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Sturm-Liouville Problems with Polynomially Eigenparameter Dependent 

Boundary Conditions 
 

 

Ayşe KABATAŞ *1  

 

 

Abstract 

 

Sturm-Liouville equation on a finite interval together with boundary conditions arises from the 

infinitesimal, vertical vibrations of a string with the ends subject to various constraints. The 

coefficient (also called potential) function in the differential equation is in a close relationship 

with the density of the string. In this sense, the computation of solutions plays a rather important 

role in both mathematical and physical fields. In this study, asymptotic behaviors of the 

solutions for Sturm-Liouville problems associated with polynomially eigenparameter 

dependent boundary conditions are obtained when the potential function is real valued 𝑳𝟏-

function on the interval (𝟎, 𝟏). Besides, the asymptotic formulae are given for the derivatives 

of the solutions.  

 

Keywords: Sturm-Liouville problem, spectral parameter, potential function, asymptotics 

 

1. INTRODUCTION 

 

Consider the regular Sturm-Liouville 

problems denoted by 𝐿 := 𝐿(𝑞, 𝐵0, 𝐵1): 
 

𝑢″ + [𝜆 − 𝑞(𝑥)]𝑢 = 0, 𝑥 ∈ (0,1)               (1) 

 

𝐵0(𝑢) : = 𝑃01(𝜆)𝑢
′(0) + 𝑃00(𝜆)𝑢(0) 

              = 0,                                                (2)  

                                       

𝐵1(𝑢) : = 𝑃11(𝜆)𝑢
′(1) + 𝑃10(𝜆)𝑢(1) 

              = 0.                                                    (3)  

                                                                    

Here, 𝜆 is a real spectral parameter, 𝑞 is a real-

valued 𝐿1-function on (0,1) and 
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𝑃𝜉𝑘(𝜆) =∑𝑎𝜉𝑘𝑙

𝑟𝜉𝑘

𝑙=0

𝜆𝑟𝜉𝑘−𝑙, 𝑟𝜉1 = 𝑟𝜉0 = 𝑟𝜉

≥ 0,   
 

𝑎𝜉10 = 1, 𝜉, 𝑘 = 0,1                                               (4) 

 

are arbitrary polynomials of degree 𝑟𝜉 with 

real coefficients such that 𝑃𝜉1(𝜆) and 𝑃𝜉0(𝜆) 

have no common zeros for 𝜉 = 0,1. 

 

Sturm-Liouville problems have been studied 

since the fundamental work of Sturm and 

Liouville in the 19th century [1-6]. These 

types of problems associated with ordinary 

differential equations arise in considering 

physical problems, such as determining the 

temperature distribution of a heat conducting 

rod vibration problems of the wire hanging on 
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some internal points, wave and diffusion 

problems and etc. by the method of separation 

of variables, see [7]. Also, such problems with 

linear or nonlinear dependence on the spectral 

parameter in boundary conditions arise in 

various problems of mathematics as well as in 

the more contemporary applications of 

quantum mechanics and acoustic scattering 

theory and so on [8, 9] and there is an 

extensive literature for these problems in 

recent years, see [10-14]. Detailed studies on 

direct spectral problems for general classes of 

ordinary differential operators depending 

nonlinearly on the parameter can be found in 

various publications, see e.g. [15-19].  

 

The values of the parameter 𝜆 for which 𝐿 has 

nonzero solutions are called eigenvalues, and 

the corresponding nontrivial solutions are 

called eigenfunctions. The derivation of 

asymptotic formulae for eigenvalues and 

eigenfunctions of regular Sturm-Liouville 

problems is of interest in its own right and has 

a long history. Motivation for studying 

eigenvalue and eigenfunction asymptotics has 

come from several different types of problems 

including theory of equiconvergence of 

eigenfunction expansions for Sturm-Liouville 

problems with Fourier Series, inverse spectral 

theory and theory on reconstructing the 

potential function from knowledge of spectral 

data, and the general theory of periodic 

potentials, see [20]. 

 

In the present paper, we determine the 

asymptotic solutions and their derivatives of 

the problem (1)-(3) when the potential 𝑞 is a 

real-valued member of 𝐿1(0,1). In addition, 

we give the asymptotic approximations on the 

derivatives of solutions. 

 

2. METHOD 

 

Let 𝑢(𝑥, 𝜆) be a complex valued solution of 

the equation (1). If 𝑤(𝑥, 𝜆) =
𝑢′(𝑥,𝜆)

𝑢(𝑥,𝜆)
  

transform is applied to (1), we have the 

Riccati equation 

 

𝑤′ = −𝜆 + 𝑞 − 𝑤2.                                                (5) 

We set 

 

𝑆(𝑥, 𝜆) : = 𝑅𝑒{𝑤(𝑥, 𝜆)}, 
 

𝑇(𝑥, 𝜆):= 𝐼𝑚{𝑤(𝑥, 𝜆)} 
 

where 𝑤(𝑥, 𝜆) is a complex-valued solution 

of (5). It is given in [21] that any nontrivial 

real-valued solution, 𝑧, of (1) can be 

expressed as 

𝑧(𝑥, 𝜆) = 𝑐1exp(∫ 𝑆
𝑥

0
(𝑡, 𝜆)𝑑𝑡)  

                  × cos{𝑐2 + ∫ 𝑇
𝑥

0
(𝑡, 𝜆)𝑑𝑡}              (6) 

 

with 

 

𝑧′(𝑥, 𝜆) = 𝑐1S(x, λ)exp(∫ 𝑆
𝑥

0
(𝑡, 𝜆)𝑑𝑡)  

                   × cos{𝑐2 + ∫ 𝑇
𝑥

0
(𝑡, 𝜆)𝑑𝑡}  

                   −𝑐1𝑇(𝑥, 𝜆)exp(∫ 𝑆
𝑥

0
(𝑡, 𝜆)𝑑𝑡)  

                   × sin{𝑐2 + ∫ 𝑇
𝑥

0
(𝑡, 𝜆)𝑑𝑡}.           (7) 

 

We suppose that there exist functions 𝐴(𝑥) 
and 𝜂(𝜆) so that 

 

|∫ 𝑒2𝑖𝜆
1
2𝑡1

𝑥
𝑞(𝑡)𝑑𝑡| ≤ 𝐴(𝑥)𝜂(𝜆), 𝑥 ∈ [0,1]  

 

where 

 

(i) 𝐴(𝑥) := ∫ |𝑞(𝑡)|
1

𝑥
𝑑𝑡 is decreasing 

function of 𝑥,  

(ii) 𝜂(𝜆) → 0 as 𝜆 → ∞ 

(iii) 𝐴(𝑥) ∈ 𝐿1[0,1].  
 

The existence of these functions are 

established in [21]. We define 𝐹(𝑥, 𝜆) for 

completeness as follows: 

 

𝐹(𝑥, 𝜆) : =

{
 
 

 
 |∫ 𝑒2𝑖𝜆

1
2𝑡1

𝑥
𝑞(𝑡)𝑑𝑡|

∫ |𝑞(𝑡)|
1
𝑥 𝑑𝑡

,if∫ |𝑞(𝑡)|
1

𝑥
𝑑𝑡 ≠ 0,

0,  if ∫ |𝑞(𝑡)|
1

𝑥
𝑑𝑡 = 0

  

 

and we set 𝜂(𝜆) : = 𝑠𝑢𝑝0≤𝑥≤1𝐹(𝑥, 𝜆) ( 0 ≤
𝐹(𝑥, 𝜆) ≤ 1 ). So, 𝜂(𝜆) is well-defined and 

goes to zero as 𝜆 → ∞ [21]. 
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Now, we seek a solution of the Riccati 

equation (5) as 

 

𝑤(𝑥, 𝜆): = 𝑖𝜆1/2 +∑ 𝑤𝑘(𝑥, 𝜆)
∞

𝑘=1
 

 

and choose 𝑤𝑘 so that 

 

𝑤′1 + 2𝑖𝜆
1

2𝑤1 = 𝑞,

𝑤′2 + 2𝑖𝜆
1

2𝑤2 = −𝑤1
2,

𝑤′𝑘 + 2𝑖𝜆
1

2𝑤𝑘 = −(
𝑤𝑘−1
2 + 2𝑤𝑘−1
∑ 𝑤𝑚
𝑘−2
𝑚=1

) ,

  

                                 𝑘 ≥ 3. 
 

Solution of above equation 

 

𝑤1(𝑥, 𝜆) = −𝑒−2𝑖𝜆
1/2𝑥 ∫ 𝑒2𝑖𝜆

1/2𝑡1

𝑥
𝑞(𝑡)𝑑𝑡,  

 

𝑤2(𝑥, 𝜆) = 𝑒−2𝑖𝜆
1
2𝑥∫ 𝑒2𝑖𝜆

1
2𝑡

1

𝑥

𝑤1
2(𝑡, 𝜆)𝑑𝑡, 

 

and for 𝑘 ≥ 3 

 

𝑤𝑘(𝑥, 𝜆) = 𝑒−2𝑖𝜆
1/2𝑥 ∫ 𝑒2𝑖𝜆

1/2𝑡1

𝑥
[𝑤𝑘−1

2 +

                     2𝑤𝑘−1∑ 𝑤𝑚
𝑘−2
𝑚=1 ]𝑑𝑡.  

 

It is shown in [21] that the series 
∑ 𝑤𝑘
∞
𝑘=1 (𝑥, 𝜆) and ∑ 𝑤∞

𝑘=1 ′𝑘(𝑥, 𝜆) are 

uniformly absolutely convergent for all 𝜆 ≥
𝜆0. The series 𝑖𝜆1/2 + ∑ 𝑤𝑘

∞
𝑘=1 (𝑥, 𝜆) is a 

solution of (5)  

 

𝑆(𝑥, 𝜆) = 𝑅𝑒∑𝑤𝑘

∞

𝑘=1

(𝑥, 𝜆),

𝑇(𝑥, 𝜆) = 𝜆
1

2 + 𝐼𝑚∑𝑤𝑘

∞

𝑘=1

(𝑥, 𝜆).

 

  

In [22], the asymptotic approximations for 

𝑆(𝑥, 𝜆) and 𝑇(𝑥, 𝜆) are given as 

 

𝑆(𝑥, 𝜆) = −sin (2𝜆
1

2𝑥 + 𝜉𝑥) 

                   +𝑂(𝜂2(𝜆))                                       (8) 

and 

𝑇(𝑥, 𝜆) = 𝜆1/2 − cos(2𝜆1/2𝑥 + 𝜉𝑥) +

                   𝑂(𝜂2(𝜆))                                               (9) 

 

where 

 

sin𝜉𝑥 : = ∫ 𝑞
1

𝑥
(𝑡)cos(2𝜆

1

2𝑡)𝑑𝑡,   

 

cos𝜉𝑥 : = ∫ 𝑞
1

𝑥
(𝑡)sin(2𝜆1/2𝑡)𝑑𝑡.  

 

Also, it is determined in [23] that 

 

∫ 𝑆
𝑥

0
(𝑡, 𝜆)𝑑𝑡 =

1

2
𝜆−

1

2 {cos (2𝜆
1

2𝑥 + 𝜉𝑥) −

                           cos𝜉0} + 𝑂 (𝜆
−1/2𝜂2(𝜆))(10) 

                

∫ 𝑇
𝑥

0

(𝑡, 𝜆)𝑑𝑡 = 𝜆
1

2𝑥 −
1

2
𝜆−

1

2 

× {sin (2𝜆
1

2𝑥 + 𝜉𝑥) − sin𝜉0 +∫ 𝑞
𝑥

0

(𝑡)𝑑𝑡} 

  +𝑂 (𝜆−1/2𝜂2(𝜆)).                                     (11) 

 

3. RESULTS 

 

We define two solutions, 𝑢−(𝑥, 𝜆) and 

𝑢+(𝑥, 𝜆), of equation (1) with initial 

conditions 

 

𝑢−(0, 𝜆) = 𝑃01(𝜆), 𝑢′−(0, 𝜆) 
                 = −𝑃00(𝜆),                                    (12) 

 

𝑢+(1, 𝜆) = 𝑃11(λ), u′+(1, λ) 
                 = −P10(λ).                                    (13) 

 

Theorem 1.  The solutions, 𝑢−(𝑥, 𝜆) and 

𝑢+(𝑥, 𝜆) satisfy the following equalities for 

𝑞 ∈ 𝐿1(0,1), respectively. 

 

(i) 

 

𝑢−(𝑥, 𝜆) =
𝑃01(𝜆)

𝑐𝑜𝑠[𝑡𝑎𝑛−1𝐹0(𝜆)]
𝑒𝑥𝑝(∫ 𝑆

𝑥

0
(𝑡, 𝜆)𝑑𝑡)  

                     × 𝑐𝑜𝑠[𝑡𝑎𝑛−1𝐹0(𝜆) +

                     ∫ 𝑇
𝑥

0
(𝑡, 𝜆)𝑑𝑡]                                (14) 

 

where 

 

𝐹0(𝜆) =
𝑃01(𝜆)𝑆(0,𝜆)+𝑃00(𝜆)

𝑃01(𝜆)𝑇(0,𝜆)
,                           (15) 
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(ii)            

 

𝑢+(𝑥, 𝜆) =
𝑃11(𝜆)

𝑐𝑜𝑠[𝑡𝑎𝑛−1𝐹1(𝜆)]
  

    × 𝑒𝑥𝑝 (−∫ 𝑆
1

𝑥
(𝑡, 𝜆)𝑑𝑡)  

    × 𝑐𝑜𝑠 [𝑡𝑎𝑛−1𝐹1(𝜆) − ∫ 𝑇
1

𝑥
(𝑡, 𝜆)𝑑𝑡]       

 

where 

 

𝐹1(𝜆) =
𝑃11(𝜆)𝑆(1,𝜆)+𝑃10(𝜆)

𝑃11(𝜆)𝑇(1,𝜆)
.                               

 

Proof. (i) Using (6), (7) and (12) we find 

 

𝑢−(0, 𝜆) = 𝑐1cos𝑐2 = 𝑃01(𝜆),  
 

𝑢′−(0, 𝜆) = 𝑐1𝑆(0, 𝜆)cos𝑐2 − 𝑐1𝑇(0, 𝜆)sin𝑐2  

                  = −𝑃00(𝜆). 
 

So, 

 

𝑐1 =
𝑃01(𝜆)

cos𝑐2
                                                        (16) 

 

and 

 

𝑐2 = tan−1𝐹0(𝜆).                                             (17) 

 

The proof is completed by substituting the 

values (16) and (17) into (6). 

 

(ii) From (6), (7) and (13) it can be written 

 

𝑢+(1, 𝜆) = 𝑐1exp (∫ 𝑆
1

0
(𝑡, 𝜆)𝑑𝑡) cos [𝑐2 +

                      ∫ 𝑇
1

0
(𝑡, 𝜆)𝑑𝑡] = 𝑃11(𝜆),   

 

𝑢′+(1, 𝜆) = 𝑐1exp (∫ 𝑆
1

0
(𝑡, 𝜆)𝑑𝑡)  

              

×

{
 
 

 
 𝑆(1, 𝜆)cos [𝑐2 +∫ 𝑇

1

0

(𝑡, 𝜆)𝑑𝑡] −

𝑇(1, 𝜆)sin [𝑐2 +∫ 𝑇
1

0

(𝑡, 𝜆)𝑑𝑡]
}
 
 

 
 

 

                  = −𝑃10(𝜆).  
 

Thus, we obtain 

 

𝑐1 =
𝑃11(𝜆)

exp(∫ 𝑆
1
0

(𝑡,𝜆)𝑑𝑡)cos[𝑐2+∫ 𝑇
1
0

(𝑡,𝜆)𝑑𝑡]
  

and 

 

𝑐2 = tan−1𝐹1(𝜆) − ∫ 𝑇
1

0
(𝑡, 𝜆)𝑑𝑡.  

 

For the proof, these values of 𝑐1 and 𝑐2 are 

used in (6).  
 

Now, asymptotic approximations will be 

given for the solutions, 𝑢−(𝑥, 𝜆) and 𝑢+(𝑥, 𝜆). 
 

Theorem 2.  Let 𝑞(𝑥) be a real-valued 𝐿1-

function on (0,1).  As 𝜆 → ∞, we have the 

following asymptotic approximations for the 

solutions of (1) with the initial conditions (12) 

and (13), respectively. 

   

(i) 

𝑢−(𝑥, 𝜆) = 𝜆
𝑟0cos (𝜆

1

2𝑥) − 𝜆𝑟0−
1

2 [𝑎000 −

                     
1

2
∫ 𝑞
𝑥

0
(𝑡)𝑑𝑡] sin (𝜆

1

2𝑥) +

                    𝑂 (𝜆𝑟0−
1

2𝜂(𝜆)),                               (18)                   

 

(ii)       

 

𝑢+(𝑥, 𝜆) = 𝜆
𝑟1cos [𝜆

1

2(1 − 𝑥)] +

                     𝜆𝑟1−
1

2 [𝑎100 +

                     
1

2
∫ 𝑞
1

𝑥
(𝑡)𝑑𝑡] sin [𝜆

1

2(1 − 𝑥)] +

                    𝑂 (𝜆𝑟1−
1

2𝜂(𝜆)).                             (19)           

 

Proof. (i) We evaluate the terms in (14) as 

𝜆 → ∞. Together with (4), (8), (9) and (15) we 

obtain 

 

𝐹0(𝜆) =
𝑆(0,𝜆)

𝑇(0,𝜆)
+

𝑃00(𝜆)

𝑃01(𝜆)𝑇(0,𝜆)
  

              =
𝑂(𝜂(𝜆))

𝜆
1
2[1+𝑂(𝜆

−
1
2𝜂(𝜆))]

+
𝑎000𝜆

𝑟0+𝑂(𝜆𝑟0−1)

𝜆
𝑟0+

1
2+𝑂(𝜆𝑟0𝜂(𝜆))

  

= 𝑂 (𝜆−
1

2𝜂(𝜆)) [1 + 𝑂 (𝜆−
1

2𝜂(𝜆))] +

   [𝑎000𝜆
−
1

2 + 𝑂 (𝜆−
3

2)] [1 +     𝑂 (𝜆−
1

2𝜂(𝜆))]  

 = 𝑎000𝜆
−
1

2 + 𝑂 (𝜆−
1

2𝜂(𝜆)).                  (20) 
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It is clear from (20) that  

 

𝑡𝑎𝑛−1𝐹0(𝜆) = 𝑎000𝜆
−
1

2 + 𝑂(𝜆−
1

2𝜂(𝜆)).  
 

 

So,  

 

cos[𝑡𝑎𝑛−1𝐹0(𝜆)] = 1 −
1

2
(𝑎000)

2𝜆−1 +

                                        𝑂(𝜆−1𝜂(𝜆)),             (21) 

 

sin[𝑡𝑎𝑛−1𝐹0(𝜆)] = 𝑎000𝜆
−
1

2 + 

                                     𝑂 (𝜆−
1

2𝜂(𝜆)).            (22) 

 

Using (4), (11), (21) and (22) gives 

 
𝑃01(𝜆)

cos[𝑡𝑎𝑛−1𝐹0(𝜆)]
=

𝜆𝑟0+𝑂(𝜆𝑟0−1)

1−
1

2
(𝑎000)2𝜆−1+𝑂(𝜆−1𝜂(𝜆))

  

                           = 𝜆𝑟0 + 𝑂(𝜆𝑟0−1)                  (23) 

 

and 

 

cos[𝑡𝑎𝑛−1𝐹0(𝜆) + ∫ 𝑇
𝑥

0
(𝑡, 𝜆)𝑑𝑡] =

              cos (𝜆
1

2𝑥) − 𝜆−
1

2 [𝑎000 −

1

2
∫ 𝑞
𝑥

0
(𝑡)𝑑𝑡] sin (𝜆

1

2𝑥) + 𝑂 (𝜆−
1

2𝜂(𝜆)).  (24) 

 

Finally; (10), (23) and (24) are replaced in 

(14) and the proof is done. 

The proof of (ii) is similar.  

 

We have also some approximations for the 

derivatives of the solutions, 𝑢−(𝑥, 𝜆) and 

𝑢+(𝑥, 𝜆) of L.  

 

Lemma 1.  As 𝜆 → ∞, we have 

(i) 

 

𝑢′−(𝑥, 𝜆) = −𝜆𝑟0+
1

2sin (𝜆
1

2𝑥) + 𝜆𝑟0 [𝑎000 −

                       
1

2
(∫ 𝑞

𝑥

0
(𝑡)𝑑𝑡)] cos (𝜆

1

2𝑥) +

                      𝑂(𝜆𝑟0𝜂(𝜆))                                 (25)      
 

(ii) 
 

𝑢′+(𝑥, 𝜆) = 𝜆
𝑟1+

1

2sin [𝜆
1

2(1 − 𝑥)] − 𝜆𝑟1 

× [𝑎100 +
1

2
(∫ 𝑞

1

𝑥
(𝑡)𝑑𝑡)] cos [𝜆

1

2(1 − 𝑥)] +

 𝑂(𝜆𝑟1𝜂(𝜆))                                   
 

Proof. (i) The equality (7) is used for the 

proof. With the initial conditions (12) we have 

obtained the values of 𝑐1 and 𝑐2 as in (16) and 

(17). If these values are replaced in (7), it is 

simply derived that 

 

𝑢′−(𝑥, 𝜆) =
𝑃01(𝜆)

cos[𝑡𝑎𝑛−1𝐹0(𝜆)]
 exp(∫ 𝑆

𝑥

0
(𝑡, 𝜆)𝑑𝑡) 

                      {𝑆(𝑥, 𝜆)cos[𝑡𝑎𝑛−1𝐹0(𝜆) +

                     ∫ 𝑇
𝑥

0
(𝑡, 𝜆)𝑑𝑡] −

                     𝑇(𝑥, 𝜆)sin[𝑡𝑎𝑛−1𝐹0(𝜆) +

                    ∫ 𝑇
𝑥

0
(𝑡, 𝜆)𝑑𝑡]}.                                (26) 

 

We get the asymptotic approximation of (26) 

by using the results (10), (11), (21), (22) and 

(23). This gives the equality (25). 

 

(ii) The proof is similar to part (i).  

 

4. CONCLUSIONS AND DISCUSSION 

 

Wang and the others' work [24] has motivated 

the author to determine the asymptotic 

formulae for the solutions. In [24], 𝑞(𝑡) is 

assumed to be 𝐿2-function on (0,1)  and the 

solutions 𝑢_(𝑥, 𝜆) and 𝑢+(𝑥, 𝜆) are derived 

asymptotically with error term of exponential 

type, that is,  

 

𝑢_(𝑥, 𝜆) = 𝜆𝑟0 (𝑐𝑜𝑠 𝜌𝑥 + 𝑂 (
𝑒𝜏𝑥

𝜌
)),  

 

𝑢+(𝑥, 𝜆) = 𝜆
𝑟1 (𝑐𝑜𝑠 𝜌(1 − 𝑥)

+ 𝑂 (
𝑒𝜏(1−𝑥)

𝜌
)) 

 

where 𝜆 = 𝜌2, 𝜏 = |𝐼𝑚 𝜌|.  
 

In this paper, the given results with (18) and 

(19) for the solutions of the problem L appear 
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to be consistent those in [24]. Here, we only 

assume that 𝑞(𝑡) ∈ 𝐿1[0,1] and find that  

 

𝑢−(𝑥, 𝜆) =⋅⋅⋅ +𝑂(𝜆
𝑟0−

1

2𝜂(𝜆)),  
 

𝑢+(𝑥, 𝜆) =⋅⋅⋅ +𝑂(𝜆
𝑟1−

1

2𝜂(𝜆))  
 

where 𝜂(𝜆) → 0 as 𝜆 → ∞. Besides, we use a 

similar approach to Harris and obtain more 

precise asymptotics. 

 

In future studies, the eigenvalues and 

corresponding eigenfunctions of the problem 

can be reconsidered under different restrictive 

conditions on the potential function 𝑞. 
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