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A B S T R A C T 

This study deals with thermal design of plate frame heat exchangers based on Global Best Algorithm. 

By utilizing some basic perturbation schemes adopted from Differential Search and Differential 

Evolution, Global Best Algorithm aims to obtain optimum solution of  any optimization problem 

with intensifying on exploitation of the promising solutions rather than exploring of the unvisited 

paths of the  search domain. Firstly, optimization performance of the proposed algorithm has been 

benchmarked against variety of well-known optimization algorithms by means of 16 different 

highly challenging optimization test functions. Then, the proposed method is put into practice to 

acquire the optimal values of the design variables those optimize the considered problem objectives 

including overall heat transfer coefficient, total cost and weight of the plate frame heat exchangers 

separately as well as simultaneously. Considerable improvement in objective function values is 

observed as compared to preliminary design in single objective manner.  Pareto frontier  is 

constructed for dual and triple objective and best optimal solution among the curve is selected by 

means of the widely-known decision making methods of LINMAP, TOPSIS, and Shannon’s entropy 

theory. Optimal results obtained from each decision making theory are compared with respect to 

their corresponding deviation indexes and the best one is preferred.  A sensitivity analysis is then 

performed to study the vibrational influences of some design parameters on the considered 

objective functions. It is observed that selected design variables has a significant effect on  problem 

objectives.         

© 2017. Turkish Journal Park Academic. All rights reserved. 

1. Introduction 

Heat exchangers are devices that transfer heat from hot fluid to 
cold fluid by means of the temperature differences between 
two mediums. They have been frequently used  in various kind 
of industrial applications including power plants, air 
conditioning, and chemical industry, etc. Among different types 
of heat exchangers available in the market,  shell and tube heat 
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exchangers and plate frame heat exchangers are the most 
prevalent types those having plenty of advantages over the 
other type of heat exchangers. Effortful investigation on the 
performance improvement of plate frame (gasketed) heat 
exchangers started in the early of 1930s (Kakaç et al., 2012).  

However, researchers taken part in these projects had been 
restricted by their associated companies in order to keep the 
experimental works and their related outcomes confidential. 
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Moreover, heat transfer coefficient and pressure drop 
correlations developed as an outcome of the experimental 
studies did not work for different type of heat exchanger 
geometries and characteristics as they were correlated by their 
own measurements. Therefore, unlike shell and tube heat 
exchangers those having plentiful information about their 
design procedures, developments and improvements on the 
design of gasketed heat exchangers has not been risen to 
desirable levels due to the insufficient knowledge on the 
available design data.  

There are many features of gasketed heat exchangers which 
can be considered to be advantageous over the other types. 
Any internal leakage to the outside can be easily detected and 
fixed. They are accessible to comfort various design 
possibilities  of  plate geometries and pass arrangements. Due 
to the  relatively small hydraulic diameters and imposed 
turbulent effects, very high and efficient heat transfer rates can 
be achieved through their utilization. In spite of being compact 
and having lower weight rates compared to the different other 
types of heat exchangers,  they possess a large heat transfer 
surface area up to 1500 m2. However, their performance is 
limited to constructional characteristics of  the gaskets and the 
plates (Kakaç et al., 2012). They are not efficient in using as air 
coolers as well as condensing applications. These hindrances 
can be shown as a drawback on their utilization in many other 
industries. 

 

Fig. 1  Schematic demonstration of a chevron plate with main 

dimensions 

A conventional plate frame heat exchanger is comprised of 
corrugated plates stamped to each other placed in a frame as 
shown in Fig. 1.  Gaskets are used to avert the internal leakages 
between adjacent plates but  a favourable compression of %25 
of its original size should be maintained in order to prevent 
local distortions on a thin plate by procuring firm joints. Hot 
and cold fluids flow through the adjacent spaces between 
plates and are steered into these channels by corner ports 
(Najafi and Najafi, 2010). These corrugated channels not only 
ensure the high heat transfer rates thanks to the occurrence of 
turbulent flow, but also increase  the heat transfer efficiency 
due to the large heat transfer area enhanced by the 
corrugations on the channel walls (Najafi and Najafi, 2010). 
Constructional design of  a typical plate frame heat exchanger 
has not been changed over the past of eighty years. However, 
upper limits of working pressures and temperatures of these 
type of devices  have been altered to  some extent as a result of 
the exhaustive and comprehensive studies those pave the way 
to attain successful design parameters. Therefore, it is possible 
to limit maximum pressures up to 2.5 MPa while conventional 
design pressure is near 1.0 MPa. Considering the corrosion 

phenomenon, which is very essential in PFHEs, a designer 
should give a much more care on this issue compared to  shell 
and tube heat exchangers as the plates are very thin in 
comparison to the tube thickness of shell and tube heat 
exchangers. Upper limit of corrosion allowance is considerably 
diminished for PFHEs and therefore utilization of  
recommended values for tubular types for extreme corrosive 
conditions become useless in gasketed heat exchanger. 
Stainless steel are the most commonly used  plate material due 
to its extreme ability to cope with  high temperatures.  Chevron 
type plate heat exchangers are the most widely utilized devices 
among their alternatives (Martin, 1996). As a result, 
researchers have made numerous experimental and 
theoretical studies on successful modelling of chevron type 
plate  heat exchangers with subject to several design 
constraints. Focke (1986) pioneered these studies by 
proposing an optimization strategy to find optimal parameters 
of PHFEs. It was found that number of possible optimum points 
increases with increasing number of imposed design 
constraints. Besides, it was suggested that  using different 
types chevron plates could improve the performance of the 
heat exchanger which is indeed a trade-off between pumping 
power and heat transfer efficiency. Following this optimization 
approach, multi-pass design considerations were taken into 
account rather than single pass design  since single pass 
arrangement deteriorates the originality and the applicability 
of the proposed  modelling  procedure. Obeying these 
tendencies, some   researchers used conventional ε-NTU 
method to mathematically model the plate frame exchanger. 
For instance, Zaleski and Klepacka (1992)  proposed a novel 
calculation procedure for plate heat exchanger based on the 
variable effects of  number of transfer units and thermal 
efficiencies on the heat transfer performance.  They suggested 
a plausible pathway to select suitable heat exchanger based on 
the comprehensive analysis made on 150 different 
configuration alternatives. Kandlikar and Shah (1989) 
reported  the outcomes of the exhaustive studies based on the 
Gauss-Seidel iteration finite difference analysis of multi pass 
arrangements. On the basis of the best  heat transfer efficiency 
rates obtained for each different configuration, variety of 
design factors including temperature effectiveness, log mean 
temperature difference correction factor which is in control of 
the number of heat transfer units, heat capacity rate ratio, and 
number of thermal plates are presented in tabular form to give 
design options for researchers. However these studies also 
revealed that implementation of ε-NTU procedure burden 
huge amount of computational load as well as increasing 
computation time to unexpected and unfeasible levels. 
Therefore, designers chose alternative ways to fulfil these 
design requirements. In order to conquer these mentioned 
drawbacks, Wang and Sunden (2003)  proposed a solution 
strategy for  plate frame heat exchangers with and without 
considering pressure drop specifications. When compared to 
former design strategies based upon ε-NTU, proposed 
procedure ensures pressure drop values within allowable 
limits with a rational and straightforward way also taking into 
account of all heat exchanger design parameters. Gut and Pinto 
(2004) used screening method to attain optimal configurations 
of plate frame heat exchangers considering heat transfer area 
as an objective function to be minimized with several imposed 
constraints on number of channels ,pressure drops, flow 
velocities, etc. Intended solution strategy is constructed on a 
search methodology through which infeasible and sub-optimal 
solutions are iteratively eliminated. Optimization results 
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showed that proposed screening method has the capability of 
obtaining set of optimal solutions with a very reduced 
computational load.   

Apart from aforementioned studies those mostly relied on 
numerical investigations on heat exchanger design, there has 
been made a plethora of experimental approaches in heat 
exchanger modelling.  Gut et al. (2004) proposed a parameter 
estimation methodology to obtain a relevant heat transfer 
coefficient relying upon  retrieved experimental data for multi 
pass arrangements. Numerical results obtained from multi 
pass design were compared with those of single pass 
arrangements and comparison outcomes revealed that the 
correlations obtained from experimental data has a close 
relationship with the flow configurations as well as  flow 
distribution patterns.  Galeaozzo et al. (2006) presented a 
comparison between the results of CFD modelling and the 
outcomes of experimental procedure for variety of flow 
arrangements for plate frame heat exchangers. They found that 
experimental data are in line with CFD results. Jassim et al. 
(2006) investigated heat transfer and pressure drop 
characteristics of chevron and bumpy plate heat exchangers 
designated for vertical upward flows with using R134a as a 
refrigerant. They developed a two phase pressure drop 
correlation based upon their measurements and found that the 
predictions obtained from the proposed correlation are  within 
15% of experimental data. Luan et al. (2008) designed a novel 
corrugation plate heat exchanger and  showed that flow 
resistance of the working fluid was decreased by 50% while 
overall heat transfer coefficient rates were  decreased about 
25% as compared to the conventional chevron type design. In 
addition,  they observed that flow path blockage can be  
avoided with utilizing such plate configurations. Han et al. 
(2010) evaluated the usage of  chevron corrugated plate heat 
exchangers in a simulated platform and simultaneously 
obtained three dimensional temperature, velocity and 
pressure fields. They compared the numerical results  with the 
experimental data and observed that the tendencies of outside 
temperature values agree with those of  pressure drop rates. 
Gherasim et al. (2011) experimentally studied the distribution 
of the thermal and hydraulic fields in a chevron plate heat 
exchanger under laminar and turbulent flow conditions. 
Experimental investigations on various heat exchanger 
parameters reveal that present study obtain  the intermediate 
values between the corresponding extremes formerly reported 
approaches on this issue. Tiwari et al. (2013)  undertook an 
experimental study toexplore the tendencies and inclinations 
of pressure drop and heat transfer characteristics of a chevron 
type plate heat exchanger which uses CeO2 nanofluid as a 
coolant. Experimental studies were made with an aim to obtain 
optimal values of nanofluid concentrations under different 
flow rates and working temperatures. Measurements retained 
from experimental studies showed that using nanofluid in the 
process significantly enhances heat transfer rates with 
negligible rises  in pressure drop values.  Tiwari et al. (2013) 
extended their aforementioned former research by studying 
the effects of three different nanofluids including CeO2, Al2O3, 
TiO2, and SiO2 on heat transfer efficiencies for different flow 
rates and various range of concentration. Experimental studies 
reveal that CeO2/water gives the most heat transfer 
enhancement rates among other options with relatively 
imposing lower pressure drop values.  

Last decade has also witnessed the utilization of metaheuristic 
optimization algorithms on thermal and economic design of 

heat exchangers. Specifically, genetic algorithm (Selbas et al., 
2006; Guo et al., 2009; Fettaka et al., 2013; Ponce-Ortega et al., 
2009; Khosravi et al.,  2015; Amini and Bazargan, 2014) has 
been intensively benefited by many researchers as a 
favourable option for optimum thermal design. However, there 
has also been plenty of  proposed stochastic optimization 
based solution strategy for modelling various type of heat 
exchangers most of which outperforms genetic algorithm with 
respect to their optimization performance. These are generally 
nature inspired problem solving methodologies those taking 
advantage of the stochasticity and unpredictability of the 
unevenly distributed random numbers. For instance, Artificial 
Bee Colony algorithm, mimics the intelligent foraging 
behaviours of the working honey bees, was used to retain the 
optimal parameters of shell and tube heat exchanger through 
the minimization of  total cost of  system equipment consisting 
of capital investment and pumping costs (Sahin et al., 2011). 
Particle swarm optimization is another widely used 
metaheuristic optimizer in order to optimize shell and tube 
heat exchangers in terms of thermo-economic considerations 
(Patel and Rao, 2011). Additionally, there has been many 
attempts to model and design various type of heat exchangers 
through relatively new emerged optimizers such as Cuckoo 
Search (Asadi et al., 2014), Biogeography Based Optimization 
(Hadidi and Nazari, 2013), Imperialist Competitive Algorithm 
(Hadidi et al., 2013), Firefly Algorithm (Mohanty, 2016a), 
Gravitational Search Algorithm (Mohanty, 2016b), Teaching 
Learning Based Optimization (Patel and Savsani, 2014; Rao 
and Patel, 2013; Rao and Waghmare, 2015). In this study, it is 
aimed to determine the optimal design parameters of plate 
frame heat exchangers through utilizing the promising merits 
of Global Best Algorithm (GBEST)(Turgut and Coban, 2016). 
Referring to the fundamental concepts  taking part in previous 
studies accomplished by Najafi and Najafi (2010) and 
Hajabdollahi et al. (2013), this study benefits the ultimate 
search performance and unpredictable probing characteristics 
structured by the chaotic sequences of Logistic map possessed 
thoroughly by the proposed GBEST to attain the optimal 
configuration of  a plate frame heat exchanger in a single and  
multi-objective manner.  Total cost of heat exchanger, overall 
heat transfer coefficient, and heat exchanger weight are 
selected objectives to be optimized. Different from former 
aforementioned studies referred above, this study considers 
the effects of chevron angles on heat transfer   by taking  them 
as  decision variables. Case study taken from Kakaç et al. 
(2012) is meticulously solved by Global Best optimizer as well 
as some of diligent metaheuristic algorithms such as Artificial 
Cooperative Search (Civicioglu, 2013), Bat Algorithm (Yang, 
2010) and Quantum behaved Particle Swarm Optimization 
(Sun et al., 2004a, b) in order to benchmark the efficiency and 
accuracy of the proposed algorithm. Outcomes of these 
methods are compared with those of the preliminary design 
and influences of  governing heat exchanger parameters on  
each others are explicitly investigated by virtue of the 
sensitivity analysis. It is understood that GB EST is able to 
maintain accurate solutions within a reasonable computation 
time when compared to other remaining benchmarked 
algorithms. In addition, pareto curve constructed by GBEST 
procures uniformly distributed non dominated solutions on 
the frontier without violating prescribed boundary 
restrictions. Triple objective and dual objective optimization 
for plate heat exchangers  will be maintained by GBEST and 
optimal solution on the pareto curve will be selected by the 
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renowned decision making methods of  LINMAP, TOPSIS, and 
Shannon’s entropy theory. 

2. Thermal modelling of plate frame heat exchangers 

Plate heat exchangers have plenty of construction-specific 
mathematical modelling procedures those can suit various 
different heat duties and design requirements as their nature. 
As mentioned in introduction section, they have limited 
modelling options those have been restricted by 
manufacturers who have developed their own solution  
methods applicable to  thermal design of plate heat exchangers. 
However, there has been many published promising studies on 
predicting heat transfer and pressure drop rates for two or 
three decades  but most of them are correlated for their own 
measurements which may lead to inaccurate design outcomes 
in use of  generalized conditions.  

In plate frame heat exchanger design, enlargement factor and 
mean channel gap are two major factors those  can greatly 
affect the thermal performance. Enlargement factor can be 
defined as an enhancement of the developed length with 
respect to projected length and formulated by the following 
equation (Kakaç  et al., 2012).          

developed length

projected length
          (1) 

This parameter generally varies between 1.15 and 1.25, and 
typical value for this factor is around 1.17 (Edwards et al. 
1974). Essentially, this value is the ratio of actual area (Aact) 
designated by the manufacturer to the projected area of the 
plate (Ap) and can be redefined by the following formulation 
(Kakaç  et al., 2012). 

act

p

A

A
            (2) 

Where Ap can be calculated by the multiplication of projected 
plate length (Lp)  and plate width (Lw) by means of the below 
given equation 

p p w
A L L                                                                                     (3)                       

Abovementioned projected plate length and plate width can be 
approximately estimated as a function of port diameter (Dp), 
vertical (Lv) and horizontal (Lh) distances between ports and 
formulated  by the following equations 

p v p
L L D                                                                                     (4) 

w h p
L L D                                                                                     (5)                                                 

Mean flow channel gap (b) is formed by the two consecutive 
plates those are clamped into each other and mathematically 
defined as   

b p t                                                                                               (6) 

Where p is the plate pitch and t is the plate thickness. The plate 
pitch p can be determined from the equation defined as a ratio 

between compact plate pack length (Lc) and total number of 
plates (Nt) with the below given formulation 

c

t

L
p

N
                                                                                               (7)                                            

Following that, hydraulic channel diameter can be calculated 
as  

 4 Actual channel flow area

Wetted surface perimeter
hc

D


 (8)

 

4 2

2

w

hc

w

bL b
D

b L  
 


            (9) 

on the basis of the assumption that b << Lw. In order to 
determine the corresponding heat transfer coefficient and 
pressure drop, a mathematical model based on the tabular 
values given in Table 1 proposed by Kumar (1984) is utilized. 
The proposed model can be expressed with its pure form by 
the following equation 

1/3 0.17n
phc hc

h

w

ch D D G
C

k k

 

 




   
     
     

                        (10)                                                                          

Where the equation coefficients Ch and n, thoroughly 
dependent on chevron angle and the magnitude of Reynolds 
number, are tabulated in Table 1. Reynolds number for hot and 
cold sides can be represented as  

Re
hc

G D




                                                                                     (11) 

Where G is the mass velocity and can be defined by 

cp w

m
G

N b L


 
           (12)

                    

In Eq (12), Ncp stands for the number of channels per pass  and 
expressed by the following equation 

1

2

t

cp

p

N
N

N


                                    (13) 

Where Np symbolizes number of passes while Nt is number of 
plates. Finally, overall heat transfer coefficient for fouled 
surfaces is calculated based on the above mentioned 
expressions with given formulation below 

1 1 1

hot cold

hot cold plate

t
R R

U h h k
                               (14) 

Where hhot and hcold are respectively heat transfer coefficients 
for hot and cold sides; kplate is heat conductivity of the plate 
material; and Rhot and Rcold  are correspondingly fouling factor 
for cold and hot side surfaces. 
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          Table 1.   Tabular Ch and n values as a function of Reynolds number and chevron angles for the proposed heat transfer coefficient and pressure drop   
                                correlations by Kumar (1984)                            

  

 

 

 

 

 

 

 

 

Chevron angle Heat transfer coefficient Pressure drop coefficient 

 Reynolds 
Number 

Ch n Reynolds 
Number 

Kp m 

≤30 ≤ 10 0.718 0.349 < 10 50.000 1.000 

 > 10 0.348 0.663 10 – 100 19.400 0.589 
    > 100 2.990 0.183 

45 < 10 0.718 0.349 < 15 47.000 1.000 
 10 - 100 0.400 0.598 15 – 300 18.290 0.652 
 > 100 0.300 0.663 > 300 1.441 0.206 

50 < 20 0.630 0.333 < 20 34.000 1.000 
 20 – 300 0.291 0.591 20 – 300 11.250 0.631 

 > 300 0.130 0.732 > 300 0.772 0.161 
60 < 20 0.562 0.326 < 40 24.000 1.000 

 20 – 400 0.306 0.529 40 – 400 3.240 0.457 
 > 400 0.108 0.703 > 400 0.760 0.215 

≥65 < 20 0.562 0.326 < 50 24.000 1.000 
 20 – 500 0.331 0.503 50 – 500 2.800 0.451 
 > 500 0.087 0.718 > 500 0.639 0.213 
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Pressure drop in heat exchanger is an essential design 
objective whose structural importance  needs to be fully 
comprehended and should be evaluated in different points of 
view in consequence of its close relationship with overall heat 
transfer coefficient. Considering a heat exchanger with a fixed 
heat load, any increase in flow velocity will cause an 
improvement in heat transfer rates to some degree. However, 
this increase will give a rise to pressure drop rates which 
eventually increase total running cost. Therefore, a designer 
should be aware of this contradictive  relationship between 
total cost and heat transfer coefficient in order to attain cost 
effective heat exchanger modelling while keeping heat transfer 
rates as high as possible. Total pressure drop is comprised of 
channel pressure drop caused by the friction (ΔPf) and 
pressure drop occurred in port ducts (ΔPp). Frictional pressure 
drop can be formulated by the following equation  

0.172

4
2

v p b

f

hc w

L N G
P f

D



 



 
 
 
 

                                    (15)                                                            

Where friction factor (f) parameter is expressed in the 
following form 

Re

p

m

K
f                        (16)                                                                

Tabular values of Kp and m are given in Table 1. Port pressure 
drop occur between the inlet and outlet of the corresponding 
ports and is mathematically expressed by the following 
equation 

2

1.4
2

p

p p

G
P N


                                                           (17)                                                                

2

4

p

p

m
G

D

           (18) 

Where Dp is port diameter and m  is the total mass flow rate 
flowing through the ducts. Finally, total pressure drop 
becomes: 

total f p
P P P    

                                               
      (19) 

Total cost of heat exchanger, which is considered as an 
optimization objective  to be minimized, is another case needs 
to be elaborately dealt with  and should be given an intense 
care if it is to sustain cost effective heat exchanger design. Total 
cost is the summation of investment cost (Cinv) involving of the 
cost of heat transfer surface area and operational cost (Coper) 
comprised of the  pumping expenditures to circulate the 
working fluid throughout the heat exchanger. Total cost of heat 
exchanger is calculated with the below given series of 
equations (Hajabdollahi et al., 2013)    

total inv operC af C C                                               (20) 

0.6
90inv totC A                                                           (21)                                                                   

el

oper

h c

k m m
C P P



  


   

    
    
    

                     (22)

1 (1 )
y

r
af

r



 

                                                 (23)                                                                  

3. Global Best Algorithm    

This study evaluates the applicability of the formerly proposed 
Global Best Algorithm on thermal design of plate frame heat 
exchangers in terms of single and multi-objective 
considerations. As mentioned before, GBEST was developed by 
the author of this study and was previously applied on thermal 
modelling of heat pipes and spiral heat exchangers with 
serving highly appreciated outcomes with regards to solution 
efficiency and accuracy. In addition, its optimization success in 
widely accepted constrained and unconstrained benchmark 
problems is still studied and on progress to be published. 
Proposed algorithm benefits from the perturbation schemes 
adopted from Differential Search (Civicioglu, 2012) and 
Differential Evolution (Storn and Price, 1997) algorithms in 
order to reach the optimum solution of the problem. Different 
from most of the available stochastic-based optimization 
methods in the literature, GBEST tries to reach the optimal 
solution by probing around the so far obtained best solution 
(mainly through intensification) rather than the balanced 
effects of intensification and diversification phases. These 
terms are frequently used in optimization literature with such 
an aim to express the search characteristics of the mentioned  
optimization algorithm. Optimization algorithms are generally 
based on these contradictory, but yet supplementary 
phenomena through which structural features of the optimizer 
are shaped to some extent with utilizing their  idiosyncratic 
merits. However, there is no explicit information about how to 
combine these phases in order to yield more favourable 
results. Basically, intensification (exploitation) phase aims to 
find the global optimum point by exploiting the promising 
points on the search domain while diversification 
(exploration) phase visits undiscovered and unexplored paths 
of the search space with a view to attain more fruitful solution 
samples whose best ones are to be used in upcoming iterations. 
GBEST also takes advantage of the ergodicity and 
unpredictability of  sequential chaotic numbers produced by 
the famous Logistic map (May, 1976) rather than random 
numbers generated by Gaussian uniform distribution. Very 
efficient and distinctive random number sequences can be 
produced by this chaotic map, with the below given simple yet 
effective formulation: 

    ( 1) 4 1y t y t y t                                               (24)                                                            

Where  (0) 0.0,0.25,0.50,0.75,1.0y  . Initialization of the 

algorithm is commenced with formation of D-dimensional N 
elements of trial matrices, X and Xold, with the below given 
procedure. 



Bitlis Eren University Journal of Science and Technology 7(1) (2017) 33–73 

 

39 

 

 

 

, 1, ,

, , 2, ,

 i = 1 to N

        j = 1 to D

               X

               X

       

i j j j j i j

old i j j j j i j

for

for

low up low

low up low

end

end





   

   
                  (25)                                                                               

Where low and up respectively represent the lower and upper 
bounds of the search space; ϕ symbolizes a chaotic number 
generated by Logistic map. After completing this early phase of 
the algorithm, all individuals in Xold matrix are evaluated and 
the most promising solution vector is selected and named 
hereinafter Gbest solution.  Global Best Algorithm is divided into 
two major sections. First section utilizes the adjustment 
equations inspired by the Differential Search Algorithm while 
second phase benefits some useful merits of the well-known 
Differential Evolution algorithm as well as exploiting 
advantageous search characteristics of the  ensemble learning 
strategy. Then, first section of the algorithm is introduced by 
the below given novel  perturbation scheme 

    , , 3, , , , ,
2.0 0.5

i j best j i j best j old i j
V G G X         (26)                                                                                

Where V,i,j are the perturbed matrix individuals produced by 
the controlled influences of Xold matrix elements and Gbest 

solution vector. Following that, boundary control mechanism 
will come into practice to restrict violated solutions into the 
defined boundaries 

    

 

, ,

,

  = 1  N

          1  

               ||

                     (0,1)

              

       

i j j i j j

i j j j j

for i to

for i to D

if V low V up

V low up low rand

end

end

end



 

               (27) 

Where rand(0,1) is a uniformly distributed Gaussian random 
number generated between 0 and 1. Matrix elements of Xold  are 
updated by the following sub-algorithm 

,

, , ,

 i = 1 to N

        ( ( )  ( ))

                  1  

                       

               

       

i old i

old i j i j

for

if func V func X

for j to D

X V

end

end

end





                                       (28)                                                                       

After that, new Gbest solution is decided to be utilized in 
upcoming adjustment schemes. Based on its success in 

Differential Search algorithm on producing diverse solutions 
within a single population matrix, randperm() function is 
practiced to shuffle the order of Xold elements in order to 
generate a perturbed Xold2 matrix and consequently build up a 
new V population  with following schemes below formulated 

2
( )

old old
X randperm X                                                     (29)                                                             

    , , 4, , , , 2, ,2.0 0.5i j best j i j old i j old i jV G X X              (30)           

Numerical experiments made on benchmark algorithms 
showed that utilization of randperm() function along with the 
integration of the differences between Xold and Xold2 population 
members into Eq.(30) considerably increase the solution 
diversity with a negligible incurred computational burden. 
Finally, solution update on Gbest will be maintained and first 
phase of the algorithm is concluded with the boundary check 
mechanism applied on Xold matrix elements.     

Second phase of the algorithm begins with setting the updated 
Xold population members into X population by evaluating their 
fitness qualities. That is, if  corresponding fitness value of any 
Xold population member is better than that of the X member 
population then this member is replaced with the population 
member with having a lower quality fitness rate. Basic 
manipulation schemes of the Differential Evolution algorithm 
along with the promising features of ensemble learning 
methodology will be cooperatively used to enhance the search 
capacity of the algorithm. Ensemble learning is previously 
utilized in Particle Swarm Optimization (Zhao et al., 2011; 
Zhang and Ding, 2011) and variants of Differential Evolution 
algorithms (Yu and Zhang, 2011; Novoa-Hernandez et al., 
2013; Liang and Suganthan, 2005) in order to strengthen the 
probing performance of the optimizer. Ensemble learning 
strategy gives options to a user who is in charge to choose 
suitable algorithm parameter values for a specific optimization 
problem. This process is a kind of tedious task, particularly to 
the cases for which a priori problem dependent knowledge 
does not exist. If the user has no experience on scaling the 
control parameters of algorithm, automated environment 
created by this strategy eliminates the exhaustive trial-and-
error based parameter tuning routine while easing the 
computational load burdened by this process. Global Best 
Algorithm adopts some basic  encoding schemes of Differential 
Algorithm to construct  a self-adaptation scheme to produce 
fruitful offspring individuals by maintaining a collective 
communication platform between population individuals. 
Global Best Algorithm  mutually uses  mutation strategies 
DE/best/1 (Storn, 1996) and DE/best/2 (Storn, 1996) those 
aim to exploit promising areas of the search domain and GBEST 
combines them into a single perturbation scheme  in order to 
avoid premature convergence and sustain solution diversity. 
Mentioned mutation schemes can be formulated as 

DE/best/1:  
1 2i best r r

V G F X X                           (31)                                                      

DE/best/2:    
1 1 2 2 3 4i best r r r r

V G F X X F X X       (32)                                                                              

Indices r1, r2, r3, r4 are different from each other and defined in 
the range between 1 and N. The parameter F is the scaling 
factor which determines the scale magnitude of difference 
between different mutated solution vectors. Different 
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proposals have been made on assigning a value of this 
parameter. These proposed values varies between 0.5 to 1.2 
(Storn and Price, 1997; Gamperle et al., 2002;  Rönkkönen et 
al., 2005), however this parameter is set to a uniformly 
distributed Gaussian random number generated between 0.0 
and 1.0  after comprehensive investigations on widely known 
constrained and unconstrained optimization benchmark 
problems. Traditional DE algorithm benefits from target vector 
Xi = {xi,1, xi,2, ..., xi,D} accompanied with the mutant vector Vi,j = 
{vi,1, vi,2, ..., vi,D} to produce trial vector Ui = {ui,1, ui,2, ..., ui,D} by 
virtue of the crossover operation. Literature comprises two 
different types of crossover operators such as binomial 
(uniform) and exponential (two point modulus) operators. 
Between them, binomial operator is more applied one which is 
simply expressed by the below defined encoding scheme  

   
,

,

,                               

     (0,1) || ,    1, 2, ...,
i j rand

i j

i j

u

otherwise

v if rand CR j j j D

x

  






     (33)                                                                                 

In above equation, CR stands for the crossover probability that 
decides the number of decision variables those allowed to be 
transferred from mutant vector to trial vector; jrand is an integer 
valued algorithm parameter defined  in the range [1,N]. It is 
also crucial to successfully define the relevant parameter 
tuning process of  crossover probability (CR) in order to 
maintain diversity in the population. Although there has been 
made  plenty of study those are related to giving a favourable 
value for CR for different kind of problems,  it seems that there 
are no explicit compromise on assigning a suitable parameter 
value for CR  according to the outcomes of the studies 
published by various researchers. Some studies (Storn, 1996; 
Storn and Price, 1997; Gamperle et al., 2002) claimed that 
assigning smaller values to CR could lead to higher 
convergence capabilities while some others asserted that  CR = 
0.1 is a plausible value to initialize encoding scheme. According 
to the previous studies dealing with the benchmark against 
great numbers of constrained and unconstrained optimization 

test functions,  0.45, 0.55CR  is set as an initial value for 

crossover probability.     

Merits of the ensemble learning strategy was previously 
mentioned in above paragraphs. Ensemble learning demands 
using different mutation strategies along with their associated 
algorithm parameters for different optimization problems in 
order to sustain solution diversity as well as to maintain quick 
convergence. In the context of ensemble learning, the idea 
suggests that it would be beneficial to use various type of 
mutation strategies with complementary parameter settings 
rather than using a single mutation strategy as it has been 
traditionally implemented in a basic Differential Evolution 
algorithm. With the given advantages mentioned above, this 
strategy has become a hot-spot for researchers dealing with 
evolutionary algorithms (Qin  et al., 2009; Gong et al., 2011;  Jia 
et al., 2013). GBEST proposed a simple, but yet effective 
ensemble learning strategy with a below given procedure 
through which mutation strategies are assigned to population 
members   

 

  = 1  N

            (  % 2 == 0)

                 Employ DE/best/1

           

                 Employ DE/best/2

           

                 

for i to

if i

else

end

end

                                            (34)                                                                         

Where N is the population size; DE/best/1 and DE/best/2 are 
mutation schemes formulated respectively in  Eq.(31) and Eq. 
(32). On the course of iterations, crossover probability  (CR) 
and scaling factor (F) are adjusted by the self-adaptation 
scheme proposed by Brest et al. (2006) with a little 
modification into the usage of F. In this implementation 
procedure, F is set to uniformly distributed random number 
produced in the range [0,1]. As proposed in earlier sections, 

initial value of  0.45, 0.55CR and the algorithm parameter 

σ = rand(0,1) are set and then a random number is generated 
between 0 and 1. If the produced number’s value is smaller 
than τ, then a new CR value is reset in the range between 0.0 
and 1.0 else CR remains same. Following this phase, boundary 
check and solution update mechanisms will be applied on the 
perturbed individuals. Population individuals those violated  
boundaries are restricted to their prescribed limits by the 
evolutionary boundary handling mechanism proposed by 
Gandomi and Yang (2012). This advantageous handling 
scheme benefits the virtues of the global best solution  and  
formulated by the given procedure    

 

 

,

,

1 1

2 2

  = 1  D

        

            (0,1) 1 (0,1)

         

            (0,1) 1 (0,1)

       

j j

j j best j

j j

j j best j

for j to

if x low

x rand low rand G

else if x up

x rand up rand G

end

end



    



    

 

(35)                                                                             

Where rand(0,1) is uniformly distributed random number 
produced between 0 and 1, Gbest is the global best solution 
obtained over the undergoing iterations, low and up  
respectively symbolize the lower and upper bounds of the 
search span.  Pseudo-code given in Table 2 will help readers to 
comprehend the whole process by  summarizing the proposed 
algorithm in a nutshell. 
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Table 2.   Pseudo code of Global Best Algorithm  

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
      Initialize algorithm parameters   

                    ( )f x  : Optimization objective (D - dimensional ) 

                      N : Population size 
                      low and up : Lower and upper bounds of the search space              
                      Maxiter : Maximum number of iterations                    
                      CR and σ: Crossover probability and its associated parameter   
      Initialize X and Xold  populations randomly with  the procedure given in Eq. (25)   
      Produce sequential chaotic numbers generated by the Logistic map formulated in Eq.(24)  
      Find the best solution vector (Gbest) amongst  the trial population of Xold  
      Set iteration counter (iter) = 1   
                       While (iter < Maxiter) 
                                   for i = 1 to N 
                                          for  j = 1 to D  
                                                  Vi,j = Gbest,j + (2.0 x (ϕi,j - 0.5 ) ) x (Gbest,j – Xold,i,j ) 
                                          end 
                                   end 
                                   Apply boundary control mechanism given in  Eq. (27)  
                                   Update Xold population with the sub-algorithm given in Eq.(28)   
                                   Perform  randperm() function to generate new trial population (Xold2)  
                                   Xold2=randperm(Xold)     
                                   Produce chaotic random numbers generated by Logistic map (ϕ2,i,j)  
                                   for i = 1 to N 
                                          for  j = 1 to D 
                                                 X = Gbest,j +  (2.0 x (ϕ2,i,j – 0.5)) x (Xold,i,j  - Xold2,i,j ) 
                                          end 
                                   end 
                                  Apply boundary control mechanism given in  Eq. (27)  
                                  Update Xold population with the sub-algorithm given in Eq.(28) 
                                  for i = 1 to N 

                                           if  (rand1(0,1) < )     

                                                CR = rand2(0,1) 
                                           end 

                                           Determine X population indices such that 1 2 3 4i r r r r      

                                           if ( i % 2 == 0) 
                                                    jrand=randint(1,D) 
                                                    for j = 1 to D 
                                                           F1 = rand3(0,1) 
                                                           if  (rand4(0,1) < CR) || (j ==jrand) 
                                                                    Xtrial,i,j= Gbest,j + F1 x (Xr1,j – Xr2,j)   
                                                           end 
                                                    end 
                                           else 
                                                    jrand=randint(1,D)  
                                                    for j = 1 to D 
                                                            F1 = rand5(0,1),   F2 = rand6(0,1)  
                                                           if  (rand7(0,1) < CR) || (j ==jrand) 
                                                                    Xtrial,i,j= Gbest,j + F1 x (Xr1,j – Xr2,j)  + F2 x (Xr3,j – Xr4,j)   
                                                           end 
                                                    end 
                                           end 
                                  end 
                                  Practice evolutionary boundary constraint handling scheme given in Eq.(35) 
                                  Update X population with the new generated  Xtrial 

                                  Update the chaotic sequences of  φ1 and φ2  

                                                   Copy the population members of X whose fitness values are better than those of X old 

                                   to Xold population   
                                   Determine the Gbest solution from Xold  population 
                                   iter++ 
                        end 
                        Output Gbest  solution 
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 4. Numerical benchmark on global best algorithm

This section compares the optimization performance of the 
proposed GBEST by virtue of the well-respected, highly 
capable, and mostly metaheuristic optimizers of Backtracking 
Search Algorithm (BSA) [Civicioglu, 2013], Intelligent tuned 
Harmony Search (ITHS) (Yadav et al., 2012), Bat Algorithm 
(BAT) (Yang, 2010), Quantum behaved Particle Swarm 
Optimization (QPSO) (Sun et al., 2004a, b), Big Bang – Big 
Crunch Optimization (BB-BC) [Erol and Eksin, 2006], 
Differential Search Algorithm (DS) (Civicioglu, 2012), Moth-
Flame Optimization (MOTH) (Mirjalili, 2015), Bird Mating 
Optimization (BMO) (Askerzadeh, 2014) and Multiverse 
Optimization Algorithm (MVO) (Mirjalili et al., 2016). 
Numerical experiments have been conducted on the Windows 
7 64 bit laptop computer with  Intel Core i7 3.8 Ghz and  16 GB 
RAM. Aforementioned optimizers have intrinsic features of 
their own and try to emulate nature inspired phenomena in 
order to find optimum solution of any optimization problem. 
For instance, BSA is  a recently-developed optimization 
algorithm which is based on the merits of natural selection 
mechanisms mostly benefited in variety of evolutionary 
algorithms. These are namely selection, mutation and 
crossover mechanisms. This method has also a such 
advantageous feature that it has no control parameters to be 
tuned during the iterations. ITHS is an improved version of a 
famous optimization method of Harmony Search (Geem et al., 
2013) which is constructed on the musical inspiration of the 
musician who seeks a favourable harmony by polishing the 
notes and pitches during the improvisation process. This 
algorithm contains harmony memory consideration rate 
(HMCR) control parameter with a view to benefit from the 
adjusted harmony memory members and this parameter is set 
to 0.95 for this optimization case. BAT is a nature inspired 
optimization method which is built on the echolocation 
behaviours of the micro-bats. It has several algorithm 
parameters to be tuned iteratively, including the loudness Ai 
and the pulse emission rate ri. These parameters have been 
respectively initialized as 1.5 and 0.5. In addition, constants 
algorithm parameters α and γ are fixed to 0.9. QPSO is a variant 
of well-known swarm intelligence based Particle Swarm 

Optimization (PSO) (Kennedy and Eberhart, 1995) and 
developed on the aim of reaching the optimum solution on any 
optimization case by means of the dynamical quantum 
behaviour of the particles in the swarm population. It has few 
algorithm parameters those of which are constant and 
iteration dependent. Constant control parameters (social and 
cognitive factors) are set to 2.0. Iteratively changing adjustable 
parameter  called  contraction-expansion factor is initialized to 
1.5 and descends to 0.5 on the course of iterations. BB-BC 
optimizer is mainly based on the propounded theories related 
to the evolution of the universe. Algorithm at hand inherits two 
different perturbation methods named after Big Bang and Big 
Crunch mechanisms. Big Bang phase is charged with 
generating random variables within predefined ranges while 
Big Crunch procedure is concerned with manipulating 
randomly defined individuals through the basic perturbation 
schemes. This method also has a few of algorithm parameters 
those are related to adjust the search space limits called α and 
β. These parameters are correspondingly set to 0.4 and 0.8. DS 
algorithm successfully imitates the Brownian-like random 
movement of population individuals embarking on a migration 
in order to find more sustainable and fruitful habitats to live in. 
Algorithm has no adjustable parameter to be tuned. A 
relatively recent nature inspired optimization method called 
MOTH emulates the navigation strategy of the moths which can 
be simply called “transverse orientation”. According to the 
results of the numerical experiments given in the reference 
study [60], the optimization performance of the MOTH is found 
to be satisfactory and has been utilized in this study as a 
benchmark optimizer. It is noteworthy to add that MOTH is a 
parameter-free optimization strategy and does not bother any 
kind of tedious parameter tuning process.  BMO is inspired by 
the mating strategies of the bird species during the mating 
season and contains no tunable parameters. MVO is 
established on a three fundamental concepts of cosmology 
called white hole, black hole and worm hole which are 
respectively responsible for exploration, exploitation and local 
search. This optimizer does not contain any adjustable control 
parameter.  
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                      Table 3.  Numerical formulations of the  optimization benchmark functions 

 Function D Range fopt 

f1 - Levy 

           
1

2 22 2 2

1 1

1

sin 1 1 10sin 1 1 1 sin 2 ,

1
             1 ,      1,..,

4

D

i i D D

i

i

i

f x w w w w w

x
w for i D

  




       


  

      
 

30 [-100,100]D 0 

f2 - Sphere 

  2

2

1

D

i

i

f x x



  

30 [-100,100]D 0 

f3 - Ackley 

   2

3

1 1

1 1
20exp 0.2 exp cos 2 20 exp(1)

D D

i i

i i

f x x x
D D



 

     
   
       

   

30 [-100,100]D 0 

f4 - Griewank 

      
1

2 22

4 1

1

100 1

D

i i i

i

f x x x x







     

30 [-30,30]D 0 

f5  - Rastrigin 

    2

5

1

10 cos 2.0 10

D

i i

i

f x x x D



    

30 [-5.12,5.12]D 0 

f6  - Zakharov 

 
2 4

2

6

1 1 1

0.5 0.5

D D D

i i i

i i i

f x x ix ix

  

  
   
   
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    

30 [-5.0,10.0]D 0 

f7 - Alpine 

 
7

1

sin( ) 0.1

D

i i i

i

f x x x x



   

30 [-10,10]D 0 

f8 - Penalized 

 
1

2 2 2 2

8 1 1

1

1

10sin ( ) ( 1) 1 10sin ( ) ( 1)

           ( ,10,100, 4)

D

i i D

i

D

i

i

f x y y y y
D

u x


 









     



 
   

 




 

30 [-50.0,50.0]D 0 

f9 - Step 

   
2

9

1

0.5
D

i

i

f x x


     
30 [-100,100]D 0 

f10 - Schfewel 2.22 

 10

1 1

DD

i i

i i

f x x x
 

    

30 [-10.0,10.0]D 0 
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f11 - Brown 

   
 

 
 2 21 1 1

2 2
11 1

1

i i
D x x

i i
i

f x x x
  




    
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f12   - Streched V Sine 
Wave      

0.251 0.1
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12 1 1

1

sin 50 0.1
D
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

 
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f13  - Quintic 
5 4 3 2
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i i i i i
i
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
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f14 - Powell Singular 
       

2
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1
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i
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

     
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f15 - Csendes 
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2
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x
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30 [-1.0,1.0]D 0 

f16  - Schaffer 
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1
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         Table 4.  Statistical results of the optimization algorithms  

 Best Std.dev. Mean Worst 
f1  Levy     

GBEST  3.86E-09  1.54E-09  4.61E-09  1.02E-08  
BSA    9.14E-09  1.24E-08  2.19E-08  5.77E-08  
ITHS 5.09E-03 2.32E-02  2.77E-02  9.34E-02  

BAT  3.73E-05 2.08E+01  2.04E+01  6.71E+01  
QPSO 7.26E+00 5.45E+00  1.43E+01  3.23E+01  

BBBC   2.36E+01  8.85E+00  4.09E+01  6.54E+01  
DS 1.10E+01 5.17E+00  2.03E+01  3.15E+01  

MOTH 4.06E+00 3.61E+00 9.84E+00 1.64E+01 
BMO 2.32E-01 6.15E+00 5.07E+00 2.92E+01 

MVO 9.23E-05 4.18E+00 4.45E+00 1.83E+01 
     
f2  Sphere      

GBEST 0.00E+00 2.15E-12  9.75E-13  8.57E-12  
BSA    7.77E-10  2.71E-09  4.45E-09  1.11E-08  

ITHS 3.90E-05  4.34E-02  4.20E-02  2.32E-01  
BAT  2.91E-05  3.24E+00  4.89E+00  1.10E+01  

QPSO 6.08E+00  5.07E+00  1.25E+01  2.23E+01  
BBBC   8.60E-05 1.78E-05  1.29E-04  1.65E-04   
DS 9.28E+00 4.79E+00  1.87E+01  2.95E+01  

MOTH 1.21E-19 2.68E-09 8.10E-10 9.71E-09 
BMO 1.68E-03 1.99E-02 1.43E-02 1.19E-01 

MVO 3.16E-05 1.86E-05 6.12E-05 1.20E-04 
     

f3  Ackley     
GBEST 4.44E-16  4.06E-08  4.24E-08  9.94E-08  

BSA    1.06E-07  1.73E-07  3.05E-07  8.76E-07  
ITHS 8.64E-04  4.68E-02  7.02E-02  2.37E-01  
BAT  1.72E+01 7.28E-01  1.97E+01  2.10E+01  

QPSO 3.77E+00 2.65E+00  8.60E+00  1.31E+01  
BBBC   3.12E-02 4.14E-03  3.94E-02  4.72E-02  

DS 9.29E+00 1.13E+00  1.17E+01  1.35E+01  
MOTH 3.41E-13 1.03E-11 6.09E-12 3.47E-11 

BMO 1.35E-02 6.32E-02 1.05E-01 3.24E-01 
MVO 1.29E-02 3.40E-03 1.91E-02 3.00E-02 

     
f4  Griewank     
GBEST 0.00E+00 2.46E-13  1.18E-13  1.00E-12  

BSA    1.23E-09 4.07E-08  2.98E-08  1.81E-07  
ITHS 2.39E-06 1.71E-02  8.48E-03  6.22E-02  

BAT  7.78E-01 5.62E-02  1.03E+00  1.08E+00  
QPSO 2.56E-01 2.01E-01  8.08E-01  1.02E+00  

BBBC   1.86E-05 1.42E-02  1.13E-02  6.72E-02  
DS 9.48E-01  2.26E-02 9.88E-01  1.01E+00  

MOTH 3.51E-14 1.62E-01 4.92E-02 6.99E-01 
BMO 5.14E-04 1.09E-02 1.38E-02 5.71E-02 
MVO 1.52E-05 9.11E-03 6.46E-03 3.44E-02 

     
f5  Rastrigin     

GBEST 0.00E+00 9.87E-08  3.42E-08  3.45E-07  
BSA    2.36E-09 9.97E-08  4.90E-08  4.81E-07  

ITHS 1.72E-01 2.22E+01  2.72E+01  6.79E+01  
BAT  1.05E+02  4.44E+01  1.98E+02  2.85E+02  

QPSO 5.31E+01 2.10E+01  8.51E+01  1.30E+02   
BBBC   1.30E+02 5.01E+01  2.13E+02  3.36E+02  
DS 1.44E+02 1.62E+01 1.90E+02  2.14E+02  

MOTH 3.18E+01 1.43E+01 7.35E+01 9.01E+01 
BMO 4.93E+01 2.57E+01 1.03E+02 1.56E+02 

MVO 3.98E+01 1.68E+01 7.72E+01 1.07E+02 
     

f6  Zakharov     
GBEST 0.00E+00  9.09E-07  3.32E-07  4.70E-06  
BSA    1.48E+02 3.32E+01  2.20E+02  2.68E+02  
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ITHS 1.92E-05 6.52E-02  3.55E-02  3.56E-01  

BAT  3.83E+01  1.37E+06  7.16E+05  5.97E+06  
QPSO 1.40E+01 3.91E+01  6.81E+01  1.95E+02  
BBBC   1.54E+02 7.56E+01  2.81E+02  4.55E+02  

DS 3.08E+01 1.81E+01  6.36E+01  1.01E+02  
MOTH 1.79E-08 1.98E-02 5.18E-03 8.70E-02 

BMO 1.20E-01 5.99E-01 8.79E-01 2.97E+00 
MVO 2.87E-04 2.89E-04 7.99E-04 1.50E-03 

     
f7  Alpine     

GBEST 0.00E+00  9.87E-08  3.42E-08  3.45E-07  
BSA    1.10E-03 6.76E-04  2.18E-03 3.43E-03  

ITHS 2.23E-03  2.67E-01  1.17E-01  1.22E+00  
BAT  8.08E+00 6.53E+00  1.78E+01  3.29E+01  

QPSO 1.14E+00  1.70E+00  4.02E+00  6.76E+00  
BBBC   2.92E+00 3.67E+00  8.88E+00  1.64E+01  

DS 1.20E+01 2.31E+00  1.72E+01  2.20E+01  
MOTH 2.41E-14 5.55E-07 2.43E-07 1.97E-06 
BMO 1.52E+00 2.91E+00 5.49E+00 1.29E+00 

MVO 4.02E-01 1.22E+00 1.64E+00 6.60E+00 
     

f8  Penalized1     
GBEST 9.01E-11 1.11E-14  9.01E-11  9.01E-11  

BSA    1.45E-10 1.46E-10  3.35E-10  6.69E-10  
ITHS 4.07E-07  2.33E-04  2.19E-04  7.05E-04  

BAT  4.53E-03 3.26E-01  7.22E-01  1.43E+00  
QPSO 3.62E-02 2.03E-01  3.30E-01  8.82E-01  
BBBC   9.92E-02  3.50E-01  7.49E-01  1.36E+00  

DS 2.19E-01  2.38E-01  6.14E-01  1.26E+00  
MOTH 9.01E-11 1.34E-14 9.01E-11 9.02E-11 

BMO 1.64E-05 2.71E-02 7.03E-03 1.34E-01 
MVO 1.35E-06 7.52E-07 2.15E-06 3.97E-06 

     
f9  Step     
GBEST 3.62E-14 4.21E-11  1.76E-11  1.60E-10  

BSA    3.36E-09 8.13E-09  1.75E-08  4.07E-08  
ITHS 3.92E-05 1.19E-02  9.69E-03  7.92E-02  

BAT  1.37E-05 3.24E+00  3.19E+00  1.23E+01  
QPSO 2.39E+00  8.47E+00  1.52E+01  4.06E+01  

BBBC   8.72E-05 1.53E-05  1.23E-04  1.75E-04  
DS 8.26E+00 5.34E+00  1.75E+01 3.08E+01  

MOTH 1.98E-19 7.08E-05 2.05E-05 2.65E-04 
BMO 9.47E-04 2.08E-02 1.58E-02 9.75E-02 
MVO 2.27E-05 1.74E-05 5.54E-05 1.05E-04 

     
f10  Schwefel 2.22     

GBEST 0.00E+00  8.27E-07  4.03E-07  3.83E-06  
BSA    6.63E-05 2.70E-05  1.00E-04  1.69E-04  

ITHS 4.42E-02  4.17E-01  7.53E-01  1.94E+00  
BAT  8.05E+01  2.12E+06  1.31E+06  9.75E+06  

QPSO 8.81E+00 7.86E+00  2.38E+01  3.69E+01  
BBBC   4.30E+01 5.19E+03  1.79E+03  2.21E+04  
DS 1.77E+01  6.04E+00  3.04E+01  4.07E+01  

MOTH 5.43E-13 2.19E-05 6.13E-06 8.53E-05 
BMO 3.22E-01 4.74E+00 1.99E+00 3.74E+01 

MVO 7.77E-02 5.09E-02 1.48E-01 2.95E-01 
     

f11  Brown     
GBEST  0.00E+00 1.62E-10  6.28E-11  5.81E-10  

BSA     5.22E-08 9.45E-02  7.76E-02  3.42E-01  
ITHS  4.11E-04 8.20E-02  1.11E-01  3.53E-01  
BAT   5.03E+03 1.56E+28  5.45E+27  6.40E+28  

QPSO  1.38E+02 3.62E+05  1.02E+05  1.40E+06  
BBBC    9.73E-02 2.33E+06  6.72E+05  1.11E+06  

DS  7.20E+01 5.72E+06  1.51E+06  3.60E+07  
MOTH  2.11E-16 6.66E-08  2.04E-08  2.51E-07  
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BMO  6.15E-02 5.91E-02  7.78E-01  2.29E+00  

MVO  1.72E-04 1.91E-04  4.86E-04  9.22E-04  
     
f12   Streched V Sine Wave 

GBEST 1.53E-21 6.02E-03  4.43E-03  1.53E-02  
BSA    2.15E+00 5.05E+00  6.95E+00  2.07E+01  

ITHS 1.69E+00 4.22E+00  9.31E+00  2.38E+01  
BAT  5.78E+01 6.86E+00  7.35E+01  8.61E+01  

QPSO 3.13E+01 5.50E+00  4.18E+01  5.18E+01  
BBBC   1.08E+02  7.45E-04  1.08E+02  1.08E+02  

DS 4.49E+01 1.64E+00  4.82E+01  5.14E+01  
MOTH 3.35E+01 7.17E+00  4.35E+01  5.32E+01  
BMO 3.94E+01 8.59E+00  5.74E+01  7.18E+01  

MVO 1.55E+01 6.35E+00  2.52E+01  3.88E+01  
     

f13   Quintic 
GBEST 9.79E-13 3.26E-04  1.05E-04  1.44E-03  

BSA    1.03E-01 1.07E+01  5.38E+00  8.49E+01  
ITHS 1.66E-06  1.84E+01  1.23E+01  7.34E+01  

BAT  3.34E+01 7.80E+03  1.35E+04  3.83E+05  
QPSO 1.86E+02  2.76E+03  2.82E+03  1.08E+04  
BBBC   2.78E+00 1.16E+01  2.15E+01  5.09E+01  

DS 1.18E+02 4.76E+02  7.91E+02  2.05E+03  
MOTH 5.65E-11 4.17E-05  1.56E-05  2.06E-04  

BMO 4.73E+00 7.13E+00  1.42E+01  3.67E+01  
MVO 3.08E+00  4.86E+00  9.12E+00  2.52E+01  

     
f14   Powell Singular    

GBEST 9.98E-13 1.64E-05 8.87E-06 5.78E-05 
BSA    1.10E-04 2.59E-04 5.47E-04 1.20E-03 
ITHS 3.30E-02 6.65E+00 7.93E+00 3.15E+01 

BAT  4.11E+03 1.09E+05 1.94E+05 5.51E+05 
QPSO 5.64E+03 1.19E+04 2.51E+04 5.17E+04 

BBBC   6.68E-02 4.06E+02 1.37E+02 2.16E+03 
DS 7.05E+03 9.49E+03 2.35E+04 5.47E+04 

MOTH 1.86E-07 9.48E-05 2.86E-05 4.67E-04 
BMO 9.89E-01 3.97E+01 2.18E+01 3.25E+02 
MVO 4.02E-01 1.13E-01 1.68E-01 5.04E-01 

     
f15   Csendes     

GBEST 2.44E-40 9.12E-13 2.37E-13 3.77E-12 
BSA    1.64E-23 5.41E-05 1.06E-05 5.33E-04 

ITHS 2.39E-15 1.85E-05 8.24E-06 9.47E-05 
BAT  7.38E+01 7.13E+04 1.30E+05 2.82E+05 

QPSO 1.74E+02 2.06E+04 1.74E+04 1.05E+05 
BBBC   9.28E-13 1.77E-01 3.20E-02 1.09E+00 
DS 5.81E+02 3.94E+03 4.91E+03 1.84E+04 

MOTH 2.47E-08 9.66E+00 1.93E+00 5.02E+01 
BMO 3.51E-06 2.42E-03 1.32E-03 1.29E-02 

MVO 1.45E-13 1.49E-10 6.71E-11 5.99E-10 
     

f16   Schaffer    
GBEST 0.00E+00 4.65E-03 6.22E-03 9.71E-03 

BSA    9.71E-03 3.57E-02 4.48E-02 1.26E-01 
ITHS 9.71E-03 1.54E-02 2.09E-02 7.81E-02 
BAT  4.69E-02 1.80E-02 9.70E-02 1.78E-02 

QPSO 6.20E-03 5.50E-03 1.59E-02 2.81E-02 
BBBC   7.13E-02 2.47E-02 1.25E-01 1.70E-01 

DS 3.72E-02 6.93E-17 3.72E-02 3.72E-02 
MOTH 2.39E-02 7.31E-03 4.19E-02 6.19E-02 

BMO 1.10E-02 4.09E-03 1.93E-02 2.71E-02 
MVO 3.12E-03 7.65E-04 3.78E-03 4.66E-03 
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Fig. 2  Convergence histories of the objective functions for all compared algorithms  

Global convergence performance of GBEST is tested with the 
widely utilized 16 test functions with 30 dimensions 
formulated in Table 3. Some of these functions are unimodal 
while remaining ones are multimodal. Unimodal test functions 
have only one local extremum point defined in the search span 
as multimodal test functions have plenty of local extremum 
points accompanied with one global optimum between 
predefined search ranges. Table 4 reports the statistical results 
of the compared algorithms for aforementioned 16 different 
optimization benchmark functions. 50000 function 
evaluations along with 30 algorithm runs have been performed 
to account for the stochastic nature of the algorithms.  It can be 

clearly observed that GBEST finds the global optimum 
solutions of  Sphere, Griewank, Rastrigin, Zakharov, Alpine, 
Schwefel 2.22, Brown, and Schaffer test functions and 
therefore outperforms the remaining optimization algorithms 
with respect to solution accuracy and consistency. Same 
optimum solution has been found by GBEST and MOTH for 
Penalized1 function, however standard deviation value 
obtained from GBEST is slightly lower than  that of MOTH 
which indicates that GBEST is more consistent. Optimal 
solution found by MOTH for Step function is much better than 
the solution found by GBEST, nevertheless corresponding 
mean deviation values show that GBEST is more accurate. 
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GBEST obtains semi-optimal solutions of Levy, Ackley, 
Penalized1, Streched V Sine Wave, Quintic, Powell, and Csendes 
optimization test functions and surpasses compared algorithm 
with regards to solution efficiency. Fig. 2 (a-d) evaluates the 
ability of the mentioned optimizers to avoid getting trapped in 
local optimum points. Quick convergence can be observed 
nearly for all optimization cases for GBEST such that GBEST is 
on the brink of reaching the global optimum solution while 
other methods are far away from desired point.  For most cases, 
GBEST reaches the optimum solution after several gradual 
decreases, proving its capability to jump over the semi-optimal 
points on the search space. These convergence tendencies 
obtained from the numerical experiments reveal that GBEST 
outperforms all compared optimization algorithms in global 
convergence ability.   

5. Results and Discussion 

The effectiveness of the proposed Global Best Algorithm will be 
evaluated against the literature case study obtained from  
Kakaç et al. (2012) with a view to retain the optimal 
configuration of  a plate frame heat exchanger considering both 
single- and multi-objective design assessments. Results 
retrieved from the GBEST will be compared with the reputed 
metaheuristic optimization methodologies of Artificial 
Cooperative Search (Civicioglu, 2013), Bat Algorithm (Yang, 
2010), Quantum behaved Particle Swarm Optimization (Sun et 
al., 2004a, b) as well as with the preliminary results of Kakaç et 
al. (2012). Software codes are implemented in Java 
environment and simulations are performed on a computer 
with having 2.5 GHz CPU and 6.0 GB RAM. 50 different 
algorithm runs along with 100,000 function evaluations have 
been made for each optimizer in order to account for the 
inherent stochastic nature of the compared algorithms. GBEST 
will be separately applied on to acquire the minimum total cost, 
minimum total weight, and maximum overall of heat transfer 
coefficient of  plate frame heat exchangers.  Case study deals 
with modelling a plate frame heat exchanger having the heat 
load of 12,000 kW under the imposed pressure drop 
constraints. Such modelling includes a meticulous evaluation 
of design objectives to be optimized separately as well as 
simultaneously. Heat exchanger material is selected to be 
stainless steel (SS304) having a density of 8000 kg/m3. 
Maximum pressure drop for both hot and cold sides is limited 
up to 300.0  kPa. Table 5 tabulates the working conditions of 
the plate frame heat exchanger which undergoes an 
optimization process   Plate thickness (t), enlargement factor 
(ψ), port diameter (Dp), plate pack length (Lc), vertical distance 
between ports (Lv), horizontal distance between ports (Lh), 
chevron angle (β), and number of plates in the compact pack 

(Nt)  are considered as design variables to be iteratively 
adjusted through GBEST until the end of optimization process.  
Total number of passes for both hot and cold sides are set to 
one (Np=1). Table 6 reports the corresponding upper and 
lower bounds of these mentioned decision variables  operating 
parameters of  the plate frame heat exchanger are considered 
as it was previously used in Hajabdollahi et al. (2013) with the 
below listed specifications: pump efficiency = 0.6, unit cost of 
electricity ($/MWh) = 60.0, total operation hour in a year 
(hour) =5000, annual discount rate = 10%, and depreciation 
time (year) = 10.  In order to reflect  prescribed  imposed 
constraints into the optimization objectives, conventional 
strategy for constraint handling mechanism called static 
penalty method is utilized. Multi objective constraint 
optimization with using mentioned static penalty method can 
be formulated by  

 
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i k
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          (37) 

 

Where fi(x) is  n number of objectives to be optimized, gk(x) is 

the m number of problem constraints, x  is D-dimensional 

decision variable set, and P is the static penalty factor which 
eliminates unfeasible solutions in the search space. A careful 
attention should be given in assigning relevant values to 
penalty factor. Assigning lower values of P during the course of 
iterations may not disregard the violated constraints  which  
causes inefficiencies in exploring unvisited paths of the search 
domain. Similarly, assigning higher values of  P as iterations 
proceed may prompt algorithm to redundantly insist on visited 
and explored sections of the search space leading to 
unintended burden on computational load as well as 
increasing the running time of the algorithm. Therefore, a trial-
and- error  procedure is conducted on assigning proper values 
for static penalty factor P which is mainly based on the former 
numerical experiments made on objective function at hand. 
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Table 5.    Specifications of  thermal working conditions (Kakac et al. , 2012) 
System parameters Hot fluid Cold fluid 

Working fluid Wastewater Cooling water 
Flow rates (kg/s) 140.0  140.0 

Inlet temperature  (°C) 65.0 22.0 
Outlet temperature (°C) 45.0 42.0 
Maximum allowed pressure drop (kPa) 300.0 300.0 

Fouling resistance (m2.K/W) 0.00005 0.0 
Specific heat  (J/kg.K) 4183 4178 

Viscosity(Pa.s) 5.09e-4 7.66e-4 
Thermal conductivity (W/m.K) 0.645 0.617 

Density (kg/m3) 985.0 995.0 
Prandtl number 3.31 5.19 

 
Table 6.    Upper and lower limits of design variables 

Decision variables Lower bound Upper bound 
Plate thickness, t (m) 0.0005 0.0012 

Enlargement factor, ψ (-) 1.15 1.25 
Port diameter, Dp (m) 0.1 0.4 
Vertical distance between ports, Lv (m) 1.0 2.0 

Horizontal distance between ports, Lh (m) 0.4 1.0 
Total plate length, Lc (m)  0.3 1.0 

Chevron angle, β (°) 30 65 
Number of plates, Nt  (-) 50 300 

 

5.1. Single objective design optimization 

Optimization success of the proposed GBEST is assessed with 
its ability to attain the minimum values of total cost and total 
weight plate frame heat exchanger, as well as to obtain the 
maximum overall heat transfer coefficient rates. Table 7 
reports the optimal parameters obtained by GBEST and 
compared optimization algorithms along with the preliminary 
results for  minimum total cost of heat exchanger. When 
looking at the results given in Table 7, one can see the increase 
in total effective heat transfer area by 348.21% which also 
gives a considerable rise to investment cost levels. However, a 
great deal of  decrease in total pressure drop rates for both hot 
and cold side leads to a marked reduction in operational cost 
values (a decrease by 40,436 $).  This overall decline  leads a 
huge discount in total cost values (40,142 $) when compared 
to preliminary design made in Kakaç et al. (2012). A designer 
should also consider the respective influences of this decrease 
on overall heat transfer coefficient values and its 
corresponding outcomes with respect to general modelling 
issues. This controversial relationship between two 
optimization objectives will be evaluated in multi objective 
design considerations in upcoming sections.  Total overall cost 
reduction made by the compared algorithms of ACS, BAT, and 
QPSO are respectively on the order of 40,136 $,  40,125 $, 
40,111 $. Fig. 3 depicts the convergence histories of the 
mentioned algorithms for minimum cost of heat exchanger 
case. It can be seen that GBEST algorithm arrives its optimum 
point after 98521 function evaluations. Table 8 presents the 
optimization results of GBEST accompanied with best 
solutions of  compared metaheuristic algorithms for maximum 
overall heat transfer coefficient case. Comparison between 
preliminary results shows that heat transfer coefficient rates 
are increased by 11.6% when the proposed GBEST is applied. 
This increase is brought about  due to the certain increase in 
Reynolds number rates for both hot (37.1%) and cold (37.5%) 

sides  caused  by the weighted combined effects of  chevron 
angles,  mean channel spacing, port diameters, and horizontal 
distance between port rates on dimensionless Reynolds 
numbers which greatly shapes the magnitude of heat transfer 
coefficient. In addition, it also shows a remarkable decline 
(58.0%) in total heat exchanger weight rates  apart from this 
increase, which is very favourable for design considerations. 
Fig. 4 shows the convergence characteristics of the all 
compared algorithms for this design case. Followed by several 
stepwise increases in fitness values, optimum point is reached 
after 94799 function evaluations by GBEST algorithm.  Table 9 
compares the optimum results found by the GBEST, ACS, QPSO, 
and BAT algorithms as well as the preliminary design reported 
in Kakaç et al. (2012) for minimum weight  of heat exchanger 
design case. In this optimization case, total weight of heat 
exchanger is considered as a function of plate thickness, 
number of plates in the compact heat exchanger pack, and 
vertical and horizontal distances between ports. Therefore, a 
reduction in any of these parameters will result in a decrease 
in total mass of heat exchanger rates. Optimum results of 
GBEST shows that there is a significant level of decline in  plate 
thickness (16.5%), port diameter (49.5%), vertical distance 
between ports (35.4%), horizontal distance between ports 
(6.9%), and number of plates (%50) compared to initial design. 
This cumulative decrease in design parameters causes a 
considerable decrease (76.1%)  in total weight. If it is to 
evaluate the tendencies of other optimization objectives in 
minimum weight consideration, a slight decrease (1.2%) in 
overall cost and a marked decrease (24.9%) in overall heat 
transfer coefficient rates are also observed. Fig. 5 shows the 
evolution histories of the compared optimization algorithms 
for this design case. Each algorithm in the figure nearly shows 
similar convergence characteristics nevertheless, GBEST  is the 
most successful one among them as it obtains the minimum 
optimal value after completing successive iterations. 



Bitlis Eren University Journal of Science and Technology 7(1) (2017) 33–73 

    52 

 

 

                                   Table 7.    Best overall cost values for compared algorithms along with preliminary design rates  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Preliminary design 
 (Kakac et al. 2012) 

GBEST ACS BAT QPSO 

Plate thickness, t (m) 0.0006 0.000501 0.000513  0.000500  0.000563 
Enlargement factor, ψ(-) 1.25 1.150036  1.150497   1.150003  1.154658 

Port diameter, Dp (m) 0.2 0.399842 0.397681   0.398493  0.395609 
Vertical distance between ports, Lv (m) 1.55 1.995588  1.986751   1.854428  1.866451 

Horizontal distance between ports, Lh (m) 0.43 0.930296  0.926603   0.831679  0.848670 
Total plate length, Lc (m)  0.38 0.999503  0.999035   0.997127  0.988865 

Chevron angle, β (°) 45° 65°  65°   65°  65° 
Number of plates, Nt (-) 110 182  182   182  178 
Plate pitch, p (m) 0.003619 0.005491  0.005489   0.005478  0.005555 

Mean channel spacing, b (m) 0.003019 0.004990  0.004975  0.004976  0.004992 
Channel flow area, Ach (m2) 0.001902 0.006638 0.006589   0.006122  0.006211 

Hydraulic diameter, Dh (m) 0.004830 0.008678  0.008649   0.008655  0.008646 
Hot side Reynolds number, Reh (-) 13433.41 3951.753  3967.634   4273.010  4302.080 

Cold side Reynolds number, Rec (-) 8926.379 2625.903  2636.456   2839.376  2858.693 
Hot side heat transfer coefficient, hhot (W/m2K)  32550.71 3681.233  3704.336   3904.275  3927.218 

Cold side heat transfer coefficient, hcold (W/m2K) 27606.93 3052.726  3071.885   3237.688  3256.714 
Total effective heat transfer area, Aeff (m2) 78.90249 353.6701 352.0859   335.8272  335.9388 
Hot side frictional pressure drop,  (ΔPh)f     (Pa) 265473.6 2745.841  2781.385   2958.010  3022.464 

Cold side frictional pressure drop,  (ΔPc)f  (Pa) 285891.9 2965.503  3003.890   3194.645  3264.256 
Hot side port pressure drop, (ΔPh)p     (Pa) 14112.96 883.4482 902.8091   895.4773  921.8736 

Cold side port pressure drop, (ΔPc)p     (Pa) 13971.12 874.5629  893.7362   886.4777  912.6086 
Total pressure drop for hot side,  (ΔPh)t     (Pa) 279586.6 3629.289  3684.195  3853.487  3944.338 

Total pressure drop for cold side,  (ΔPc)t     (Pa) 299863.0 3840.073  3897.627  4081.122  4176.864 
Investment cost, Cinv ($) 1237.362 3043.701 3035.510   2950.611  2951.199 

Operational cost, Coper ($) 40964.99 528.0749  536.0258   560.9660  574.1580 
Overall heat transfer coefficient, U (W/m2K) 6612.454 1475.211 1481.851   1553.594  1553.077 
Total mass (kg) 492.3273 1958.970  1989.512   1660.587  1863.538 

Total overall cost ($) 41166.36 1023.421  1030.041   1041.164  1054.452 
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                                          Table 8.   Best overall heat transfer coefficient values for compared algorithms along with preliminary design rates  

 Preliminary design  
(Kakac et al. 2012) 

GBEST ACS BAT QPSO 

Plate thickness, t (m) 0.0006 0.000500  0.000500  0.000500   0.000501 
Enlargement factor, ψ(-) 1.25 1.166883  1.243162  1.177726   1.244693 

Port diameter, Dp (m) 0.2 0.193537  0.205250  0.221373   0.208243 
Vertical distance between ports, Lv (m) 1.55 1.001059  1.010209  1.003247   1.024014 
Horizontal distance between ports, Lh (m) 0.43 0.401952  0.410432  0.445984   0.444378 

Total plate length, Lc (m)  0.38 0.300172  0.301332  0.307323   0.316251 
Chevron angle, β (°) 45° 45° 45°  45°  45° 

Number of plates, Nt (-) 110 87  87  103   102 
Plate pitch, p (m) 0.003619 0.003450  0.003463 0.002983   0.003100 

Mean channel spacing, b (m) 0.003019 0.002950  0.002963  0.002482   0.002598 
Channel flow area, Ach (m2) 0.001902 0.001756  0.001824  0.001657   0.001696 

Hydraulic diameter, Dh (m) 0.004830 0.005056  0.004767  0.004216   0.004176 
Hot side Reynolds number, Reh (-) 13433.41 18410.66  16714.28  13723.56   13277.20 
Cold side Reynolds number, Rec (-) 8926.379 12233.71  11106.48  9119.183   8822.581 

Hot side heat transfer coefficient, hhot (W/m2K)  32550.71 38321.94  38123.28  37822.28   37360.32 
Cold side heat transfer coefficient, hcold (W/m2K) 27606.93 32501.63  32333.15  32077.86   31686.07 

Total effective heat transfer area, Aeff (m2) 78.90249 70.66237 70.82413  71.07531   71.46912  
Hot side frictional pressure drop,  (ΔPh)f     (Pa) 265473.6 263098.6  266369.7  268441.4   265788.9 

Cold side frictional pressure drop,  (ΔPc)f  (Pa) 285891.9 283334.2  286856.8  289088.1   286231.4 
Hot side port pressure drop, (ΔPh)p     (Pa) 14112.96 16094.37  12723.38  9402.391   12007.58 

Cold side port pressure drop, (ΔPc)p     (Pa) 13971.12 15932.61  12595.51  9307.082     11886.90 
Total pressure drop for hot side,  (ΔPh)t     (Pa) 279586.6 279193.0 279093.0  268441.5   277776.5 
Total pressure drop for cold side,  (ΔPc)t     (Pa) 299863.0 299266.8  299452.3  289088.0   298118.3 

Investment cost, Cinv ($) 1237.362 1158.124  1159.713  1162.185   1166.041 
Operational cost, Coper ($) 40964.99 40895.08  40901.02  40737.93   40715.03 

Total overall cost ($) 41166.36 41083.55  41089.76  40927.92   40904.80 
Total mass (kg) 492.3273 206.6250  214.4863  273.5984   273.3865 

Overall heat transfer coefficient, U (W/m2K) 6612.454 7383.541  7366.685  7340.608   7300.120 
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                                                                    Table 9.   Minimum total mass values for compared algorithms along with preliminary design rates    

 Preliminary design  
(Kakac et al. 2012) 

GBEST ACS BAT QPSO 

Plate thickness, t (m) 0.0006  0.000501  0.000504  0.000502 0.000509 
Enlargement factor, ψ(-) 1.25  1.185205  1.150923  1.168240 1.193784  

Port diameter, Dp (m) 0.2  0.101609  0.105217  0.122447 0.136066  
Vertical distance between ports, Lv (m) 1.55  1.000416  1.002595  1.014729 1.007411  
Horizontal distance between ports, Lh (m) 0.43  0.400195  0.402247  0.400777 0.406336  

Total plate length, Lc (m)  0.38  0.301183  0.300389  0.300346 0.300255  
Chevron angle, β (°) 45°  65°  60°  50° 60°  

Number of plates, Nt  (-) 110  55  55  55 55  
Plate pitch, p (m) 0.003619  0.005476  0.005461  0.005460 0.005459  

Mean channel spacing, b (m) 0.003019  0.004975  0.004957  0.004958 0.004950  
Channel flow area, Ach (m2) 0.001902  0.002496  0.002515  0.002594 0.002684  

Hydraulic diameter, Dh (m) 0.004830  0.008396  0.008614  0.008489 0.008293  
Hot side Reynolds number, Reh (-) 13433.41  34256.92  34883.86  33331.55 31465.06  
Cold side Reynolds number, Rec (-) 8926.379  22763.41  23180.00  22148.51 20908.24  

Hot side heat transfer coefficient, hhot (W/m2K)  32550.71  17940.10  18797.54  30077.93 18159.93  
Cold side heat transfer coefficient, hcold (W/m2K) 27606.93  14877.14  15684.05  24800.33 15152.05  

Total effective heat transfer area, Aeff (m2) 78.90249  105.1582  102.1439  79.44074 104.4263  
Hot side frictional pressure drop,  (ΔPh)f     (Pa) 265473.6  72119.13  80512.86  139935.0 75422.30  

Cold side frictional pressure drop,  (ΔPc)f  (Pa) 285891.9  77888.52  87024.85  147951.3 81522.55  
Hot side port pressure drop, (ΔPh)p     (Pa) 14112.96  211838.6  184242.0  100448.5 65877.07 

Cold side port pressure drop, (ΔPc)p     (Pa) 13971.12  209709.6  182390.3  99438.99 65214.99  
Total pressure drop for hot side,  (ΔPh)t     (Pa) 279586.6  283957.7  264754.9  240383.5 141299.3  
Total pressure drop for cold side,  (ΔPc)t     (Pa) 299863.0  287598.1  269415.2  247390.3 146737.5  

Investment cost, Cinv ($) 1237.362  1470.105  1444.674  1242.419 1463.951 
Operational cost, Coper ($) 40964.99  40412.77  37768.90  34487.44 20364.82  

Total overall cost ($) 41166.36  40652.02  38004.02  34689.64 20603.07 
Overall heat transfer coefficient, U (W/m2K) 6612.454  4961.462  5107.879  6567.651 4966.231  

Total mass (kg) 492.3273  114.6192  117.0306  121.0478 125.8835 
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Fig. 3  Convergence histories of the compared algorithms for minimum total cost of heat exchanger 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  Evolution histories of the compared algorithms  for  maximum overall heat transfer  coefficient 
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Figure 5.  Convergence characteristics of the compared algorithms for minimum total weight of heat exchanger  

5.2 Multi objective design optimization   

As seen in single objective optimization for total weight and 
total cost of heat exchanger cases, total cost of heat exchanger 
increases with decreasing total weight or vice versa. This 
contradictory and conflicting situation should  prompt a 
designer  to accomplish multi objective optimization task with  
a dual as well as  triple objective manner. GBEST algorithm is 
considered for the simultaneous optimization of cases which 
have been solved separately in previous section.  50 sequential 
algorithm runs along with 100,000 function evaluations are 
made for each trial solution. Pareto curves constructed for each 
optimization case has different number of trial solutions due to 
the nature of the optimization objectives as well as the 
restrictions imposed by the problem constraints. Best 
solutions on the pareto frontier will be selected by means of the 
renowned decision making theories of LINMAP, TOPSIS, and 
Shannon’s entropy theory methods. Descriptions and 
formulations of these decision making methods will not be 
given in this paper due to the space restrictions. Interested 
readers could find the detailed information on these 
mentioned methods in (Arora et al., 2016). 

5.2.1 Total mass of heat exchanger  – total cost of heat 
exchanger consideration 

Fig. 6 visualizes the set of non-dominated solution obtained  
through Multi Objective Global Best Algorithm (MO-GBEST) for 
concurrent dual objective optimization of total cost and total 
mas of the plate frame heat exchanger. Fig. 6 shows that 
optimum (minimum) total cost takes place at design point A 
where respective cost value is 1023.421 $ and its 
corresponding total mass value is 1958.970 kg, in line with 
optimum results for single objective consideration for 
minimum total cost case. At design point H, total mass gets its 

minimum  with a function value of 114.6192 kg  and its 
corresponding total cost value of 40652.52 $. Table 10 reports 
some of the optimal results (design points A to H) on the pareto 
front shown in Fig. 6. Optimal results show that a great deal of 
reduction is observed in number of plates (182 to 55), vertical 
(1.99 m to 1.00 m) and horizontal (0.93 m to 0.40 m) distance 
between ports, and correspondingly length of the compact 
pack (0.99 m to 0.30 m)   as it is moved from design point A to 
H. These marginal decreases for each mentioned design 
variable above  result in  a marked decrease (1958.9 kg to 
114.6 kg) in total  mass values while giving a considerable huge 
rise  in total cost rates (1023.4 $ to 40652.0 $). In order to gain 
more detailed insight on the effect of these two conflicting 
objectives on the variations of decision variables, their 
distribution on the solution space based on weighted 
combinatorial influences of two objectives  have been plotted  
in Fig. 7. It is seen in Fig. 7 that chevron angle nearly stays 
constant on the curve however, great variational changes occur 
in Dp, Lh, Lv, Lc, and Nt values due to conflicting nature of the 
problem objectives. Table 11 reports the best compromising 
solutions on the Pareto curve found by the decision making 
theories of LINMAP, TOPSIS, and Shannon’s entropy theory.  In 
Table 11, the term “deviation index” delineates the suitability 
of the solution obtained by the corresponding decision making 
theory for the optimization problem at hand. Lower deviation 
index value reflects its closeness to ideal point on the objective 
domain. That is, the lesser value it attains, the more suitable 
and ideal solution it is (Kumar et al., 2016). According to this 
definition, one can see that the minimum deviation index value 
is 0.1287 which shows that  total cost and total mass value 
selected by TOPSIS and LINMAP methods are more ideal than 
the pareto solution found by the Shannon’s entropy theory 
whose respective deviation index value is 0.1752. Formulation 
of this term can be found in (Kumar et al., 2016). 
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Figure 6.  Pareto frontier for dual objective (total mass – total cost) of plate frame heat exchanger 

             

Figure 7.  Scatter plot of design variables for optimum solutions on the Pareto frontier for simultaneous optimization of total cost and total mass 

of heat exchanger 
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                                       Table 10.   Optimum design points A to H specified on the pareto front in Fig.6  

 A B C D E F G H 
t (m) 0.000501 0.000514 0.000505 0.000509 0.000501 0.000504 0.000521  0.000501 

ψ(-) 1.150036  1.151401 1.158691 1.168885 1.197293 1.193712 1.156341  1.185205 
Dp (m) 0.399842 0.398830 0.368715 0.235876 0.147857 0.128580 0.110765  0.101609 

Lv (m) 1.995588  1.732764 1.448784 1.066264 1.013104 1.016495 1.027861  1.000416 
Lh (m) 0.930296  0.745215 0.582445 0.455557 0.400537 0.400257 0.404026  0.400195 

Lc (m)  0.999503  0.999044 0.969925 0.371155 0.306227 0.306475 0.303034  0.301183 
β (°) 65.0 65.0 65.0 65.0 65.0 60.0 65.0  65.0 

Nt  (-) 182  182 177 68 56 56 55  55 
U (W/m2K) 1475.211 1625.237 1964.944 3826.675 4704.533 4967.972 4848.680 4961.462 
Overall cost ($) 1023.421 1056.921 1179.840 5506.468 15635.86 22720.67 31379.84 40652.02 

Total mass (kg) 1958.970 1452.197 932.2886 198.1245 127.6644 125.1660 125.7628 114.6192 

 

                                     Table 11.   Optimal results attained by three different decision making methods 

 LINMAP TOPSIS Shannon’s  entropy  theory  

Decision variables    
Plate thickness, t (m) 0.000500 0.000500  0.000536 

Enlargement factor, ψ(-) 1.157824 1.157824  1.155694 
Port diameter, Dp (m) 0.314224 0.314224  0.394219 
Vertical distance between ports, Lv (m) 1.249378 1.249378  1.909581 

Horizontal distance between ports, Lh (m) 0.517040 0.517040  0.864237 
Total plate length, Lc (m)  0.868892 0.868892  0.992515 

Chevron angle, β (°) 65 65  65 
Number of plates, Nt  (-) 158 158  180 

Objective function    
Total cost of heat exchanger ($)  1477.070  1477.070  1055.626 

Total mass of heat exchanger (kg)  625.5732  625.5732  1863.581 
Overall heat transfer coefficient (W/m2K)  2151.458  2151.458  1539.245 
Deviation index  0.1287  0.1278   0.1752  
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5.2.2. Total cost of heat exchanger – overall heat 
transfer coefficient consideration 

Fig. 8 shows the Pareto frontier constructed by the proposed 
MO-GBEST for simultaneous optimization of total cost of heat 
exchanger and overall heat transfer coefficient rates. Similar 
with the previous case study, between the parametric changes 
in these mutually opposed objectives, any increase in heat 
transfer values also results in an increase  in total cost rates 
which is undesirable for the effective design. As it is seen from 
Fig. 8,  overall heat transfer coefficient value is at its maximum 
(7383.541 W/m2K) at design point A where its corresponding 
total cost value is (41083.55 $). However, overall heat transfer 
coefficient  descends to 1475.211 W/m2K while its respective 
total cost rate becomes 1023.421 $. In addition, gradual 
increases in Dp (0.19 m  to 0.39), Lv (1.00 m to 1.99 m), Lh (0.40 
m  to 0.93 m), and Nt (87 to 182) values are observed as cruising 
through A to H design points. Table 12 reports the pareto 
optimum solutions obtained by MO-GBEST for eight design 
points from A to H shown in Fig. 8. Outcomes of the Table 12 
reveal  that  total reduction in overall heat transfer coefficient 

rates (80.0%) and total cost (97.1%) are clearly seen. 
Mentioned gradual decreases occurred as a result of moving 
from design points A to H on the frontier can be attributed to 
the mutual contradictive characteristics of the optimization 
objectives. Fig. 9 shows the combined influences of the two 
optimization objectives on the distribution of the design 
variables in their corresponding search domain. Plate 
thickness values are mainly cumulated at its lower bound while 
enlargement factor rates homogenously spread over the 
search domain. Optimal values of the remaining design 
variables change variationally in their corresponding solution 
space when moving from A to H on the frontier. Table 13 gives 
a comparison between the optimal solutions found by three 
different decision making theories along with their respective 
deviation indexes.  The deviation index values for LINMAP, 
TOPSIS, and Shannon’s entropy theory are respectively 
0.12944, 0.08751, and 0.35921. According to the deviation 
index values, it can be said that optimal solution acquired by 
TOPSIS are more preferable. 

 

 

Figure 8.  Pareto frontier for dual objective (overall heat transfer coefficient – total cost) of plate frame heat exchanger
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                                                 Table 12.  Non dominated solutions and their respective design variables at the design points from A to H  shown in Fig. 8  

 A B C D E F G H 
t (m) 0.000500   0.000500 0.000500 0.000502  0.000506   0.000500 0.000508 0.000501 

ψ(-) 1.166883   1.156651 1.164463  1.157557  1.176999  1.153487 1.161439 1.150036  
Dp (m) 0.193537   0.208411 0.227721 0.244708  0.261012  0.293429 0.397151 0.399842 

Lv (m) 1.001059   1.000629 1.005215  1.042056  1.094148   1.196598 1.970993 1.995588  
Lh (m) 0.401952   0.409286 0.441656  0.447917  0.467692   0.500441 0.904840 0.930296  

Lc (m)  0.300172   0.300704 0.302107  0.398143  0.537871   0.806004 0.9962243 0.999503  
β (°) 45.0  45.0 45.0  45.0  45.0   45.0  45.0  65.0 

Nt  (-) 87   69 55 73   98  148 182 182  
U (W/m2K) 7383.541  6944.2665 6450.0312 5792.2042 5047.8486  4089.3687 2909.5457 1475.211 
Overall cost ($) 41083.55  26277.059 16306.467 9926.4569 5783.3399  2875.9428 1469.1924 1023.421 

Total mass (kg) 260.6250  168.76798 145.92853 205.36133 303.56138  540.14667 1891.0236 1958.970 

 

                              
 
                                               Table 13.  Comparison of the optimal solutions obtained by three decision making methods  

 

 

                        

 

 

 

 

 

 

 LINMAP TOPSIS Shannon’s entropy theory  
Decision variables    

Plate thickness, t (m)  0.000500  0.000515 0.000537  
Enlargement factor, ψ(-)  1.152198  1.165799 1.151129  
Port diameter, Dp (m)  0.200249  0.200666   0.393592  

Vertical distance between ports, Lv (m)  1.000406  1.001330 1.944634  
Horizontal distance between ports, Lh (m)  0.403176  0.405915 0.902333  

Total plate length, Lc (m)   0.300181  0.300336 0.996501  
Chevron angle, β (°)  45  45 65 

Number of plates, Nt (-)  89  89 180  
Objective functions    

Total cost of heat exchanger ($)  40751.38  40890.26  1041.006 
Overall heat transfer coefficient (W/m2K)  7378.299  7377.745  1503.853 
Total mass of heat exchanger  213.0971  214.5949  1969.742 

Deviation index  0.12944  0.08751  0.35921  
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Figure 9.  Distribution of the decision variables for optimum solutions on the Pareto frontier for  concurrent optimization of overall heat transfer 

coefficient and total cost of plate frame heat  exchanger 

 

5.2.3 Overall heat transfer coefficient – total mass of the 
heat exchanger consideration    

Pareto optimal solution curve constructed by utilizing the 
favourable merits of the proposed MO-GBEST for concurrent 
optimization of conflicting problem objectives including 
overall heat transfer coefficient and total mass of heat 
exchanger is depicted in Fig. 10. One can see the long gaps 
between some of the non-dominated Pareto solutions on the 
frontier. This is because of the imposed design constraints 
which does not allow GBEST optimizer to find feasible 
solutions at these empty regions on the pareto curve.  It is clear 
to see the contradiction between these two problem objectives 
such that overall heat transfer coefficient descends from 
7383.541 W/m2K to 4961.461 W/m2K while total mass 
decreases from 260.625 kg to 114.619 kg when moving from A 
to E on the frontier.  Table 14 reports the  variational changes 
of  objective function values in tabular from.  When looking at 
the tendencies of the design variables throughout the frontier,  

 

 

 

number of plates in the pack decreases from 87 to 55 whereas 
chevron angle varies between 45.0° and 65.0° apart from the 
remaining ones those do not show any significant change in 
values. Pareto optimal solutions along with their respective 
deviation indexes found by three different decision making 
theories are reported in Table 15. Deviation index value of 
0.18533 obtained by TOPSIS method is lower than those of 
obtained by other methods, which indicates that optimal 
solution found by TOPSIS is more relevant. Fig. 11 
demonstrates a scatter plot based on the variation of the 
decision variables on the pareto front. It can be observed from 
the figure that plate thickness, vertical and horizontal distance 
between ports, and total length of heat exchanger reach their 
minimum values while chevron angle nearly stays constant and  
enlargement factor is uniformly distributed over  the solution 
space.  
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          Table 14.   Optimal solutions at the design points from A to E shown in Fig. 10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.  Pareto frontier for dual objective (overall heat transfer coefficient – total mass) of plate frame heat exchanger 

 A B C D E 
t (m) 0.000500   0.000502  0.000501  0.000502  0.000501 

ψ(-) 1.166883   1.248934  1.243797  1.194019  1.185205 
Dp (m) 0.193537   0.161691  0.125005  0.129195  0.101609 
Lv (m) 1.001059   1.011172  1.012170  1.004421  1.000416 

Lh (m) 0.401952   0.408434   0.400976  0.421317  0.400195 
Lc (m)  0.300172   0.306393   0.300112  0.300070  0.301183 

β (°) 45.0  45.0   45.0  50.0  65.0 
Nt  (-) 87   79  57  55  55 

U (W/m2K) 7383.541  7320.003  7096.190  6470.695   4961.462 
Overall cost ($) 41083.55  41240.02  40231.21  30488.86   40652.02 
Total mass (kg) 260.6250  186.1434  125.4995  126.3777  114.6192 
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Figure 11.  Scatter plot of design variables for optimum solutions on the Pareto frontier for simultaneous  optimization of overall heat transfer 

coefficient  and total mass of heat exchanger 
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                                   Table 15.   Optimal solutions along with their corresponding deviation indexes found by different  decision making methods  

 LINMAP TOPSIS Shannon’s Entropy Theory  
Decision variables    

Plate thickness, t (m)  0.000500  0.000500  0.000505 
Enlargement factor, ψ(-)  1.186391  1.237096  1.216976 
Port diameter, Dp (m)  0.190172  0.158879  0.200761 

Vertical distance between ports, Lv (m)  1.005423  1.001200  1.028487 
Horizontal distance between ports, Lh (m)  0.401555  0.402691  0.424275 

Total plate length, Lc (m)   0.300148  0.300093  0.302397 
Chevron angle, β (°)  45  45  45 

Number of plates, Nt  (-)  80  75  89 
Objective functions    

Total mass of heat exchanger (kg) 202.27754   171.7414  230.9937 
Overall heat transfer coefficient (W/m2K) 7376.5814  7342.664  7325.328 
Total cost of heat exchanger ($) 41156.766   41264.05  41136.52 

Deviation index 0.21869   0.18533  0.25031  
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5.2.4  Overall heat transfer coefficient – total cost of heat 
exchanger – total mass of the heat exchanger 
consideration 

Fig. 12  visualizes the pareto space composed of the optimal 
solutions of the objective functions of overall heat transfer 
coefficient, total cost and total mass of the heat exchanger. As 
seen from the figure,  LINMAP and TOPSIS methods find the 
same best compromising solution. Table 16 lists the optimal 
results found by decision making methods  along with their 
associated deviation index values. According to the results, it  

 

 

 

 

can be said that outcomes of TOPSIS and LINMAP methods are 
more promising as deviation index (0.25942) obtained by 
these two methods are lower than that (0.34859) of acquired 
by Shannon’s entropy theory. Optimal valued retained by 
TOPSIS and LINMAP methods for overall heat transfer 
coefficient, total cost and total mass of the heat exchanger are 
respectively 6681.47 W/m2K, 26097.37 $, and 466.65 kg as 
tabulated in Table 16 .  

 

 

 

 

 

 

 

 

 

Figure 12.  Pareto frontier for triple objective (overall heat transfer coefficient – total mass – total cost) of  plate frame heat exchanger  
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                                                     Table 16.   Optimal solutions obtained from three decision making strategies  for triple objective  

 

 
 LINMAP TOPSIS Shannon’s Entropy Theory  

Decision variables    
Plate thickness, t (m)  0.000513  0.000513  0.000529 
Enlargement factor, ψ(-)  1.191735  1.191735  1.191481 

Port diameter, Dp (m)  0.206202  0.206202  0.268935 
Vertical distance between ports, Lv (m)  1.010872  1.010872  1.702523 

Horizontal distance between ports, Lh (m)  0.408501  0.408501  0.631732 
Total plate length, Lc (m)   0.497078  0.497078  0.782119 

Chevron angle, β (°)  45  45  45 
Number of plates, Nt  (-)  185  185  176 

Objective functions    
Total mass of heat exchanger  466.65837  466.65837  1153.791 
Overall heat transfer coefficient (W/m2K)  6681.4709  6681.4709  4189.166 

Total cost of heat exchanger ($)  26097.377  26097.377  4671.063  
Deviation index  0.25942  0.25942  0.34859 
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5.3 Sensitivity analysis 

The influences of each design parameter on problem objectives 
of overall heat transfer coefficient and total cost of heat 
exchangers are shown in Fig. 13(a-f). Best optimum solutions 
of design variables obtained by TOPSIS methods are taken 
from Table 11.  Remaining parameters stay  constant during 
the analysis. Fig.13(a) shows the influences of plate thickness 
on both overall heat transfer coefficient and total cost of heat 
exchanger rates. It is found that as plate thickness increase 
from its lower to upper limit, overall heat transfer coefficient 
decreases while total cost increases. This behaviour is also in 
agreement with the best result obtained from TOPSIS, by which 
two optimization objectives reach their optimum when plate  

 

 

thickness is around 0.5 mm. Fig.13(b-d) visualizes the 
variational effects of three design parameters of port 
diameters,  horizontal distance between ports, and total length 
of the plate pack on these two abovementioned problem 
objectives. As seen from figures, any increase in design 
variables within their prescribed ranges leads to a significant 
decrease in both total cost and overall heat transfer coefficient. 
Increase in vertical distance between ports induces a huge rise 
total cost while imposing no effect on heat transfer coefficient 
rates, as shown in Fig. 13(e). Fig. 13(f) shows the variational 
influences of chevron angles over optimization objectives. It is 
observable that as chevron angles increase from 30° to 65°, 
considerable decreases are seen in  objective function values. 
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Figure 13. Influences of (a) plate thickness, (b) port diameter, (c) total length of the heat exchanger  (d) horizontal and (e) vertical distance between 
ports, and (f) chevron angles on overall heat transfer coefficient and total cost of heat exchanger 

 

6. Conclusion 

This study proposes Global Best Algorithm based multi-
objective optimization of plate frame heat exchangers. Global 
Best Algorithm uses the fundamental merits of Differential 
Evolution and Differential Search algorithms and gives weight 
to intensification rather than diversification which are two 
major  phases of optimization algorithms. Firstly,  efficiency of 
the proposed algorithm has been tested over  16 benchmark 
problems and corresponding results  have been compared with 
the highly reputed recently emerged optimization algorithms. 
Overall heat transfer coefficient, total cost and weight of the 
heat exchanger are considered as problem objectives to be 
optimized separately as well as simultaneously. The pareto 
frontier constructed for  triple and dual objective optimization 
is utilized to choose best compromising solution among the 
pareto curve through the highly reputed decision making 
methods of  LINMAP, TOPSIS, and Shannon’s entropy theory. 
Corresponding deviation indexes found by each decision 
making methods are compared with each other and the best 
optimal solution among the frontier for each case is selected. 
Sensitivity analysis is performed to observe the effect of some 
design parameters such as plate thickness, port diameters, 
chevron angles, horizontal and vertical distance between ports, 
and  total length of plate pack on the functional values of  
overall heat transfer coefficient  and total cost of heat 
exchanger. It is found that these two main optimization 
objectives are strongly dependent of these mentioned design 
variables. Optimal solutions attained in this study can be used 
as a guiding sample for the researchers who has been involved 
in modelling and designing plate frame heat exchangers.  

Nomenclature 

Aact        Actual heat transfer area (m2)     

Ap          Projected heat transfer area (m2)                                   

Atot        Total heat transfer area (m2)                          

b            Mean flow channel gap (m)                          

Cinv        Investment cost  ($)                                       

Coper        Operational cost ($)                                      

Cp          Specific heat capacity (J/kgK)                      

Ctotal      Total cost ($)                                                 

Ch          Model parameter                                           

CR         Crossover probability                                    

D           Problem dimension 

Dhc        Channel hydraulic diameter (m)                                      

Dp          Port diameter (m)                                              

F            Scaling factor                                                 

f             Friction factor                                                

G           Mass velocity (kg/m2s)                                  

h            Heat transfer coefficient (W/m2K)                 

k            Thermal conductivity (W/mK)                                                                                   

kel               Cost of electricity  ($/MWh)                         

Kp          Model parameter                                                  
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Lc           Compact plate pack length (m)                        

Lh           Horizontal distance between ports (m)                                   

Lp           Projected plate length (m)                                               

Lw          Projected plate width  (m)                              

Lv           Vertical distance between plates (m)              

m          Mass flow rate (kg/s)                                      

n            Model parameter                                            

Ncp        Number of channels per pass                         

Nt          Number of plates in the pack                          

Np         Number of passes                                           

ΔP         Pressure drop (Pa) 

P            Static penalty factor    

p            Plate pitch (m) 

Pr          Prandtl number 

r            Discount rate 

R            Fouling factor (m2K/W) 

Re          Reynolds number 

t             Plate thickness (m) 

U           Overall heat transfer coefficient (W/m2K) 

y            Depreciation time (year)   

 

Greek Letters 

β             Chevron angle    

η              Pump efficiency 

µ              Dynamic viscosity (Pa.s) 

ρ              Density (kg/m3) 

σ              Algorithm parameter 

τ              Total operation hour in a year 

ϕ              Chaotic random number   

ψ              Enlargement  factor                    

 

Subscripts    

b                 Bulk 

c                 Cold side 

f                 Related to the frictional issues 

h                Hot side 

p                Related to the ports     

w                Wall 
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