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Abstract
Given a non-empty set A ⊆ R, we consider the smallest topology on R which contains the
open left rays containing points a ∈ A and the open right rays containing points b ∈ R−A.
We present a natural model for this hybrid topology and show that it is quasi-metrizable.
We investigate other variations of this topology.
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1. Introduction
Given a set A ⊆ R, the Hattori space H(A) is R with the topology having the base

{(a−ε, a+ε) : a ∈ A, ε > 0}∪{[b, b+ε) : b ∈ R−A, ε > 0}. These spaces were introduced
in [7] and studied further in [1–4,9,12]. The Hattori topology may be viewed as a hybrid of
the Euclidean and lower-limit topologies on R. In [12], hybrid topologies based on various
combinations of the lower-limit, upper-limit, left-ray, discrete, and Euclidean topologies
were studied. Here, we consider hybrid topologies of the left-ray and right-ray topologies.
After some basic properties in Section 1, in Section 2 we investigate the subposet of the
hybrids of left-ray and right-ray topologies in the lattice TOP (R) of all topologies on R.
The left-ray and right-ray topologies each arise from a quasi-metric. In Section 3, we
show that our hybrids of left-ray and right-ray topologies arise from hybrid quasi-metrics.
In Section 4, we consider variations using closed rays and using rays (−∞, a + ε) where
ε > 0 is bounded above by 1. In the last section, we consider hybrids of the Euclidean
and right-ray topologies, which are closely related.

A quasi-metric on X is a function q : X × X → [0, ∞) satisfying (a) x = y if and
only if q(x, y) = 0 = q(y, x) and (b) q(x, y) + q(y, z) ≥ q(x, z), for all x, y, z ∈ X. The
left-ray topology arises from the quasi-metric qlr(x, y) = y − x if y ≥ x and qlr(x, y) = 0 if
y < x. The right-ray quasi-metric is defined similarly. There are several quasi-metrization
theorems [5, 6, 8, 10], but it is often difficult to exhibit a specific quasi-metric for a quasi-
metrizable space. For example, Fletcher and Lindgren [5] show that the Niemytzki tangent
∗Corresponding Author.
Email addresses: SAZAR@taibahu.edu.sa (S. Lazaar), tom.richmond@wku.edu (T. Richmond),

khadhrisabrine@gmail.com (K. Sabrine)
Received: 05.06.2023; Accepted: 27.12.2023

https://orcid.org/0000-0002-3190-4251
https://orcid.org/0000-0003-1883-8146
https://orcid.org/0009-0005-7156-7295


2 S. Lazaar, T. Richmond, K. Sabrine

disk topology on the closed half-plane (see [14]) is quasi-metrizable, but to our knowledge,
no explicit quasi-metric has been exhibited. Further results on quasi-metrics can be found
in the works of H.-P. Künzi and of F. Yildiz, including [11]. Standard topological concepts
can be found in [13]. Recall that a set C in a poset P is order dense if a, b ∈ P and a < b
imply that there exists c ∈ C with a < c < b. For the poset (R, ≤), C is order dense in R
if and only if C is dense in R with the Euclidean topology. Throughout, we assume A ⊆ R
and B = R − A. We use C − D to represent the relative complement of D in C.

2. Basic Properties
Given A ⊆ R, by L(A), we denote the hybrid of the left-ray and right-ray topology on

R having a subbasis
S = {(−∞, a + ε) : a ∈ A, ε > 0} ∪ {(b − ε, ∞) : b ∈ R − A, ε > 0}.

Note that S is not a basis, since the intersection of two oppositely directed rays will never
contain a ray.

Let B = R− A. Assume that A, B are non-empty (or else we simply have the right-ray
or left-ray topology). If there exists a < b with a ∈ A, b ∈ B, then a has the neighborhood
base (a−ε, a+ε) = (b−(b−a+ε), ∞)∩(−∞, a+ε) and similarly, b has the neighborhood
base (b − ε, b + ε). If [a, ∞) ⊆ A (so a ∈ A, a ≥ sup B), then a has the neighborhood
base {(b − ε, a + ε) : b < a, b ∈ B, ε > 0}. If (−∞, b] ⊆ B (so b ≤ inf A), then b has the
neighborhood base {(b − ε, a + ε) : b < a, a ∈ A, ε > 0}. We tabulate this in Table 1.
Figure 1 suggests the neighorhoods.

x = a ∈ A or x = b ∈ B form of the neighborhood base at x (ε > 0)
x = a < sup B (x − ε, x + ε)
x = a ≥ sup B (b − ε, x + ε), b ≤ sup B ≤ a = x
inf A < b = x (x − ε, x + ε)
x = b ≤ inf A (x − ε, inf A + ε)

Table 1. Neighborhoods of points in L(A).

Some of the results below also hold for A = ∅ or A = R, but care must be taken in
these cases. Since B = R − A, if ∅ ⊂ A ⊂ R, then inf A ≤ sup B. However, if A = ∅, then
inf A = ∞ ≥ sup B and if A = R, sup B = −∞ ≤ inf A.

Figure 1. L(A) neighborhoods of a ∈ A and b ∈ B, based on the position of a, b.

Example 2.1. A model for L(A). For real numbers i < j, consider the set X = {(i, y) ∈
R2 : y ≥ 0} ∪ {(x, 0) ∈ R2 : i ≤ x ≤ j} ∪ {(j, y) ∈ R2 : y ≥ 0} as suggested in Figure 2.
Think of the x-axis as being on the ground and the y-axis extending vertically above
the ground. It takes energy to travel on the ground (horizontally) and upward, but no
added energy to travel downward—gravity supplies that required force. This suggests a
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quasi-metric on X defined by taking the ε-ball around (r, s) ∈ X to be the set of points
accessible from (r, s) if you have enough energy to move a distance of ε units. We will
delay the verification that this is a quasi-metric until Section 4, but we can recognize that
the topology required is L(A), with A = {i} ∪ [j, ∞), so [i, j] = [inf A, sup B]. If exactly
one of inf A and sup B is infinite, then only one of the vertical poles of Figure 2 is present.

Figure 2. L(A) models distances required to move overland or upward.

We list some immediate facts about L(A) for reference.

Theorem 2.2. (a) L(A) is the Euclidean topology if and only if A ̸= R, inf A = −∞,
and sup B = ∞.

(b) For any A ⊆ R, L(A) is T0.
(c) L(A) is T1 if and only if A ̸= R, inf A = −∞, and sup B = ∞.
(d) If ∅ ⊂ A ⊂ R, the constant sequence (x)∞

n=1 in L(A) has the unique limit x if
x ∈ (inf A, sup B), converges to all y ∈ (−∞, x] if x ≤ inf A, and converges to all
z ∈ [x, ∞) if x ≥ sup B.

(e) L(A) is always connected.
(f) L(A) is separable.

Proof. (a) follows from the definition of L(A).
(b) If x ̸= y then either (−∞, x+y

2 ) or (x+y
2 , ∞) is a neighborhood of one of the points

which excludes the other.
(c) If inf A = −∞ and sup B = ∞, then by (a), L(A) is Euclidean, which is T1. If

inf A > −∞, then for x < y < inf A, every neighborhood of x includes y, so L(A) is not
T1. The dual argument shows that if sup B < ∞, L(A) is not T1.

(d) is immediate.
(e) If A = ∅ or R, then L(A) is the left- or right-ray topology, which is connected. Oth-

erwise, (inf A, sup B) inherits the Euclidean topology and is connected. If U, V is a sepa-
ration of L(A), for y ∈ (inf A, sup B)∩U , U must contain the connected set (inf A, sup B).
If x ≤ inf A, every open set containing x must intersect (inf A, sup B), so x ∈ U . Similarly,
every open neighborhood of y > sup B must intersect (inf A, sup B), so y ∈ U . This gives
the contradiction that U = R.

(f) In L(A), every open set intersects Q. □

Combining (a) and (c), we see that for A ̸= R, L(A) is T1 if and only if it is Tj for
any j ∈ {2, 3, 3.5, 4}. Note that if A and B are order dense (or equivalently, dense in the
Euclidean topology), then L(A) is the Euclidean topology.

From Figure 1, we see that if i = inf A < sup B = j, the closed and bounded sets are
arbitrary intersections of Euclidean closed sets [i, cn] ∪ [dn, j] ⊆ [i, j] which are contained
in the Euclidean subspace [i, j] of L(A), and thus are compact. If i = inf A = sup B = j,
the closed sets are of form ∅,R, (−∞, c] for c < i = j, and [d, ∞) for d > i = j, so ∅ is the
only closed and bounded set. Thus, in all cases, the closed and bounded sets in L(A) are
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compact. The converse fails. In L(A), compact sets need not be closed, as the following
example shows.

Example 2.3. Let A = (−1, 0). For x < inf A = −1, cl{x} = (−∞, x] so {x} is not
closed. As a finite set, {x} is compact.

Or, with A = (0, ∞), consider S = (2, 3]. Any open set covering 3 covers [0, 3] =
[sup B, 3] and thus covers S. Thus, S is compact, but S is not closed in L(A) nor in the
Euclidean topology.

A compact set S in L(A) must be bounded. In particular, R is not L(A)-compact. This
is implied by the following characterization of the compact subsets of L(A).

Theorem 2.4. Suppose A ̸= ∅ and B ̸= ∅. Then a non-empty set S ⊆ R is L(A)-compact
if and only if (−∞, sup B) ∩ S is empty or has a smallest element, (inf A, ∞) ∩ S is empty
or has a largest element, and there is no sequence (sn) in S converging (in the Euclidean
topology) to x ∈ (inf A, sup B) − S.

Proof. Suppose (−∞, sup B) ∩ S ̸= ∅ and has no smallest element. Then there exists
a strictly decreasing sequence (sn) in S with S ⊆

∪
{(sn, ∞) : n ≥ 1} and sn < b for

some b ∈ B and all n ∈ N. Now {(sn, ∞) : n ∈ N} is an open cover of S with no finite
subcover. The dual argument covers the case (inf A, ∞)∩S ̸= ∅ and has no largest element.
Suppose there is a sequence (sn) in S converging to x ∈ (inf A, sup B) − S. Now there
exist a ∈ A, b ∈ B with a < x < b. Without loss of generality (dropping to a subsequence,
if it is necessary), we will assume (sn) is a strictly monotone sequence in (a, b). If (sn) is
strictly decreasing, {(−∞, x)}∪{(sn, ∞) : n ∈ N} is an open cover with no finite subcover.
The dual construction applies if (sn) is strictly increasing. Thus, compactness of S implies
the conditions listed in the theorem.

Now suppose the conditions listed are satisfied and C is an open cover of S. Recall that
inf A ≤ sup B. Now either

(1) (−∞, sup B) ∩ S = ∅,

(2) min((−∞, sup B) ∩ S) = s′ ≤ inf A, or

(3) min((−∞, sup B) ∩ S) = s′ ∈ (inf A, sup B)
and either

(a) (inf A, ∞) ∩ S = ∅,

(b) max((inf A, ∞) ∩ S) = s′′ ≥ sup B, or

(c) max((inf A, ∞) ∩ S) = s′′ ∈ (inf A, sup B).
In case (1), we have S ⊆ [sup B, ∞), and it follows that case (c) cannot occur. Cases

(1) and (a) occur if and only if S = {sup B} = {inf A}, in which case S is finite and thus
compact. If cases (1) and (b) occur, any C1 ∈ C which covers s′′ also covers [sup B, s′′]
and thus covers S.

If cases (2) and (a) occur, S ⊆ [s′, inf A] and any C1 ∈ C covering s′ covers [s′, inf A]
and thus covers S. If cases (2) and (b) occur, any C1 ∈ C covering s′ covers [s′, inf A + ε′)
for some ε′ > 0 and any C2 ∈ C covering s′′ covers (sup B − ε′′, s′′] for some ε′′ > 0.
Consider S′ = S ∩ [inf A′ + ε′, sup B′ − ε′′]. If S′ = ∅, then {C1, C2} covers S. Otherwise,
the hypothesis about no sequences in S converging to x ∈ (inf A, sup B) − S implies S′ is
Euclidean closed. Since S′ ⊆ (inf A, sup B), the L(A) topology on S′ is Euclidean. As a
closed and bounded Euclidean set covered by the Euclidean open sets of C, there must be
a finite subcover {Ck}n

k=3 of S′. Now {Ck}n
k=1 is a finite subcover of S. In case (2) and (c)

hold, any C1 ∈ C covering s′ covers [s′, inf A + ε′) for some ε′ > 0, and S′ = [inf A + ε′, s′′]
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is a Euclidean closed and bounded set in (inf A, sup B), and since L(A) agrees with the
Euclidean topology in (inf A, sup B), there is a finite subcover {Ck}n

k=2 of S′. Now {Ck}n
k=1

is a finite subcover of S.
The cases involving (3) are dual to those with (2). □

For S ⊆ R, divide S into its left, middle, and right parts Sl = S ∩ (−∞, inf A), Sm =
S ∩ [inf A, sup B], and Sr = S ∩ (sup B, ∞). Theorem 2.4 almost characterizes compact
sets in L(A) as the sets S for which Sm is closed, Sl is empty or has a least element,
and Sr is empty or has a greatest element. However, this potential characterization fails
due to some issues around the points inf A and sup B. For example, with A = (0, 1) and
S = {−1} ∪ (0, 2], S is compact even though Sm is not closed. Note that Theorem 2.4
partly avoids these issues by considering S ∩ (inf A, ∞) instead of Sr = S ∩ (sup B, ∞) and
S ∩ (−∞, sup B) instead of Sl = (−∞, inf A).

3. Lattice Properties
Let L(R) = {L(A) : A ⊆ R} be the subset of the lattice TOP (R) of all toplogies on R,

ordered by ⊆. It is well-known that TOP (X) is a lattice with τ ∧ τ ′ = τ ∩ τ ′ and τ ∨ τ ′

having τ ∪ τ ′ as a subbase (that is, τ ∨ τ ′ = [τ ∪ τ ′]).
Figures 1 and 2 suggest that L(A) depends more on the pair (i, j) = (inf A, sup B) than

on the set A itself. The proof of the theorem below is straightforward.

Theorem 3.1. Suppose A, A′ are subsets of R with complements B, B′, respectively. Let
(i, j) = (inf A, sup B) and (i′, j′) = (inf A′, sup B′).

(a) L(A) = L(A′) if and only if (i, j) = (i′, j′).
(b) If A, A′ are non-empty and proper subsets of R, L(A) ⊆ L(A′) if and only if

[i, j] ⊆ [i′, j′].
(c) If A, A′ are non-empty and proper subsets of R, L(A) ⊂ L(A′) if and only if

[i, j] ⊂ [i′, j′].

We will now consider infima in L(R) and compare them to infima in TOP (R). We start
with an instructive example.

Example 3.2. L(A)∩L(A′) ̸= L(A∩A′). Let A = {0} and A′ = {3}. Now L(A) has basis
{(y, z) : y < 0 < z} ∪ {(z, w) : 0 < z < w}, L(A′) has basis {(y, z) : y < 3 < z} ∪ {(z, w) :
3 < z < w}, and L(A ∩ A′) = L(∅) has basis {(b, ∞) : b ∈ R}. Now L(A) ∩ L(A′) has
basis {(y, z) : y < 3 < z} ∪ {(z, w) : 3 < z < w}. In particular, (−1, 4) ∈ L(A) ∩ L(A′) but
(−1, 4) ̸∈ L(A ∩ A′).

Indeed observe that L({0}) = L({0, 3}) since inf{0, 3} = inf{0} and sup(R − {0, 3}) =
sup(R − {0}). Now L({0}) ∩ L({3}) = L({0, 3}) ∩ L({3}) = L({3}) by Theorem 3.1.

For another example, if A = Q ∩ [0, 1] and A′ = [0, 1] − Q, then by Thoerem 3.1,
L(A) = L(A′) = L(A) ∩ L(A′) ̸= L(A ∩ A′) = L(∅).

Example 3.2 suggests that the intervals [i, j], [i′, j′] are more significant in determining
L(A) ∩ L(A′) than the actual sets A, A′. Our next result confirms this and shows that
L(R) is not a lattice.

Theorem 3.3. Suppose A, A′ are non-empty, proper subsets of R, i = inf A, j = sup B,
i′ = inf A′, and j′ = sup B′.

(a) If [i′′, j′′] = [i, j] ∩ [i′, j′] ̸= ∅, then in L(R), L(A) ∧ L(A′) = L(A) ∩ L(A′) = L(A′′)
where A′′ arises from [i′′, j′′] (that is, A′′ is any subset of R with inf A′′ = i′′ and
sup B′′ = sup(R − A′′) = j′′).

(b) If [i, j] ∩ [i′, j′] = ∅, then there is no topology τ ∈ L(R) with τ ⊆ L(A) ∩ L(A′), so
in L(R), L(A) ∧ L(A′) fails to exists.
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Proof. (a) By Theorem 3.1, L(A′′) = L(A) ∧ L(A′) in L(R). It is easy to verify that
L(A′′) = L(A) ∩ L(A′), which is L(A) ∧ L(A′) in TOP (R).

(b) Suppose [i, j] ∩ [i′, j′] = ∅. Without loss of generality, i ≤ j < i′ ≤ j′. We will first
describe L(A) ∩ L(A′).

Suppose U ∈ L(A) ∩ L(A′), x ∈ U , and x ≤ i′ = inf A′. Now every L(A′) neighborhood
of x must include [x, i′], and every L(A)-open set containing i′ must contain [j, i′]. Thus,
[j, i′] ⊆ U . Indeed, every interval (r, s) ⊇ [j, i′] ∪ [x, i′] is a L(A) ∩ L(A′) neighborhood of
x ≤ i′.

Suppose U ∈ L(A) ∩ L(A′), x ∈ U , and x > i′ = inf A′. Now every L(A) neighborhood
of x must include [j, x], so [j, i′] ⊆ [j, x] ⊆ U . Indeed, every interval (r, s) ⊇ [j, x] is a
L(A) ∩ L(A′) neighborhood of x > i′.

The last two paragraphs show that if i ≤ j < i′ ≤ j′, the non-empty elements of
L(A) ∩ L(A′) are the intervals (r, s) with [j, i′] ⊆ (r, s) (r, s ∈ R ∪ {±∞}). Observe
that this topology models the situation of Example 2.1 if no energy is required to move
horizontally. In particular, for j < x < y < i′, every neighborhood of x contains y and
every neighborhood of y contains x, so L(A) ∩ L(A′) is not T0 and thus not of form L(A′′)
for any set A′′. Indeed, there is no topology τ ⊆ L(A) ∩ L(A′) which is T0, so in the poset
L(R), L(A) ∧ L(A′) does not exist if i ≤ j < i′ ≤ j′. □

Now we turn to suprema in L(R). Recall that in TOP (R), L(A)∨L(A′) = [L(A)∪L(A′)],
the topology generated by the basis L(A) ∪ L(A′).

Example 3.4. L(A∪A′) ̸= [L(A)∪L(A′)]. Let A = Q and A′ = R − Q. By Theorem 2.2,
L(A) and L(A′) are the Euclidean topology, so L(A) ∨ L(A′) is the Euclidean topology.
However, L(A ∪ A′) = L(R) is the left-ray topology.

Notation: convS is the convex hull of S. If i = −∞ or j = ∞, by [i, j] we mean [i, j]∩R.
Infima and suprema are taken in R ∪ {±∞}.

Theorem 3.5. L(R) is an upper sub-semi-lattice of Top(R). If L(A) and L(A′) correspond
to [i, j] and [i′, j′], then in L(R), L(A) ∨ L(A′) = [L(A) ∪ L(A′)] = L(A′′) where A′′

corresponds to [i′′, j′′] = [inf{i, i′}, sup{j, j′}] = conv([i, j] ∪ [i′, j′]).

Proof. Given L(A), L(A′) corresponding to [i, j] and [i′, j′], let [i′′, j′′] = [inf{i, i′}, sup{j, j′}]
= conv([i, j] ∪ [i′, j′]) correspond to L(A′′). In L(A′′), x < i′′ has a neighborhood base of
form (x−ε, i′′ +ε), which is open in L(A) or L(A′), depending on whether i′′ = i or i′′ = i′.
In L(A′′), x > j′′ has a neighborhood base of form (j′′ − ε, x + ε), which is open in L(A)
or L(A′), depending on whether j′′ = j or j′′ = j′. In L(A′′), x ∈ [i′′, j′′] has a Euclidean
neighborhood base. Now either [i′′, j′′] − ([i, j] ∪ [i′, j′]) is empty (if [i, j] ∩ [i′, j′] ̸= ∅) or
[i′′, j′′] − ([i, j] ∪ [i′, j′]) is an interval I. If x ∈ [i, j] ∪ [i′, j′], x has a Euclidean neigh-
borhood base in L(A) or L(A′). If x is in the interval I between [i, j] and [i′, j′], say
i ≤ j < x < i′ ≤ j′, then x has L(A) neighborhoods (j − ε, x + ε) and L(A′) neigh-
borhoods (x − ε, i′ + ε), and thus has [L(A) ∪ L(A′)] neighborhoods (x − ε, x + ε). This
shows that L(A′′) ⊆ [L(A) ∪ L(A′)]. Since [i, j], [i′, j′] ⊆ [i′′, j′′], Theorem 3.1 shows that
L(A), L(A′) ⊆ L(A′′), so [L(A) ∪ L(A′)] ⊆ L(A′′). □

4. A quasi-metric for L(A).
Theorem 4.1. For a ∈ A, b ∈ B = R − A, and y ∈ R, let

q(a, y) =


|a − y| if a < sup B (1)
y − a if sup B ≤ a ≤ y (2)

0 if sup B ≤ y ≤ a (3)
sup B − y if y < sup B ≤ a (4)
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q(b, y) =


|b − y| if inf A < b (5)
b − y if y < b ≤ inf A (6)

0 if b < y ≤ inf A (7)
y − inf A if b ≤ inf A < y. (8)

Then q(x, y) is a quasi-metric which generates the topology L(A).

Proof. It is easy to see that q(x, y) ≥ 0 and x = y if and only if q(x, y) = 0 = q(y, x), and
the q-balls around x ∈ R match the base of L(A) neighborhoods given in Table 1. Thus,
it only remains to show that q(x, y) + q(y, z) ≥ q(x, z) for distinct x, y, z ∈ R.

If line (n) of the definition of q is used to find the distance q(x, y), we will say (x, y)
are “in position (n)”. Observe that for (n) = (1) or (5), we could more accurately say
x (rather than (x, y)) is in position (n), but for consistency, we may still say (x, y) is in
position (n).

Case (x, y) = (a, a′) ∈ A2Case (x, y) = (a, a′) ∈ A2Case (x, y) = (a, a′) ∈ A2: Suppose (x, y) = (a, a′) is in position (1). If (a′, z) is in
position (1) or (2), then all distances are Euclidean and the triangle inequality holds. If
(a′, z) is in position (3), we have a < sup B ≤ z ≤ a′, and q(a, a′) ≥ q(a, z) since both
of these are Euclidean distances. If (a′, z) are in position (4), then either (i) a ≤ z <
sup B ≤ a′ or (ii) z ≤ a ≤ sup B ≤ a′. In case (i), then q(a, a′) ≥ q(a, z) since both of
these distances are Euclidean. In case (ii), q(a′, z) = sup B − z ≥ a − z = q(a, z).

Suppose (x, y) = (a, a′) is in position (2). Note that (a′, z) cannot be in position (1). If
(a′, z) is in position (2), then all distances are Euclidean. If (a′, z) is in position (3), either
(i) sup B ≤ z ≤ a ≤ a′ or (ii) sup B ≤ z ≤ a′. In case (i), q(a, z) = 0 and in case (ii),
q(a, a′) = a′ − a ≥ z − a = q(a, z). If (a′, z) is in position (4), then z ≤ sup B ≤ a ≤ a′, so
q(a, z) = sup B − z = q(a′, z).

Suppose (x, y) = (a, a′) are in positioned (3). Now (a′, z) cannot be in position (1). If
(a′, z) is in position (2), then we have (i) sup B ≤ a′ ≤ z ≤ a or (ii) sup B ≤ a′ ≤ a ≤ z.
In the case (i), (a, z) are in position (3), so q(a, z) = 0. In case (ii), q(a′, z) and q(a, z) are
computed by (2), so q(a′, z) ≥ q(a, z). If (a′, z) is in position (3) then sup B ≤ z ≤ a′ ≤ a,
so q(a, z) = 0. If (a′, z) is in position (4) then z ≤ sup B ≤ a′ ≤ a, so q(a, z) = sup B −z =
q(a′, z).

Suppose (x, y) = (a, a′) is in position (4). Then we have a′ < sup B ≤ a, so (a′, z) is
necessarily in position (1). If z ≤ a′, then q(a, a′)+q(a′, z) = sup B−a′+a′−z = q(a, z). If
a′ ≤ z ≤ sup B ≤ a, then q(a, a′) = sup B−a′ ≥ sup B−z = q(a, z). If a′ ≤ sup B ≤ z ≤ a,
then q(a, z) = 0. If a′ ≤ sup B ≤ a ≤ z then q(a′, z) = z − a′ ≥ z − a = q(a, z).

Case (x, y) = (a, b) ∈ A × BCase (x, y) = (a, b) ∈ A × BCase (x, y) = (a, b) ∈ A × B: Suppose (x, y) = (a, b) is in position (1). If (b, z) is in
position (5) or (6), then all distances are Euclidean. If (b, z) is in position (7), then
b < z ≤ inf A ≤ a ≤ sup B, and q(a, b) = a − b ≥ a − z = q(a, z). If (b, z) is in
position (8), either (i) b ≤ inf A < z ≤ a or (ii) b ≤ inf A ≤ a ≤ z. In case (i),
q(a, b) = a − b ≥ a − z = q(a, z). In case (ii), q(b, z) = z − inf A ≥ z − a = q(a, z).

Observe that (x, y) = (a, b) ∈ A × B cannot be in position (2), since this would imply
sup B < b ∈ B.

Suppose (x, y) = (a, b) is in position (3), so sup B = b < a. Suppose (b, z) is in position
(5), so inf A < b = sup B < a and q(b, z) is the Euclidean distance. Either (i) z ≤ b < a
and q(a, z) = sup B − z = b − z = q(b, z), (ii) b < z < a and q(a, z) = 0, or (iii)
b < a < z and q(a, z) = z − a ≤ z − b = q(b, z). Suppose (b, z) is in position (6) so
z < b = sup B ≤ inf A ≤ a. Then q(a, z) = b − z = q(b, z). Suppose (b, z) is in position
(7) so b = sup B < z ≤ inf A ≤ a and thus q(a, z) = 0. Suppose (b, z) is in position (8)
so either (i) sup B = b ≤ inf A < z < a or (ii) sup B = b ≤ inf A ≤ a < z. In case (i),
q(a, z) = 0 and in case (ii) q(a, z) = z − a ≤ y − inf A = q(b, z).

Suppose (x, y) = (a, b) is in position (4) so b < sup B ≤ a. These three points give
four possible positions for z. If z < b < sup B ≤ a, then q(a, b) = sup B − b and
q(b, z) = b−z, determined by either (5) or (6). Thus, q(a, z) = sup B−z = q(a, b)+q(b, z).
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If b < z < sup B ≤ a, then q(a, z) = sup B −z ≤ sup B − b = q(b, z). If b < sup B ≤ z < a,
then q(a, z) = 0. If b < sup B ≤ a < z, then (b, z) cannot be in positions (6) or (7). If
(b, z) is in position (5), then q(a, z) = z − a ≤ z − b = q(b, z). If (b, z) is in position (8),
q(a, z) = z − a ≤ z − inf A = q(b, z).

The cases (x, y) = (b, b′) ∈ B2(x, y) = (b, b′) ∈ B2(x, y) = (b, b′) ∈ B2 and (x, y) = (b, a) ∈ B × A(x, y) = (b, a) ∈ B × A(x, y) = (b, a) ∈ B × A are dual. □

5. Variations
5.1. Bounded neighborhoods: L∗(A)

A different topology arises if we replace ε > 0 in the definition of the subbasis S for
L(A) by ε ∈ (0, 1]. Let L∗(A) be the topology on R having a subbasis

S∗ = {(−∞, a + ε) : a ∈ A, ε ∈ (0, 1]} ∪ {(b − ε, ∞) : b ∈ R − A, ε ∈ (0, 1]}.

For example, if A = {0}, (0.9, 1.2) = (−∞, 0+1.2)∩(1−0.1, ∞) is a L(A)-neighborhood
of 1 (using ε = 1.2) which is not a L∗(A)-neighborhood of 1.

With A = (−∞, 0)∪{2}, for every a ∈ A (b ∈ B) there exists b ∈ B (a ∈ A) with a < b,
so L(A) is the Euclidean topology. Now consider the topology L∗(A). For a ≤ −1, a has
a neighborhood base (−∞, a + ε) for ε ∈ (0, 1]. For x ∈ (−1, 1) ∪ [2, 3), x has a Euclidean
neighborhood. For b ∈ [1, 2), b has a neighborhood base (b − ε, 2 + ε) for ε ∈ (0, 1]. For
b ≥ 3, b has a neighborhood base (b − ε, ∞) for ε ∈ (0, 1].

Theorem 5.1. The following are equivalent.
(a) L∗(A) is Euclidean.
(b) ∀a ∈ A, (a, a + 1) ∩ B ̸= ∅ and ∀b ∈ B, (b − 1, b) ∩ A ̸= ∅.
(c) For every x ∈ R, [x, x + 1) ∩ B ̸= ∅ and (x − 1, x] ∩ A ̸= ∅.

Proof. (a) ⇐⇒ (b): If (b) holds, for any a ∈ A, there exists b ∈ (a, a + 1). For all
ε ∈ (0, a + 1 − b), (a − ε, a + ε) is a neighborhood of a, so a has a Euclidean neighborhood.
The dual argument shows that every b ∈ B has a Euclidean neighborhood. Suppose (b)
fails. Suppose there exists a ∈ A with [a, a + 1) ⊆ A. Thus, there is no b ∈ B such that
a ∈ (b − ε, ∞) for ε ∈ (0, 1), so every neighborhood of a has form (−∞, a + ε), and L∗(A)
is not Euclidean. The dual argument covers the case of (b − 1, b] ⊆ B.

(b) ⇐⇒ (c): Suppose (c) fails. Then there exists x ∈ R such that (i) [x, x + 1) ∩ B = ∅
or (ii) (x − 1, x] ∩ A = ∅. If x ∈ A, (i) contradicts (b) and if x ∈ B, (ii) contradicts (b).
Conversely, suppose (b) fails. Then either there exists x = a ∈ A with [a, a − 1) ∩ B = ∅
or there exists x = b ∈ B with (b − 1, b] ∩ A = ∅, which shows that (c) fails. □

If B and S are subsets of R, let BS represent B restricted to S. That is, BS = B ∩ S.
Define AS analogously. The neighborhoods of a point in L∗(A) are described below.

x = a ∈ A or x = b ∈ B form of the neighborhood base at x (ε > 0)
x = a, B(a,a+1) = ∅ (sup B(−∞,a) − ε, a + ε′), ε, ε′ ∈ (0, 1]
x = a, B(a,a+1) ̸= ∅ (a − ε, a + ε′),

ε ∈ (0, a + 1 − inf B(a,a+1)]
ε′ ∈ (0, 1]

x = b, A(b−1,b) = ∅ (b − ε′, b + inf A(b,∞) + ε), ε, ε′ ∈ (0, 1]
x = b, A(b−1,b) ̸= ∅ (b − ε′, sup A(b−1,b) + ε), ε, ε′ ∈ (0, 1]

= (b − ε′, b + ε), ε ∈ (0, sup A(b−1,b) + 1 − b],
ε′ ∈ (0, 1]

5.2. Hybrids of Closed Left-Ray Right-Ray Topologies
If ≤ is the usual order on R, in the specialization topology, the smallest neighborhood

of x is N(x) = ↑x = [x, ∞). This is the closed right-ray topology. The closed left-ray
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topology is defined dually. Note that the closed right-ray topology is finer than the (open)
right ray topology, since (a, ∞) =

∪
x>a[x, ∞). Let Lc(A) be the topology generated by

the subbase

S = {(−∞, a] : a ∈ A} ∪ {[b, ∞) : b ∈ B = R − A}.

A base of Lc(A) neighborhoods of a ∈ A is {(−∞, a]} ∪ {[b, a], b ∈ B, b < a}, and a base
of Lc(A) neighborhoods of b ∈ B is {[b, ∞)} ∪ {[b, a]], a ∈ A, b < a}.

This is modeled if each point can emit a particle in one direction only, and may block
oppositely directed particles. The points of A on the real line are the points which emit
particles to the left and may absorb particles arriving from the right.

Theorem 5.2. (a) Lc(A) is never Euclidean. Lc(A) is finer than the Euclidean topol-
ogy if and only if A and B are both order dense in R (i.e., dense in the Euclidean
topology).

(b) For any A ⊆ R, Lc(A) is T0.
(c) Lc(A) is T1 if and only if A and B are both order dense.
(d) Lc(A) is connected if and only if there exists no pair (a, b) ∈ A × B with a < b.

That is, if and only if A is a ray to the right (including ∅ and R).
(e) Lc(A) is never compact.

Proof. (a) Lc(A) must contain an open set of form [b, ∞) or (−∞, a], which is not Eu-
clidean open.

Suppose A and B are order dense. Given x ∈ R and ε > 0, there exist a ∈ A, b ∈ B
with x − ε < b < x < a < x + ε. This shows every Euclidean neighborhood (x − ε, x + ε)
of x contains a Lc(A) neighborhood [b, a] of x. Suppose every Euclidean neighborhood
(x−ε, x+ε) of x contains a Lc(A) neighborhood U of x. As a bounded Lc(A)-neighborhood,
U has form [b, a] for some b ∈ B, a ∈ A. Thus, ∀x ∈ R, ∀ε > 0, there exists a ∈ A, b ∈ B
with x − ε < b ≤ x ≤ a < x + ε, which shows A and B are order dense in R.

(b) Suppose x < y in R. If x ∈ A, then (−∞, x] is a neighborhood of x excluding y.
If y ∈ B, then [y, ∞) separates y from x. If x ∈ B, y ∈ A, consider z ∈ (x, y) = (b, a).
If z ∈ A, then (−∞, z] is a neighborhood of x = b which excludes y = a. If z ∈ B, then
[z, ∞) separates a from b.

(c) Note that B fails to be order dense if and only if A contains an interval of positive
length. If A contains an interval [a, a′] with a < a′, then every neighborhood of a′ includes
a, so Lc(A) is not T1. Dually, if A is not order dense, then Lc(A) is not T1. If A and B
are both order dense, (a) shows that Lc(A) is finer than the Euclidean topology and thus
is T2.

(d) Suppose A is a ray to the right. If A = ∅ or A = R, then there are no two
disjoint open sets, so Lc(A) cannot be disconnected. If A = (b, ∞), then every open set
contains b. If A = [a, ∞), then every open set contains a. Thus, Lc(A) has no separation.
Conversely, suppose there exists a ∈ A, b ∈ B with a < b. Let a+ = lim sup A ∩ [a, b)
and b− = lim inf B ∩ (a, b]. Now either a+ > a or b− < b. The cases are dual, so suppose
a+ > a. Then there exists a strictly increasing sequence (an) in [a, a+) ⊆ A converging to
a+. If a+ ∈ B, then (−∞, a+) =

∪
{(−∞, an] : n ∈ N} and [a+, ∞) forms a separation of

Lc(A). If a+ ∈ A, then a+ < b and there exists a strictly decreasing sequence (bn) in B
converging to a+, so (−∞, a+] and (a+, ∞) =

∪
{[bn, ∞) : n ∈ N} forms a separation of

Lc(A).
(e) If sup A = ∞, then {(−∞, a] : a ∈ A} is an open cover with no finite subcover. If

sup A = m < ∞, then (m, ∞) ⊆ B. If m ∈ A, then {(−∞, m]} ∪ {[b, ∞) : b > m} is
an open cover with no finite subcover. If m ∈ B, then there exists a strictly increasing
sequence (an) in A converging to m, and {(−∞, an] : n ∈ N} ∪ {[m, ∞)} is an open cover
with no finite subcover. □
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6. Hybrids of the Euclidean Topology and the Right-Ray Topology
Consider P (A) having subbase

S = {(a − ε, a + ε) : a ∈ A, ε > 0} ∪ {(b − ε, ∞) : b ∈ B, ε > 0}.

Note that S is not a basis: If A = {0, 2} and ε = 1.5, (0−ε, 0+ε)∩ (2−ε, 2+ε) = (.5, 1.5)
contains no element of S.

x = a ∈ A or x = b ∈ B form of the neighborhood base at x (ε > 0)
a (a − ε, a + ε)

inf A < b (b − ε, b + ε)
b ≤ inf A (b − ε, inf A + ε)

Table 2. Neighborhoods of points in P (A).

Example 6.1. A model for P (A). For a real numbers i, consider the set X = {(i, y) ∈
R2 : y ≥ 0} ∪ {(x, 0) ∈ R2 : i ≤ x} as suggested in Figure 3. Think of the x-axis as being
on the ground and the y-axis extending vertically above the ground. It takes energy to
travel on the ground (horizontally) and upward, but no added energy to travel downward.
This suggests a quasi-metric on X defined by taking the ε-ball around (r, s) ∈ X to be
the set of points accessible from (r, s) if you have enough energy to move a distance of ε
units.

Figure 3. P (A) models distances required to move overland or upward.

Comparing Figures 3 and 2 suggest that the results on L(A) should carry over to P (A)
with minor modifications, essentially assuming ∞ ∈ B in the statements of results but
not in the defintion of the basis for the topology. In this manner, we see that the results
of Theorem 2.2 hold for P (A), interpreting sup B = ∞ in the statements.

Theorem 4.1 is also easily adapted to this situation to give a quasi-metric q for P (A).
There is only one case for q(a, y) when a ∈ A, so we may simplify the statement as below.
The proof remains valid.

Theorem 6.2. For a ∈ A, b ∈ B = R − A, and y ∈ R, let
q(a, y) = |a − y| if y ∈ R (1)

q(b, y) =


|b − y| if inf A < b (5)
b − y if y < b ≤ inf A (6)

0 if b < y ≤ inf A (7)
y − inf A if b ≤ inf A < y. (8)

Then q(x, y) is a quasi-metric which generates the topology P (A).
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The characterization of compact sets given in Theorem 2.4 does not carry over directly
from L(A) to P (A). Due to the lack of symmetry, a “dual argument” given in the proof
there is no longer valid. Below is a characterization of compact sets in P (A).

Theorem 6.3. Suppose A, B ̸= ∅. Then a non-empty set S ⊆ R is not P (A)-compact if
and only if

(a) S does not have a smallest element, or
(b) inf A ≤ min S and S is not Euclidean closed and bounded, or
(c) min S < inf A and there exists a sequence (sn) in S∩(2 inf A−min S, ∞) converging

(in the Euclidean topology) to x ∈ (2 inf A − min S, ∞] − S.

Proof. If S does not have a minimum element min S ∈ S, let (sn) be a strictly decreasing
sequence in S with

∪
{(sn, ∞) : n ∈ N} = S. Now {(sn, ∞) : n ∈ N} is an open cover of S

with no finite subcover.
If inf A ≤ min S, then S inherits the Euclidean topology from P (A), so S is P (A)

compact if and only if S is Euclidean closed and bounded.
If min S < inf A and there exists a sequence (sn) in S ∩ (2 inf A − min S, ∞) converging

to x ∈ (2 inf A − min S, ∞) − S, without loss of generality, we may assume (sn) is strictly
monotone.

If (sn) is strictly decreasing converging to x ≥ 2 inf A − min S, we consider two cases:
(i) inf A ∈ A or (ii) inf A ̸∈ A. In case (i), set ε = x − inf A and note that C0 =
(inf A−ε, inf A+ε) = (2 inf A−x, x) and x > 2 inf A−min S implies C0 covers [min S, x).
Now {C0} ∪ {(sn, ∞) : n ∈ N} is an open cover of S with no finite subcover. In case (ii),
let D = inf A − min S, so inf A + D = 2 inf A − min S. Now δ = x − (2 inf A − min S) =
x − inf A + D > 0. Let (an) be a strictly decreasing sequence in A ∩ (inf A, inf A + δ)
converging to inf A. With ε = x − a1, (a1 − ε, a1 + ε) = (a1 − ε, x) is open. Since
x = inf A + D + δ and a1 < inf A + δ, it follows that ε = x − a1 > D. Say ε = D + β. For
an ∈ A ∩ (inf A, inf A + β), we have an − ε < inf A − D = min S < an + D < a1 + D < x.
Thus, C0 = (an − ε, an + ε) ∪ (a1 − ε, a1 + ε) = (an − ε, x) covers [min S, x). Now
{C0} ∪ {(sn, ∞) : n ∈ N} is an open cover of S with no finite subcover.

If (sn) is strictly increasing and inf A ∈ A, then with εn = sn − inf A, {(inf A −
εn, inf A + εn) = (inf A − εn, sn) : n ∈ N} ∪ {(x, ∞)} is an open cover of S with no finite
subcover. If inf A ̸∈ A, pick (an) as in the previous paragraph and let εn = sn − an. Then
{(an − εn, an + εn) = (an − εn, sn) : n ∈ N} ∪ {(x, ∞)} is an open cover of S with no finite
subcover.

To show the converse, we must show that S is compact if
(a′) min S exists, and

(b1′) min S < inf A or (b2′) S is Euclidean compact, and
(c1′) inf A ≤ min S or (c2′) min S < inf A and there is no sequence in S ∩ (2 inf A −

min S, ∞) converging to x ∈ (2 inf A − min S, ∞] − S.
Note that (a′, b1′, c1′) cannot occur. If (b2′) occurs, since every P (A)-open set is

Euclidean open, every P (A)-open cover of S has a finite subcover, so S is P (A)-compact.
In the remaining case (a′, b1′, c2′), suppose C is an open cover of S by P (A)-basic open
sets. For C ∈ C with min S ∈ C, if C contains [min S, ∞), then {C} is a finite subcover
of S. Otherwise, C = (min S − ε′, ∞) ∩ (a − ε, a + ε) for some ε′, ε > 0 and a ∈ A. Since
min S ∈ (a − ε, a + ε), we have ε > inf A − min S, so a + ε > inf A + (inf A − min S)
and C covers [min S, 2 inf A − min S + δ] for some δ > 0. Now it only remains to show
that S′ = S ∩ [2 inf A − min S + δ, ∞) has a finite subcover from C. The condition (c2′)
implies that S′ is Euclidean closed and bounded, and since 2 inf A − min S > inf A, P (A)
restricted to S′ is the Euclidean topology, so S′ and thus S are P (A)-compact. □
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