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A B S T R A C T 
 

In this study, methods of copula estimation are used and the temperature measurement data of the 

four regions located at the same positions in the range of 01.01.2008 - 30.04.2009 was modeled 

with copula functions. For dependence structures of the data sets, it is calculated Kendall Tau and 

Spearman Rho values which are nonparametric. Based on this method, parameters of copula are 

obtained. A clear advantage of the copula-based model is that it allows for maximum-likelihood 

estimation using all available data. The main aim of the method is to find the parameters that make 

the likelihood functions get its maximum value. With the help of the maximum-likelihood estimation 

method, for copula families, it is obtained likelihood values. These values, Akaike information 

criteria (AIC) are used to determine which copula supplies the suitability for the data set. 
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1. Introduction 

Copulas are functions that link the marginal distributions to 
their joint distribution. The notion of copulas is well 
understand, it is now known that their empirical estimation is 
stronger. In bivariate status, copulas can be used to description 
nonparametric measures of dependence for random variables. 
Asymmetric models of dependence are suited like those that 
exceed correlation and linear association, and then copulas 
move a specific role in developing additional status and 
measures. Copulas are helpful extensions and generalizations 
of approaches for modeling joint distribution and dependence 
that have seem in the literature. Succinctly defined copulas are 
functions that appropriate multivariate distributions to their 
one-dimensional margins. Copulas are considered in different 
applications. Especially, these functions are used in the 
extreme value theory. While theoretical properties of these 
objects are now fairly understood, inferences for copula 
models are not extent. 

 

2. Material and Method 

2.1. Copula Theory 

The copula is defined as a
2

: [0,1] [0,1]C  that ensures the 

limiting conditions 

    , 0 0, 0C u C u  and

     ,1 1, ,  0,1C u C u u u    .   

 
4

( , , , ) [0,1] ,1 2 1 2u u v v   such that, ,1 2 1 2u u v v    

       , , , , 02 2 2 1 1 2 1 1C u v C u v C u v C u v   
 

Ultimately, for twice differentiable and 2-increasing property 
can be replaced by the condition  
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2
( , )

( , ) 0
C u v

c u v
u v


 

 
    (1) 

where ( , )c u v  is the copula density. In the following, for -

uniform random , , ...,1 2U U Un  variables, the joint 

distribution function C  is defined  

   , , , , ,  , .1 2 1 1 2 2C u u u P U u U u U un n n       

Here   is dependence parameter (Cherubini and Luciano, 

2001; Frees and Valdez, 1998; Genest and MacKay, 1986; 
Genest and Favre, 2007; Genest et. al., 2009; Malevergne and 
Sornette, 2003; Metin and Çalık, 2012; Sklar, 1959; Schweitzer 
and Wolff, 1981). 

2.1.1. Sklar Theorem 

Let X  and Y  be random variables with continuous 

distribution functions FX  and FY , with   F XX  and 

  F YY  are uniformly distributed on the interval  [0,1]. Then, 

there is a copula such that for all ,x y R , 

( ( ), (( , ) ))F C F x F yXY X Y
X Y     (2) 

The copula C  for  ,X Y is the joint distribution function for 

the pair   F XX ,   F YY provided FX  and FY  continuous 

(Cherubini and Luciano, 2001; Frees and Valdez, 1998; Genest 
and MacKay, 1986; Genest and Favre, 2007; Genest et. al., 2009; 
Metin and Çalık, 2012; Naifar, 2010; Nelsen, 1999; Sklar, 1959; 
Schweitzer and Wolff, 1981; Quesade-Molina, 1992). 

2.1.2. Gaussian Copula  

The normal copula; 

1
( , ; ) ( ( ), ( ); )

1 2 1 2

1 1( ) ( ) 2 21 2 1 ( 2

2 1 2 2
2 (1 ) 2(1 )

C u u u u
G

u u
s st t

dsdt

 



 


   

  
  

  
    

  
 
  

 (3) 

where is the cdf of standard distribution, and is the standard 
bivariate normal distribution with correlation parameter 
limited to the interval (-1,1) (Cherubini and Luciano, 2001; 
Schweitzer and Wolff, 1981). 

2.1.3. Archimedean Copula 

Let  define a function : [0,1] [0, ]    which is continuous 

and provides: 

 (1) 0, (0) .     

 For all (0,1)t  , 
'
( ) 0t   ,   is decreasing, for all

(0,1)t    0t   ,   is convex. 

  has an inverse    1
: 0, 0,1


  , which has the same 

properties out of 
( 1)

(0) 1


  and
( 1)

( ) 0.


    The 

Archimedean Copula is defined by  

( 1)
( , ) [ ( ) ( )].C u v u v  


     (4) 

2.1.4. Gumbel Copula 
 
This Archimedean copula is defines with the help of generator 

function       t lnt


    , 1;    

 1
( , ) exp [( ln ) ( ln ) ]C u v u v

  
        (5) 

where   is the copula parameter restricted to (1, ] .This 

copula is asymmetric, with more weight in the right tail. Beside 
this, it is extreme value copula (Nelsen, 1999). 

2.1.5. Clayton Copula  

This Archimedean copula is defines with the help of generator 

function
1

( )
t

t









 ,      1, / 0      

( , ) ( 1).C u v u v
 


 

      (6) 

Where   is the copula parameter restricted to (0, ). This 

copula is also asymmetric, but with more weight in the left tail 
(Nelsen, 1999). 

2.1.6. Frank Copula 

This Archimedean copula is defines with the help of generator 

function;    
1

    ln ,    / 0 ;
1

t
e

t R
e



 



 

 



  

 

 

  
 

  ,  

1 11
  ln 1

1

C u v

u v
e e

e



 





 
 

 




 
 
 
 

   (7) 

where  is the copula parameter restricted to  0, (Nelsen, 

1999). 

2.1.7. Joe Copula 

This Archimedean copula defines with the help of generator 
function  
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 

       

,

1/

1 1 1 ( 1 1

C u v

u v u v



   



       
 

 (8) 

where   is the copula parameter restricted to  1, . This 

copula family is similar to the Gumbel. The right tail positive 
dependence is stronger more than Gumbel (Nelsen, 1999). 

2.2. Dependence Structure of Copulas 

In this section, we explore ways in which copulas can be used 
in the study of dependence or association between random 
variables. There are varieties of ways to discuss and to 
measure dependence. Dependence properties and measures of 
association are interrelated, and so there are many places 
where we could begin this study.  

2.2.1. Spearman’s Rho 

Similar to approach of Pearson correlation coefficient, to 

compute the correlation between the pairs ( , )R Si i  of ranks 

have been used. Thus, Spearman’s Rho 

( )( )
1 [ 1,1]

2 2
( ) ( )

1 1

n
R R S Si i

i
n n n

R R S Si i
i i



 
  

  
 

 (9) 

where 

1 1 1

1 12

n nn
R R Si i

i in n


   
 

   (10) 

write. This coefficient that stated expediently in the form  

12 1
3

1( 1)( 1) 1

n n
R Sn i i

in n n n



 
  

  (11) 

Also, n  is asymptotically unbiased estimator of  

 

12 ( , ) 3
2[0,1]

12 ( , ) 3
2[0,1]

uvdC u v

C u v dudv

   


   (12) 

where the second equality is obtained (Genest and Favre, 
2007). This statement extended Quesada- Molina (1992) 

12 1
12 ( , ) 3 3

1 1 1 12[0,1]

n R S ni iuvdC u vn n
in n n n




   
   

(13) 

and C Cn   as n   .Here the null hypothesis 

0H C    of independence of  X and Y , the distribution of 

n  is normal with zero mean and variance 1 ( 1)n  ,thus for 

0H  approximate 0.05  , 1 1,96
/2

n zn 
  

(Genest and Favre, 2007). 

2.2.2. Kendall Tau 

Another measure of dependence is Kendall Tau. This measure 
based on ranks given by  

4
1

( 1)

2

P Qn n
Pn n

n n n



  

 
 
 

   (14) 

where Pn  and Qn  number of concordant and discordant 

pairs respectively. Here, ( , ), ( , )X Y X Yi i j j  pairs are 

concordant ( )( ) 0X X Y Yi j i j   and these are 

disconcordant ( )( ) 0X X Y Yi j i j   . If 

( )( ) 0X X Y Yi j i j   ; we can say ( )( ) 0R R S Si j i j   .

n  is function of copula Cn . As n  , C Cn   

 1 1
# : ,

1

n
W I j X X Y Yij j i j i

jn n
   


 , 

3
4

1 1

4 ( , ) ( , ) 1
2[0,1]

n n
Wn

n n

C u v dC u v




  
 


   (15) 

written. n  is asymptotically unbiased estimator of    and n  

is normal with zero mean and variance 2(2 5) {9 ( 1)}n n n  . 

Here the null hypothesis 0H C    of independence of X

and Y , thus for 0
H  approximate 0.05  , 

9 ( 1) 2(2 5) 1.96n n n n    (Genest and Favre, 2007). 

2.3. Copula Estimation Method  

2.3.1. Maximum Likelihood Method (MLE) 

Maximum likelihood method is the most used for copula. The 
aim of the method is basic to find the parameters that make the 
likelihood functions get its maximum value. It is given  
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( , , ..., )1 2

( ( ), ( ), ..., ( )) ( )1 1 2 2 1

f x x xn

n
c F x F x F x f xn n j j

j






  (16) 

( ( ), ( ), ..., ( ))1 1 2 2
( ( ), ( ), ..., ( ))1 1 2 2

( ), ( ), ..., ( )1 1 2 2

n
c F x F x F xn n

c F x F x F xn n
F x F x F xn n





 

Let  , , ...,1 2 1

T
x x xntt t t

 is the sample data matrix; the 

likelihood functions can be given  

( ) ln( ( ( ), ( ), ..., ( ))1 1 2 21

ln ( )
1 1

T
l c F x F x F xn ntt tt

T n
f xj jt

t j

 


 
 

  (17) 

Accordingly, the maximum likelihood estimator is 

ˆ max ( )lMLE 


     (18) 

2.3.2. Inference for marginal (IFM): 

This method is used to overcome the drawbacks of full 
maximum likelihood function. The aim of copula theory is 
separate between the univariate margins and the dependence 
structure. From equation (18) 

( ) ln( ( ( , ), ( , ), ..., ( , ), )1 1 1 2 2 21

ln ( , )
1 1

T
l c F x F x F xn nt nt tt

T n
f xj jt j

t j

    






 
 

(19) 

In this equation (19) the vector of the parameters for the 

univariate marginal ( , , ..., )1 2 n     and   is vector the 

parameters of copula. Accordingly, the fundamental idea of 
inference for margins is that it is forecasts the parameters for 
marginal distributions and copula separately in two stages. 

 Estimate the parameters j   from marginal 

distributions, 

ˆ arg max ln ( ; )
1

T
f xj j jt j

t
t

 


 


  (20) 

 Estimation of the vector of the copula parameters  

 , used the ˆ ˆ ˆ ˆ( , , ..., )
1 2 n     ; 

ˆ

ˆ ˆ ˆarg max ln( ( ( , ), ( , ), ..., ( , ); )1 1 1 2 2 21

IFM

T
c F x F x F xn nt nt tt



   







(21) 

 

2.3.3. Akaike Information Criteria  

For the series, to model dependence structure, other selection 
criteria are Akaike’s information criterion (AIC). This; 

2 log 2 /AIC L k n       (22) 

Here, k is the number of estimated parameter for each model, 
n size of sample.  

3. Application 

3.1. Data Sets  

In this study, dependence structure between at the same time 
temperature measurements located in similar coordinate 
İstanbul, Rome, Baku and Tokyo modeled by copula functions. 
The dependence structure between the selected regions is 
being done estimated nonparametric method based on using 
Kendall tau methods. With the help of this method copulas 
family suitable selected data is determined, accordance with 
parameters for this family are calculated. In the study, because 

of pairwise comparisons









2

4 correlation analysis table were 

obtained. Kendal Tau values are given in the table.1 below. 

Table 1. For four areas Kendall Tau ( ) rank correlation 

 İstanbul Roma Bakü Tokyo 
İstanbul 
Roma 
Bakü 
Tokyo 

1 
0,675 
0,741 
0,708 

0,675 
1 

0,655 
0,636 

0,741 
0,655 

1 
0,707 

0,708 
0,636 
0,707 
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Figure 1. Frequency of Istanbul, Baku, Rome and Tokyo lowest 

temperature 

3.2. Kendal Tau and Gumbel Hougaard Family 
Estimation 

The relationship between Kendall Tau and Gumbel Hougaard 
family; 

( )K  =
1




 

From this equation given above for the low temperature 
Gumbel Hougaard family estimations are given in the following 
table. 

Table 2. For Gumbel Hougaard family is the parameter  

 𝜃 Logl AIC 

İstanbul-Roma 3,076923 902,8711 -1805,74 
İstanbul-Baku 3,861004 1312,783 -2625,56 
İstanbul-Tokyo 3,424658 1074,603 -2149,2 
Roma-Baku 2,898551 775,5424 -1551,08 

Roma-Tokyo 2,747253 723,4774 -1446,95 
Baku-Tokyo 3,412969 1063,465 -2126,93 

3.3. Kendal Tau and Clayton Family Estimation 

The relationship between Kendall Tau and Clayton family; 

( )K  =
2



 

 

from this equation given above for the low temperature 
Clayton family estimations are given in the following table. 

 

Table 3. For Clayton family is the parameter 

 𝜃 Logl  AIC 
İstanbul-Roma 4,15384 -88,5239 177,0519 
İstanbul-Bakü 5,72008 -50,5097 101,0235 
İstanbul-Tokyo 4,84931 -69,3936 138,7913 
Roma-Bakü 3,79710 -94,1912 188,3865 
Roma-Tokyo 3,49450 -64,4112 128,8265 
Bakü-Tokyo 4,825939 -96,792 193,5881 

3.4. Kendal Tau and Frank Family Estimation 

The relationship between Kendall Tau and Frank family; 

 1 1( 1)
4

DK 


   
 

   
   

Here D is Debye function. From this equation given above for 
the low temperature Frank family estimations are given in the 
following table. 

Table 4. For Frank family is the parameter 

 𝜃 Logl  AIC 
İstanbul-Roma 10,35253 -2313,32 4626,644 
İstanbul-Bakü 13,57225 -3005,15 6010,344 
İstanbul-Tokyo 11,78704 -2635,73 5271,464 
Roma-Bakü 9,610621 -2165,4 4330,804 
Roma-Tokyo 8,976924 -2034,5 4069,004 
Bakü-Tokyo 11,73902 -2631,74 5263,484 

3.5. Kendal Tau and Joe Family Estimation 

The relationship between Kendall Tau and Joe family; 

 
4

1( ) DK J 


   

Here D is Debye function. From this equation given above for 
the low temperature Joe family estimations are given in the 
following table. 

Table 5. For Joe family is the parameter  

 𝜃 Logl  AIC 
İstanbul-Roma 4,958317 -83,2145 166,4331 
İstanbul-Baku 6,507019 -95,1592 190,3225 
İstanbul-Tokyo 5,644045 -105,571 211,461 
Roma-Baku 4,607484 -33,1887 60,38152 
Roma-Tokyo 4,310508 -26,0271 52,05832 
Bakü-Tokyo 5,620964 -58,2653 116,5347 

4. Results and Discussion 

The studies have focused on copula forecasting methods and 
using the daily minimum temperatures of four different areas 
are made in applications. In application it was established to 
investigate the relationship between the lowest temperatures 
of the four cities in the world in the time interval 01.01.2008 - 
30.04.2009 by using a dataset with 486 units of the 
temperatures of the four cities on modeling the concept of 
copulas. In practice, it has been making predictions by choosing 
different copulas families with non-parametric copulas 
estimation method. This study has been shown that the 
Gumbel Hougaard, Clayton, Frank and Joe copulas are 
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statistically better than the other families for our data set. Since 
the Gumbel Hougaard and the Clayton families are the 
Archimedean copula classes, they provide easiness in the 
calculation. Gumbel, Clayton and Gaussian families are more 
useful in modeling the structure of the dependency for low 
temperature measurements among the regions. Consequently, 
the following equalities can be written for each value of the 
dependency parameter. 
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