Robaszynski et al. (1984), Caron (1985), 
Robaszynski and Caron (1995), Huber et al. (2008), 
Petrizzo et al. (2011). Cenozoic taxonomic concepts 
for planktonic foraminifera identification were used 
according to Toumarkine and Luterbacher (1985), 
Berggren and Norris (1997) and Olsson et al. (1999).

The percentages of planktonic foraminifera species 
were calculated for paleoecological interpretation 
and these percentages were counted according to the 

Figure 1- Location and geological map of the study area with locations of the measured sections 
(modified from Akman, 1992).
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relative abundance of each species in the samples. The 
percentage abundances (%) of planktonic foraminifera 
are listed in table 1 and table 2.

5. Results

5.1. Stratigraphic Section

The detailed planktonic foraminiferal 
biostratigraphy were studied in the Karainler and 
Karadur areas around Bartın (Figure 1).

Karainler stratigraphic section

Measured in west of Karainler Village in the 
Akveren Formation, the Karainler section begins 

at the coordinates 41o39’25”- 32o25’80” and ends at 
41o39’15”- 32o25’50”. It consists of an alternation of 
pink, cream-colored, thin to medium bedded clayey 
limestones, cream-colored, thin-bedded claystones 
and gray conchoidal marl at the base of the Akveren 
Formation (Figure 2). It passes into an alternation 
of gray, beige, thin to medium bedded, clayey 
limestones, white, thin bedded claystones and gray, 
green laminated marl in the upper level of the Akveren 
Formation. The section ends with an alternation of 
gray marl and thin to medium bedded limestones that 
include hard, partly silicified and echinoid fossils 
(Figure 2, 3). Total thickness of the section measured 
in the Akveren Formation is 140 m and the sampling 
intervals varied every 3-10 m in this section (Figure 3).

Figure 2- Field photographs of the sedimentary rocks of the Karainler stratigraphic section. (a). Alternating silicified limestones and marl 
in the upper Maastrichtian of the Akveren Formation, (b). interbedded gray green marls and cream clayey limestone in the lower 
Maastrichtian of the Akveren Formation.

Figure 3- Karainler measured stratigraphic section showing lithostratigraphy, biostratigraphy and main planktonic foraminiferal bioevents from 
the Bartın area.
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Karadur stratigraphic section 

Measured around Karadur Village, the Karadur 
section begins at the coordinates 41o39’15”- 32o25’45” 
and ends at 41o38’80”- 32o24’95”. It consists of an 
alternation of cream-colored, thin to medium bedded 
limestones, claystones and green, beige marl at the 
base in the Akveren Formation (Figure 4). The section 
continues as an alternation of partly silicified, thin to 
medium bedded limestones and laminated marl in the 
upper level of the Akveren Formation (Figure 4), it 
gradually passes into the Atbaşı Formation consisting 
of purple, green, thin to medium bedded conchoidal 
fracture marl in the uppermost levels (Figure 5). Total 
thickness of Karadur section is 23 m and the sampling 
intervals varied from 1-5 m in this section (Figure 5).

In the study area, the K/Pg boundary is located 
within the Akveren Formation. However, during the 

sampling process, this boundary was missed and could 
not be identified. 

5.2. Biostratigraphy

The standard upper Cretaceous biozonation 
scheme of Huber et al. (2008) and standard Paleocene 
biozonation scheme of Wade et al. (2011) were applied 
to the planktonic foraminifera data (Figure 3, 5). The 
important planktonic foraminifera species were shown 
in the plate I, II. 

5.2.1. Maastrichtian Planktonic Foraminifera Zones

Pseudoguembelina palpebra Partial-range Zone: 
Biostratigraphic interval from the first occurence 
(FO) of Pseudoguembelina palpebra  to the FO of 
Racemiguembelina fructicosa.

Figure 4- Field photographs of the sedimentary rocks of the Karadur stratigraphic section. (a). interbedded graygreen marls and cream silicified 
micritic limestones in the upper Maastrichtian of the Akveren Formation, (b). field view of Karadur stratigraphic section.

Figure 5- Karadur measured stratigraphic section showing lithostratigraphy, biostratigraphy and main planktonic foraminiferal bioevents from 
the Bartın area.
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Author: Huber et al., 2008

Age: late Campanian-early Maastrichtian (Base 
71.64 Ma, top 69.62 Ma; Huber et al. 2008).

The dominant planktonic foraminiferal species 
recorded in this zone include Contusotruncana 
contusa, C. fornicata, C. patelliformis, C. plicata, C. 
plummerea, C. walfischensis, Gansserina gansseri, 
Globigerinelloides ultramicrus, Globotruncana arca, 
G. aegyptiaca, G. bulloides, G. falsostuarti, G. insignis, 
G. linneiana, G. mariei, Globotruncanella havanensis, 
G. minuta, G. petaloidea, Globotruncanita stuarti, G. 
stuartiformis, Heterohelix globulosa, Planoglobulina 
acervulinoides, P. multicamerata, Pseudoguembelina 
costulata, P. palpebra, Pseudotextularia elegans, 
Rugoglobigerina hexacamerata, R. macrocephala, R. 
rugosa, R. rotundata (Table 1).

This zone has been identified in samples K31–K38 
from the base of the Karainler stratigraphic section of 
the Akveren Formation (Table 1, Figure 3). 

Racemiguembelina fructicosa Partial-range 
Zone: Biostratigraphic interval from the FO 
of Racemiguembelina fructicosa to the FO of 
Abathomphalus mayaroensis.

Author: Huber et al., 2008 (modified by 
Robaszynski and Caron 1995; Li and Keller 1998a, b).

Age: early Maastrichtian (Base 69.62 Ma, top 
68.72 Ma; Huber et al., 2008).

The dominant planktonic foraminiferal species 
recorded in this zone include Contusotruncana 
contusa,  C. plicata, C. plummerea, C. walfischensis, 
Gansserina gansseri, Globigerinelloides ultramicrus, 
Globotruncana arca, G. aegyptiaca, G. falsostuarti, 
G. insignis, G. mariei, Globotruncanella havanensis, 
G. petaloidea, Globotruncanita falsocalcarata, G. 
stuarti, G. stuartiformis, Heterohelix globulosa, 
Planoglobulina acervulinoides, P. multicamerata, 
Pseudoguembelina costulata, P. palpebra, 
Pseudotextularia elegans, Racemiguembelina 
fructicosa, Rugoglobigerina hexacamerata, R. 
macrocephala, R. rugosa, R. Rotundata.

This zone has been identified in samples K40 and 
K41 of the Karainler section (Table 1, Figure 3).

Abathomphalus mayaroensis Partial-range 
Zone: Biostratigraphic interval from the FO 
of Abathomphalus mayaroensis to the FO of 
Pseudoguembelina hariaensis.

Author: Huber et al., 2008, modified by 
Robaszynski and Caron (1995).

Age: late Maastrichtian (Base 68.72 Ma, top 66.78 
Ma; Huber et al., 2008).

The dominant planktonic foraminiferal species 
recorded in this zone include Abathomphalus 
mayaroensis, Contusotruncana contusa,  C. 
patelliformis, C. plicata, C. plummerea, C. 
walfischensis, Gansserina gansseri, Globigerinelloides 
ultramicrus, Globotruncana arca, G. aegyptiaca, 
G. bulloides, G. falsostuarti, G. insignis, G. mariei, 
Globotruncanella havanensis, G. minuta,  G. 
petaloidea, Globotruncanita falsocalcarata, G. 
stuarti, G. stuartiformis, Heterohelix globulosa, 
Planoglobulina acervulinoides, P. multicamerata, 
Pseudoguembelina costulata, P. palpebra, 
Pseudotextularia elegans, Racemiguembelina 
fructicosa, Rugoglobigerina hexacamerata, R. 
macrocephala, R. rugosa, R. rotundata.

This zone has been identified in samples K42–K47 
of the Karainler section of the Akveren Formation 
(Table 1, Figure 3). 

Pseudoguembelina hariaensis Partial-range Zone: 
Biostratigraphic interval from the FO of the nominate 
species to the extinction of most Cretaceous planktonic 
foraminifera at the Cretaceous-Paleogene boundary.

Author: Robaszynski and Caron (1995).

Age: latest Maastrichtian (Base 66.78 Ma, top 
65.50 Ma; Huber et al., 2008).

Toward the end of the Maastrichtian, 
globotruncanids decreased and high abundances 
of biserial heterohelicids, pseudoguembelinids, 
and rugoglobigerinids are recorded. The most 
characteristic elements recorded in this zone are 
Abathomphalus mayaroensis, Contusotruncana 
contusa,   C. plicata, C. plummerea, C. walfischensis, 
Gansserina gansseri, Globigerinelloides ultramicrus, 
Globotruncana arca, G. aegyptiaca, G. falsostuarti, G. 
mariei, Globotruncanella havanensis, G. petaloidea, 
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Stage

Planktonic Foraminifera Zones

SAMPLES

Abathomphalus mayaroensis

Contusotruncana contusa

Contusotruncana fornicata

Contusotruncana patelliformis

Contusotruncana plicata

Contusotruncana plummerea

Contusotruncana walfischensis

Gansserina gansseri

Globigerinelloides ultramicrus

Globotruncana aegyptiaca

Globotruncana arca

Globotruncana bulloides

Globotruncana falsostuarti

Globotruncana insignis

Globotruncana linneiana

Globotruncana mariei

Globotruncanella havanensis

Globotruncanella minuta

Globotruncanella petaloidea

Globotruncanita falsocalcarata

Globotruncanita stuarti

Globotruncanita stuartiformis

Heterohelix globulosa

Planoglobulina acervulinoides

Planoglobulina multicamerata

Pseudoguembelina costulata.

Pseudoguembelina hariaensis

Pseudoguembelina palpebra

Pseudutextularia elegans

Racemiguembelina fructicosa

Ruguglobigerina hexacamerata

Ruguglobigerina macrocephala

Ruguglobigerina rugosa

Rugoglobigerina rotundata

Maastrichtian

P.hariaensis

K
50

0
0

0
0

0.1
0.1

0
0.1

0
0.1

0.5
0

0.1
0

0
0.2

0.1
0

16
0.5

0.1
0.1

16
2.7

1.3
4

8
4

2.1
10

9.6
5.5

19
1.6

K
49

0
0.1

0
0

0.1
0.1

0.1
0.1

0
0.1

0.6
0

0.1
0

0
0.2

0.2
0

17
0.3

0.1
0.2

13
3.9

0.8
5

2,2
5.3

1
11

8.9
5.6

22
0.4

K
48

0
0.2

0
0

0.1
0.3

0.1
0.2

0
0.2

0.8
0

0.1
0

0
0.5

0.1
0

16
0.6

0.1
0.1

13
3.4

1.3
7

4.5
7.5

1.8
8.3

11
5.3

16
2

A.mayaroensis

K
47

0.1
0.2

0
0.1

0.1
0.2

0.2
0.2

1.5
0.1

1.5
0

0.1
0

0
0.3

0.2
0.1

9
0.1

1.2
0

9.4
2.5

0.2
19

0
3

3.5
12

16
5.1

13
1.5

K
46

0.2
0.2

0
0.1

0.2
0.3

0.2
0.1

1.1
0.1

1.2
0.1

0.2
0.1

0
0.4

2.2
0.1

10
0.1

0.6
0.4

4.5
1.5

0.5
19

0
8

8
16

14
2.8

6.4
1

K
45

0.1
0.3

0
0.1

0.2
0.5

0.3
0.2

3.5
0.1

1.3
0

0.1
0.1

0
0

1.9
0

11
0.1

0.4
0.8

6
1

0.7
17.6

0
6.4

6.7
14

13
2.1

7.9
1.3

K
44

0.1
0.2

0
0.1

0.5
0.1

0.3
0.2

1.1
0.3

0
0

0.2
0.5

0
0

4.9
0

11
0.6

0.2
0.4

6.5
1.6

0.9
17.2

0
9.8

4.8
11

12
5.5

8.2
1.6

K
43

0
0

0
0

0.5
0

0
0

1.1
0.1

1.2
0.1

0.2
0

0
0

2.7
0

14
0

0.3
0.5

7.3
0

0.6
18

0
11

9.4
8

13
4.8

6.7
1.2

K
42

0.1
1.1

0
0.1

0.4
0.6

0.2
0.3

0.9
0.3

1.5
0.1

0.1
0.3

0
0

2.2
0

13
0

0.4
0.8

6.7
0.9

0.5
16

0
10

6
14

14
4.3

5.1
0.9

R.fruc-
ticosa

K
41

0
0.3

0
0

0.2
0.6

0.3
0.2

5
0

1.7
0

0.1
0.2

0
0

3.1
0

12
0.8

0.6
0.8

6.7
1.1

0.9
16.6

0
5.4

6.9
12

9.7
4.2

9
0.8

K
40

0
0.1

0
0

0.1
0.1

0
0.7

0
0.5

0.4
0

0.2
0.5

0
0.3

2.9
0

3.8
0.1

0.2
1.1

6.1
2.3

0.5
12

0
8

3.8
0.3

29
3.4

23
0.6

P.palpebra

K
38

0
3.5

0
0

0
5.6

1.4
2.1

0
9.2

7
0

1.4
0

0
3.5

0
0

0
0

0
0

4.2
0

0
4.3

0
2

2.8
0

0
0

18
35

K
36

0
0.1

0
0

0.4
0.7

0
0.1

2.1
0.1

1.2
0

0.2
0.1

3.6
0.3

17
1.7

19
0

0.1
0.2

16
0.3

0
3.5

0
2.5

1.2
0

3.9
5.1

9
12

K
35

0
0.3

0
0

0
0

0
0

0
0.3

1.4
0.1

0.3
0

2.5
0.3

8
1.5

2.3
0

0
1.1

10
0

0
10

0
2

2.6
0

14
7.5

17
19

K
34

0
0.3

0
0.1

0.1
0.6

0.2
0.3

0
0.5

1.5
0

0.1
0

1.2
0

0.5
1.2

1.5
0

0.1
0.4

14
0.1

0.1
13.5

0
1.5

4
0

16
6.9

20
15

K
33

0
0.4

5.3
0

0.9
0

0
1.1

0.7
1.4

8.8
0

0
0.4

3.5
1.6

5.3
2.7

1.6
0

0
0.5

2.1
0.2

0
4

0
1.8

1.8
0

2.1
0

8.8
45

K
31

0
0

17
0.6

2.1
0

0
0.6

2.5
3.2

13
0

0
0

16
2.5

0
4.8

3
0

0.4
1.3

4.7
0.6

0.2
4.6

0
3

1.3
0

5.5
0.6

9.7
1.9

Table 1- Percentage abundances (%) of planktonic foraminifera are represented against sample position of the Karainler 
stratigraphic section in the Maastrichtian.
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Globotruncanita falsocalcarata, G. stuarti, G. 
stuartiformis, Heterohelix globulosa, Planoglobulina 
acervulinoides, P. multicamerata, Pseudoguembelina 
palpebra, P. costulata, P. palpebra, Pseudotextularia 
elegans, Racemiguembelina fructicosa, 
Rugoglobigerina hexacamerata, R. macrocephala, R. 
rugosa, R. rotundata.

This zone has been identified in the Akveren 
Formation in samples K48–K50 of the Karainler 
section (Table 1, Figure 3), as well as in sample KD1 
from the lowermost levels of the Karadur section 
(Table 2, Figure 5).

Plummerita hantkeninoides Zone is absent from 
all the Bartın sites which evolved within the last 300 
k.y. of the Maastrichtian (Abramovich and Keller, 
2002). The markers species of this zone is apparently 
preferred to live in eutrophic shelfal to upper-slope 
continental margin environments (e.g., Abramovich et 
al. 1998; Abramovich and Keller, 2002; MacLeod et 
al., 2007) and has not been reported from open-ocean 
pelagic carbonate sediments (Huber et al., 2008).

The Cretaceous-Paleogene transition is within the 
Akveren Formation. Any lithological changes were 
not seen in this region. Consequently, this boundary 
was estimated with changes of planktonic foraminifera 
species of this area.

K/Pg boundary are defined planktonic 
foraminiferal zone Guembelitria cretacea (P0) 
followed by the Parvularugoglobigerina eugubina 
Zone (Pla) (Smit, 1982).  Abramovich et al. (2010) 
studied the distribution of the Guembelitria genera 
in detail in the uppermost Maastrichtian. They 
mentioned that whereas Guembelitria genera bloomed 
in the uppermost surface water primarily above shelf 
and slope environments, it appears to have failed to 
reach the open ocean. 

5.2.2 Paleocene Planktonic Foraminifera Zones

Parvularugoglobigerina eugubina Taxon-
range Zone (Pα): Biostratigraphic interval 
characterized by the total range of the nominate taxon 
Parvularugoglobigerina eugubina.

Author: Luterbacher and Premoli Silva, 1964.

Age: 64.97–64.8 Ma; Danian (early Paleocene).

The most characteristic assemblage recorded 
in this zone includes Eoglobigerina eobulloides, 
Globoconusa conusa and Parvularugoglobigerina 
eugubina.

This zone has been identified in sample KD2 of 
the Karadur section of the Akveren Formation (Table 
2, Figure 5).

Parasubbotina pseudobulloides Partial-range 
Subzone (P1a) and Subbotina triloculinoides Lowest 
Occurrence Subzone (P1b) were not determined in 
this study area (Table 2, Figure 5).

Glomobanomalina compressa/Praemurica 
uncinata Lowest Occurrence Subzone (P1c): 
Biostratigraphic interval between the FO of 
Glomobanomalina compressa and/or Praemurica 
inconstans and the FO of Praemurica uncinata.

Author: Berggren and Miller, 1988.

Age: 62.87–61.37 Ma; early Paleocene (mid-late 
Danian).

The characteristic assemblage recorded in this 
zone includes Globoconusa conusa, Parasubbotina 
pseudobulloides, Eoglobigerina eobulloides, 
Subbotina triloculinoides, Praemurica inconstans, 
Morozovella trinidadensis and Glomobanomalina 
compressa.

This zone has been identified in sample KD3-
KD11 of the Karadur section (Table 2, Figure 5).

Praemurica uncinata Lowest Occurrence Zone 
(P2): Biostratigraphic interval between the FO of 
Praemurica uncinata and the FO of Morozovella 
angulata.

Author: Berggren and Miller, 1988.

Age: 61.37–61.0 Ma; late early Paleocene (late 
Danian).

Associated species of the nominate taxon are 
Globoconusa conusa, Parasubbotina pseudobulloides, 
Subbotina triloculinoides, Praemurica inconstans,  
Morozovella trinidadensis, Glomobanomalina 
compressa and Praemurica uncinata.

This zone has been identified in sample KD12-
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Table 2- Percentage abundances (%) of planktonic foraminifera are represented against sample 
position of the Karadur stratigraphic section from Maastrichtian to Selandian.

Stage

Planktonic Foraminifera Zones

Samples

Abathomphalus mayaroensis

Contusotruncana contusa

Contusotruncana plummerea

Contusotruncana walfischensis

Gansserina gansseri

Globigerinelloides ultramicrus

Globotruncana aegyptiaca

Globotruncana arca

Globotruncana falsostuarti

Globotruncanella havanensis

Globotruncanella petaloidea

Globotruncanita stuarti

Globotruncanita stuartiformis

Heterohelix globulosa

Planoglobulina acervulinoides

Pseudoguembelina costulata.

Pseudoguembelina hariaensis

Pseudoguembelina palpebra

Racemiguembelina fructicosa

Ruguglobigerina hexacamerata

Ruguglobigerina macrocephala

Ruguglobigerina rugosa

Parvularugoglobigerina eugubina

Eoglobigerina eobulloides

Globoconusa conusa

Parasubbotina pseudobulloides

Subbotina  triloculinoides

Glomobanomalina compressa

Praemucira inconstans

Morozovella trinidadensis

Praemurica uncinata

Morozovella angulata

Morozovella conicotruncana

Igorina pusilla

Morozovella velascoensis

Acarinina primitiva

Planorotalites chapmani

Selandian

M.angulata

K
D

20
0

0
0

0
57

0
0

0
0

4.1
29

2
4.1

0.8
2.3

K
D

19
0

0
0

0
53

9.5
4.8

0
0

14
11

4
0

1.6
1.6

K
D

17
0

0
0

0
34

14
21

0
14

6.9
10

0
0

0
0

K
D

15
0

0
0

20
61

9
4.9

0
3.7

2
0

0
0

0
0

K
D

14
0

0
5.6

7.5
75

2.5
4.3

1.2
2.5

1.9
0

0
0

0
0

Danian

K
D

13
0

0
2.3

11
61

4.5
14

3.4
3.4

0
0

0
0

0
0

P.uncinata
K

D
12

0
0

3.7
12

79
1.9

1.5
1.1

0.7
0

0
0

0
0

0

G.compressa

K
D

11
0

0
3

27
55

3.2
1.2

3.2
0

0
0

0
0

0
0

K
D

10
0

0
7.2

21
34

6
7.7

8.9
0

0
0

0
0

0
0

K
D

9
0

0
0

18
71

2.9
8.8

0
0

0
0

0
0

0
0

K
D

8
0

24
0

19
48

4.8
4.8

0
0

0
0

0
0

0
0

K
D

6
0

3.4
7.2

43
37

4.3
4.9

0
0

0
0

0
0

0
0

K
D

5
0

0
4.1

38
35

3.8
3.5

0
0

0
0

0
0

0
0

K
D

4
0

0
2.4

14
43

4.2
2.8

0
0

0
0

0
0

0
0

K
D

3
0

25
4.2

10
52

4.2
4.2

0
0

0
0

0
0

0
0

P.eugubina
K

D
2

K
/Pg sınırı

50
36

14
0

0
0

0
0

0
0

0
0

0
0

0
M

aastr.
P.hariaensis

K
D

1
0.5

2.1
0.6

0.3
0.5

2.2
0.7

1.3
0.6

0.3
4.2

0.2
0.7

4.5
3.2

1.0
3.4

1.1
47

2.6
4.2

4.7
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Figure 6- Species richness, percentage distributions of selected planktonic foraminifera of the Karainler stratigraphic section in the Maastrichtian.

KD13 of the Karadur section (Table 2, Figure 5) of the 
Akveren Formation.

Morozovella angulata Lowest Occurrence Zone 
(P3): Biostratigraphic interval between the FO of 
Morozovella angulata and the FO of Globanomalina 
pseudomenardii.

Author: Berggren and Miller, 1988.

Age: 61.0–59.4 Ma; early late Paleocene 
(Selandian).

Associated species of the nominate taxon 
in the studied section are Globoconusa conusa, 
Parasubbotina pseudobulloides, Subbotina 
triloculinoides, Praemurica inconstans, Morozovella 
trinidadensis, M. angulata, M. conicotruncana,  
M. velascoensis, Glomobanomalina compressa, 
Praemurica uncinata, Acarinina primitiva, Igorina 
pusilla and Planorotalites chapmani.

This zone has been identified samples KD14–
KD20 of the Akveren Formation (Table 2, Figure 5).

5.3. Planktonic Foraminifera Assemblages

5.3.1. Composition of the Planktonic Foraminifera 
Assemblages in the Maastrichtian 

The Maastrichtian is represented by small-sized 
biserial and low trochospiral spired planktonic 
foraminifera in the study area. The most dominant species 
in the Maastrichtian is small-sized Rugoglobigerina 
(Rugoglobigerina rugosa, R. hexacamerata, R. 
macrocephala) with low trochospiral shell. Within the 
foraminifera assemblages, Rugoglobigerina spp. is 
the most dominant species with 10-55% enrichment 
(Table 1, Figure 6). Rugoglobigerina rotundata with 

higher trochospiral shell is the only dominant species 
in the lower Maastrichtian with abundance of 45% 
in sample K33 and 35% in sample K38. Although 
it has abundance between 2% and 45% in the 
lower Maastrichtian, the species is rare in the upper 
Maastrichtian (0.4-2%). Pseudoguembelina spp. is 
the second most dominant species (6-27%) (Table 1, 
Figure 6).

The third dominant species is Heterohelix globulosa 
with abundance of 2-16%. The other small-sized 
and low trochospiral shell species Globotruncanella 
petaloidea is another dominant species (2-17%). 
Pseudotextularia elegans is observed as a less 
common species (1-7%). In the upper Maastrichtian, 
Racemiguembelina fructicosa is the second common 
species (8-14%) together with Rugoglobigerina spp, 
with the exception of sample K40 (Table 1, Figure 6).

5.3.2. Composition of the Planktonic Foraminifera 
Assemblages in the Paleocene

Planktonic foraminifera species appearing 
just after the K/Pg boundary are small sized with 
globular chambers. The first Danian genera are 
Parvularugoglobigerina eugubina, Eoglobigerina 
eobulloides and Subbotina triloculinoides. In the 
lower Danian, Globoconusa conusa, Parasubbotina 
pseudobulloides, Glomobanomalina compressa and 
Praemurica inconstans are also observed together 
with P. eugubina, E. eobulloides and S. triloculinoides 
(Table 2, Figure 7).

Beginning from upper Danian, Morozovella spp. 
species appear (Table 2, Figure 7). The life time of 
P. eugubina and E. eobulloides, which are the initial 
species appearing in the Danian, is short. They are 
observed only in a few samples (Figure 7). The most 
dominant species of the Danian is S. triloculinoides 
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with 14-79% abundance. P. pseudobulloides is the 
other dominant species with 8-43% abundance (Table 
2, Figure 7).

Less dominant species are G. compressa (2-14%), 
P. inconstans (3-21%), G. conusa (2-7%), Morozovella 
trinidadensis (1-9%), Praemurica uncinata (1-14%), 
Morozovella angulata (2-7%) and Morozovella 
conicotruncana (10-15%). In the Selandian, S. 
triloculinoides (53-57%) and Morozovella species are 
dominant (Table 2, Figure 7).

5.4. The Paleoecology of Planktonic Foraminifera in 
the Maastrichtian

Planktonic foraminifera are defined as sensitive 
recorders of the upper part of the water column, 
reflecting changes in primary productivity, sea 
surface water temperature and the degree of water 
column stratification (Leckie, 1987; Schiebel and 
Hemleben, 2000). In the Bartın area, abundance 
of Globotruncana spp. (Globotruncana arca, G. 
linneiana, G. aegyptiaca, G. mariei, G. bulloides, G. 
falsostuarti, G. ventricosa and G. insignis) is rare and 
shows a decrease in the Maastrichtian (Table 1, Figure 
6). Abramovich and Keller (2003) indicated that the 
abundance of globotruncanids decreased under biotic 
stress in the Maastrichtian. In this study area, decrease 
in the abundance of globotruncanids may reflect the 
changes in environmental conditions.

In the lower Maastrichtian, the abundance of 
Rugoglobigerina taxa increased when abundances of 
globotruncanids decreased. Genus Rugoglobigerina 
are widely observed from lower Maastrichtian to 
upper Maastrichtian (Table 1, Figure 6). This genus 
was proposed to live in tropical-mid latitudes and 

warm climates in previous studies and the abundance 
of Rugoglobigerinids arrive at maximum levels 
in climatic warming periods (Malmgren, 1991; 
Nederbragt, 1991, 1998; Li and Keller, 1998a). 
Abramovich and Keller (2003) stated that decreases 
in the relative abundance of tropical-subtropical 
Pseudoguembelina costulata, Rugoglobigerina 
rugosa and several keeled globotruncanids (including 
Contusotruncana species) coincide with the warm 
event and their decline suggests unfavorable 
environmental conditions. 

Pseudoguembelina and Heterohelix globulosa are 
dominant in the upper Maastrichtian fauna in the study 
area (Table 1, figure 6). Abramovich et al. (2003) and 
Keller (2004) suggest that the domination of small 
biserial ecological species and low trochospiral species 
(Rugoglobigerina, H. globulosa, Pseudoguembelina, 
Pseudotextularia) and also the low diversity of the 
species indicates the presence of highly stressed 
environmental conditions. 

Heterohelix globulosa is evaluated as tolerant 
of the changes in salinity, temperature, oxygen and 
the amount of nutrition (Keller, 2004). Heterohelix 
globulosa continued to live without being affected 
by changes in environmental conditions. Ashckenazi-
Polivoda et al. (2011) stated that Heterohelicids display 
high abundance in a variety of marine environments, 
indicate unsuitable environmental conditions and 
an ability to adjust to a wide range of water column 
conditions. In this study, increasing abundance of 
Heterohelix globulosa and Pseudoguembelina spp. 
shows that they are resistant and tolerant of the 
changes in environmental conditions such as nutrition 
and temperature, exhibiting compatibility with global 
climate changes before the K/Pg boundary.

Figure 7- Species richness, percentage distributions of selected planktonic foraminifera of the Karadur stratigraphic section from Maastrichtian 
to Selandian.
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Racemiguembelina, which is common in the 
upper Maastrichtian assemblages, were defined 
as photosymbiotic (Houston and Huber, 1998; 
D’Hondt and Zachos, 1998; Houston et al., 1999). 
Racemiguembelina is defined as an oligotrophic 
genus in the open ocean (Abramovich et al., 2010). 
In the uppermost Maastrichtian, high abundance of 
Racemiguembelina fructicosa, Heterohelix globulosa 
and Rugoglobigerina spp. can be interpreted as the 
presence of oligotrophic and warmer environmental 
conditions in this study (Table 1-2, Figure 6-7). 

Kaya-Özer (2014) investigated nanofossil 
assemblages, carbon and oxygen stable isotope 
data in this stratigraphic section and suggested that 
environmental conditions changed from eutrophic to 
oligotrophic during the Maastrichtian. Diversification 
of planktonic foraminifera species indicate the same 
environmental conditions in this study. 

In the upper Maastrichtian in the Bartın area, 
the increasing abundance of Globotruncanella 
petaloidea is coherent with increasing abundance of 
the species which are tolerant of changes in nutrition 
and temperature (Table 1, Figure 6). It is possible that 
these species are able to live in similar environments. 

5.5. The Paleoecology of Planktonic Foraminifera in 
the Paleocene

Small, unornamental and primitive Paleogene 
species began to be seen just above K/Pg boundary 
in this study area. Parasubbotina pseudobulloides 
and Subbotina triloculinoides are the dominant 
species in the Danian (Table 2, Figure 7). In the upper 
Danian, together with these species, the abundance 
of Praemurica species also increased. However, in 
the Selandian, Morozovella species start to dominate 
(Table 2, Figure 7).

Quillevere and Norris (2003) suggested that 
different depth habitats played an important role in the 
diversification of planktonic foraminifera, related to 
the initiation of photosymbiosis as a trophic strategy. 
Subbotinids lived within or below the thermocline 
whereas morozovellids and igorinids dwelled in the 
surface mixed-layer (Shackleton et al., 1985; Pearson 
et al., 1993; D´Hondt et al., 1994; Van Eijden, 1995; 
Lu et al., 1998; Quillevere and Norris, 2003). 

Subbotina and Parasubbotina preferred cold water, 
asymbiotic living and mesotrophic environmental 

conditions (Boersma and Premoli-Silva, 1991; 
Pearson et al., 1993; Norris, 1996; Berggren and 
Norris, 1997; Guasti et al., 2005). Also, Parasubbotina 
and Subbotina taxa shared a similar trophic strategy 
and living position within the thermocline (Guasti et 
al., 2005). Guasti et al. (2005) stated that increased 
productivity through enhanced input of nutrients 
from land may favor the thermocline dweller 
Parasubbotina. In the study area, during the Danian, 
high abundance of Parasubbotina and Subbotina can 
be considered as indicating mesotrophic and cooler 
environmental conditions.

Stable isotope values indicate that subbotinids lived 
in cooler, deeper waters than morozovellids (Boersma 
and Premoli Silva, 1991; Norris, 1996). Positive 
δ18O values show Morozovella and later Acarinina 
species have a deeper habitat (Berggren and Norris, 
1997; Quillevere et al., 2000; Quillevere and Norris, 
2003). Most morozovellids, acarininids and igorinids 
were accepted as photosymbiotic species (D’Hondt 
et al., 1994; Norris, 1996; Berggren and Norris, 
1997; Quillevere and Norris, 2003). Acarininids and 
morozovellids thrive in low-nutrient water masses in 
the global ocean during the late Paleocene (Norris, 
1996; Quillevere and Norris, 2003). Praemurica 
inconstans was accepted as a photosymbiotic species 
(Kelly et al., 1996). 

Morozovella adapted to warm water and 
oligotrophic environmental conditions (Pearson et 
al., 1993; Norris, 1996; Berggren and Norris, 1997; 
Quillevere and Norris, 2003). In this study, in the 
Selandian, Morozovella started with common taxa 
with Subbotina and Parasubbotina (Table 2, Figure 
7). Increasing abundance of Morozovella taxa which 
lived in low nutrition waters, indicates mesotrophic-
oligotrophic and warmer environmental conditions in 
the Selandian. Kaya-Özer (2014) suggested similar 
environmental conditions in the Paleocene based on 
δ13C values. 

6. Conclusion

The Akveren Formation represents open sea 
characteristics in the Maastrichtian-Selandian period 
based on planktonic foraminifera species. In the 
Maastrichtian, planktonic foraminifera assemblages 
in the study area are dominated by small, simple 
morphotypes, opportunists, generalists and high-
stress specialist morphologies. Increased abundance 
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of small-sized, biserial and low trochospiral 
planktonic foraminifera species (Rugoglobigerina 
spp., Heterohelix globulosa, Pseudoguembelina 
spp., Pseudotextularia elegans) show variable and 
unstable environmental conditions in the Western 
Black Sea basin during the Maastrichtian. In the 
uppermost Maastrichtian, high abundance of 
Racemiguembelina fructicosa, Heterohelix globulosa 
and Rugoglobigerina spp. indicates oligotrophic and 
warmer environmental conditions. 

In the lower Paleocene, high abundance of 
Parasubbotina and Subbotina shows mesotrophic and 
cooler environmental conditions. In the Selandian, 
increasing abundance of Morozovella taxa indicates 
mesotrophic- oligotrophic and warmer environmental 
conditions. 
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PLATE I

Figure 1- Abathomphalus mayaroensis (Bolli), Spiral view, Sample K41.

Figure 2- Abathomphalus mayaroensis (Bolli), Umbilical view,  Sample K41.

Figure 3- Contusotruncana contusa (Cushman), Spiral view, Sample K41.

Figure 4- Gansserina gansseri (Bolli), Side view, Sample K39.

Figure 5- Rugoglobigerina rugosa (Plummer), Spiral view, Sample K48.

Figure 6- Heterohelix globulosa (Ehrenberg), Side view, Sample K32.

Figure 7- Planoglobulina multicamerata (De Klasz), Side view, Sample K48.

Figure 8- Pseudoguembelina hariaensis Nederbragt, Side view, Sample K48.

Figure 9- Pseudoguembelina hariaensis Nederbragt, Side view, Sample K48.

Figure 10- Pseudoguembelina palpebra Bronnimann and Brown, Sample K36.

Figure 11- Racemiguembelina fructicosa (Egger), Side view, Sample K42.

Figure 12- Pseudotextularia elegans (Rzehak), Side view, Sample K48.
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PLATE II

Figure 13- Parvularugoglobigerina eugubina (Luterbacher and Premoli Silva), Umbilical view, Sample KD3. 

Figure 14- Parasubbotina pseudobulloides (Plummer), Spiral view, Sample KD6.

Figure 15- Parasubbotina pseudobulloides (Plummer), Side view, Sample KD15.

Figure 16- Igorina pusilla (Bolli), Spiral view, Sample KD20.

Figure 17- Subbotina triloculinoides (Plummer), Spiral view, Sample KD16.

Figure 18- Subbotina triloculinoides (Plummer), Umbilical view, Sample KD20.

Figure 19- Praemurica uncinata (Bolli), Spiral view, Sample KD13.

Figure 20- Morozovella angulata (White), Side view, Sample KD19.

Figure 21- Globanomalina compressa (Plummer), Side view, Sample KD12.

Figure 22- Globoconusa conusa Khalilov, Spiral view, Sample KD6.

Figure 23- Morozovella velascoensis (Cushman), Umbilical view, Sample KD19.

Figure 24- Morozovella conicotruncana (Subbotina), Spiral view, Sample KD19.
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