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Abstract
Let R be a finite commutative ring with nonzero identity. Let Z∗(R) be the set of nonzero
zero-divisors of R. We are dealing with the zero-divisor graph of R which is denoted by
Γ(R) with vertex set Z∗(R), where two distinct vertices x and y are adjacent if and only
if xy = 0. The motivation of this study is to compute Wiener index in algebraic graph
theory for special type of graph called zero-divisor graph. Wiener index is defined as the
sum of all distance between all pairs of vertices in Γ(R). In addition, we generalize the
Wiener index of the zero-divisor graph in Zp[x]/(x2) for any prime number p. We obtain
our results and methods by tables and figures.

Mathematics Subject Classification (2020). 05C12, 05C25, 05C76, 13M99

Keywords. local Rings, zero-divisor graph, compressed zero-divisor graph, Wiener
index

1. Introduction
When Arthur Cayley [9] introduced the Cayley graph for finite groups in 1878, the

study of graphs in connection with algebraic structures began. Beck defined the zero-
divisor graph of a finite commutative ring R, [7] in his definition in 1988. Anderson and
Livingston [3] revised the definition of a zero-divisor graph in 1999 by restricting the
vertices to the nonzero zero-divisors of the ring R. This graph is denoted by Γ(R). In
2021, Anderson, Asir, Badawi, and Chelvam [2] discussed some properties of the zero-
divisor graph of a commutative ring. Many of the graphs which are related to algebraic
structures were defined as a result of the relationship between ring theory and graph
theory.
In this paper, R will denote a finite commutative ring with identity denoted by 1. The
set Z∗(R) will denote all of nonzero zero-divisors of R. The zero-divisor graph of R
whose vertex set is Z∗(R), denoted by Γ(R), is a simple graph, where two distinct vertices
x, y ∈ Z∗(R) are adjacent if and only if xy = 0. Topological indices are considered as one of
the most important in mathematical chemistry. These invariants have a good connected by
physical and chemical properties of the corresponding molecules. Moreover, there are two
topological indices which are, distance-based and degree-based of graph. The topological
index that is distance-based is called Wiener index of graph. The paper focuses on Wiener
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index of graphs which is one of the important graph indices. In 1947, Harold Wiener
[29], is wrote an article with about three pages, introduced the concept of Wiener index,
is traditionally denoted by W (G). The name was "Structural Determination of Paraffin
Boiling Points", which is related to molecular branching in which Wiener discovered that
the sum of distances between all pairs of vertices in the molecular graph of an alkane have
a close connection. The indices of the graph are useful to understand the properties of
various chemical compounds and there is a lot of applications about Wiener matrix, was
introduced for acyclic graphs in chemistry can be seen in [18]. In 1971, the formal definition
of the Wiener index was introduced by Hosaya [14]. In a graph G the Wiener index as the
sum of the lengths of the shortest paths between any pair of vertices of G. Then in 1993,
Randiťc [25] was introduced the hyper-Wiener index, as a generalization of the Wiener
index, is denoted by WW (G) of acyclic graphs and extended to all connected graphs by
Klein et al [19]. In 1994, Yeh and Gutman in [33] computed the Wiener index of graphs
that are obtained by specific binary operations (like product, join, and composition) on
pairs of graphs. In 2001, Dobrynin, Entringer and Gutman [10] introduced the Wiener
index of trees, which are connected graphs without any cycles (acyclic graph), denoted by
T with sets of vertices V (T ) and set of edges E(T ) of a tree. A connected graph is called
"tree" with n vertices and n−1 edges which are |V (T )| = n and |E(T )| = n−1. That paper
displayed the results for W of trees, processes for computation of W and combinatorial
expressions for several types of trees for W . Moreover, there are applications of W in
chemistry. The molecular of tree graphs is considered as the vast majority of the Wiener
index of the chemical applications with acyclic molecules. Figure 1 displays the molecular
graph for tree T . In 2022, a survey of results consisting of the Wiener index of graphs
associated with commutative rings was provided by Asir et al [5].

Figure 1. Acyclic molecular graph.

In this paper, we study Wiener index of the zero-divisor graph of finite commutative
local rings Γ(R). We denote this number by W (Γ(R)) and is defined as the sum of
the length of the shortest path between all pairs of vertices in Γ(R), i.e. W (Γ(R)) =∑

(u,v)⊆V d(u, v). If we denote Di =
∑

u,v d(ui, vj), then W (Γ(R)) = 1
2
∑n

i=1 Di.
We organize the paper as follows: Section 2 is a continuation of this introduction by

more literature review. Then Section 3 contains a description of our methodology to tackle
this problem. In Section 4, we review some basic notions of local rings. By Proposition
4.6, we find that any ring with identity which satisfies any condition in this proposition is
called local ring. In Section 5, we give the definition of zero-divisor graph, compressed zero-
divisor graph and Wiener index and some examples of them. In Section 6, we determine
the implementation classification of finite commutative local rings with characteristic of
the ring. In Section 7, we compute the Wiener index of zero-divisor graph for finite
commutative local rings of order 8 and 27 and we generalize the Wiener index of Γ(R) in
Zp[x]/(x2), for any prime number. In Section 8, we first construct graphs of local rings
and we calculate their Wiener index. Second, we focus on the Wiener index for the local
matrix algebra.
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2. Literature review
Many of the graphs which are related to algebraic structures were defined as a result

of the relationship between ring theory and graph theory, such as the commuting graph
and the zero-divisor graph [3, 7, 22]. In 1988, Beck introduced the zero-divisor graph of
commutative ring in [7]. He let all of a commutative ring’s elements to be used as the
graph’s vertices such that two distinct vertices x and y are joined by an edge if xy = 0. In
1999, the definition of vertex set was refined by Anderson and Livingston [3] by restricting
the vertices to the nonzero zero-divisors of the ring. let R be a commutative ring with
identity. We denote by Z(R) the set of all zero-divisors of R, and by Z∗(R) the set of all
nonzero zero-divisors of R. The zero-divisor graph, denoted by Γ(R), is a simple graph
with vertex set Z∗(R) such that x ̸= y, are adjacent if and only if xy = 0. In [3, 7, 28],
the zero-divisor graphs have been studied extensively which investigated graph properties
like diameter and girth. One of the most popular topological indices in chemistry for
describing molecular form is the Wiener index. H. Wiener [29] used it for the first time
in 1947. Hosaya [14] afterwards in 1971 provided the official description of Wiener index.
The main aim of using Wiener index was to invent a lot of applications in quantitative
structure relationship. The Wiener index of a graph G, denoted by W (G), is defined as the
total of the lengths of the shortest paths that connect all pairs of vertices in G. Graovac
[12] in 1991, proposed a relationship between Wiener index and symmetry of a graph. In
1993, Randiťc [25] introduced the hyper-Wiener index, as a generalization of the Wiener
index, which is denoted by WW (G) of acyclic graphs. In 1994, Yeh and Gutman in [33]
calculated the Wiener index of graphs which are obtained by specific binary operations
such as product, join, and composition on pairs of graphs. The Wiener index of trees was
introduced by Dobrynin, Entringer and Gutman [10], in 2001, which are connected graphs
having no cycles, denoted by T . In 2002, the Wiener index is used in crystallography,
communication theory, facility locating, cryptography, and other fields (see [8]). In 2011,
Ahmadi and Jahni-nezhad [1] introduced the concept of the Wiener index of zero-divisor
graph of integers modulo n, for the case n = p2 and the case n = pq. Other examples of the
applications of the Wiener index can be found in [18, 31] and reference therein. In 2022,
the Wiener index of the zero-divisor graph of a finite commutative ring with unity was
introduced by Selvakumar, Gangaeswari and Arunkumar [27]. In this work, we investigate
the Wiener index of the zero-divisor graph Γ(R) of finite commutative local rings. More
general analyses remain open to many of researchers.

3. Methodology
Graph theory research is a significantly active and vast topic of investigation. In fact,

it is a field of study with a direct connection to discrete and pure mathematics.
Our methods and strategies in this study are standard. Our method is to apply the

prior literature in this area to develop and investigate new issues. We focus on a certain
type of graphs, which are known as zero-divisor graph and compressed zero-divisor graph.

Local ring and graph theory are very important tools for this work. Topological indices
are one of the most significant graph indices. Specifically, Wiener index.

In classifying finite commutative local rings, we deal with finite local rings of order pn.
At the end, we provide tables that explain our methods and results.

4. Local rings
In this section, we study and explore the basic notions of local rings. Let R be finite

commutative ring with identity. Let J(R) be the Jacobson radical, let N(R) be the set of
all nilpotent elements of R, let U(R) be the set of all unit elements of R. Other undefined
notation and terminology for local ring can be found in [6, 11,16,17].
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Definition 4.1. Let (R, +, ·) be a commutative ring with identity. A nonzero element
a ∈ R is called a zero-divisor if there exists nonzero element b ∈ R such that a · b = 0.

Definition 4.2. An element a ∈ R is called a unit or an invertible element if a has a
multiplicative inverse: b ∈ R with a · b = b · a = 1.

Lemma 4.3. [17] In a finite commutative ring R with identity, every element of R is
either a unit or a zero-divisor.

Lemma 4.4. [11] Let n ∈ Z+. Then any nonzero element a ∈ Zn, the ring of integers
modulo n, is a zero-divisor if and only if gcd(a, n) ̸= 1.

Definition 4.5. 1) The nilradical N(R) of a ring R is the intersection of all prime ideals
of the ring.

2) The Jacobson radical J(R) of a ring R is the intersection of all maximal ideals of R.

The following proposition is a type of Fitting Lemma [20].

Proposition 4.6. Let (R, +, ·) be an associative ring with 1R. The following conditions
are equivalent
a) J(R) is the unique maximal right ideal in R;
b) The set of all non-unit elements of R forms a proper ideal;
c) J(R) is the set of all non-unit elements of R;
d) The factor ring R/J(R) is a divison ring;
e) R = J(R)

·
∪ U(R), where R means the disjoint union of J(R) and U(R);

f) If a ∈ R, then either a or 1 − a is unit;
g) R contains exactly two idempotents namely 0R and 1R.

Proof. (a) ⇒ (b): Let J(R) be the unique maximal right ideal of the ring R. Let S be
the set of all non-unit elements of R. We show that S forms a proper ideal. Let x ∈ S.
Since any proper right ideal of a ring R with 1R is contained in a maximal right ideal of
the ring R. Then the right ideal xR ̸= R is contained in a maximal right ideal of the ring
R. Hence, it is contained in J(R). Therefore, S ⊆ J(R), as x is an arbitrary element in
S.
If a, b ∈ S, then a, b ∈ J(R), whence a + b ∈ J(R). So a + b is a non-unit element, that is,
a + b ∈ S. If a ∈ S, r ∈ R, then ar ∈ J(R) and ra ∈ J(R). Hence, ar, ra ∈ S. Then, S is
a two-sided ideal of R.

(b) ⇒ (c): Let J(R) be the unique maximal right ideal in R. Let S be the set of all
non-unit elements of R. We need to show that J(R) = S. Let x ∈ J(R) (maximal ideal of
R). Then x is non-unit element. We know that an ideal of a ring R is proper if and only
if it has no unit. Hence, x ∈ S. Therefore, J(R) ⊆ S. By above argument, we get that
S ⊆ J(R). Hence, we obtain that the J(R) is the set of all non-unit elements of the ring
R.

(c) ⇒ (d): We have J(R) is the set of all non-unit elements of R. Then every element
of R which is contained in J(R) is non-unit element. Hence, any element of the quotient
ring R/J(R) is unit element. Then, the quotient ring R/J(R), is a division ring.

(d) ⇒ (e): Let R/J(R) be a division ring. We show that R = J(R)
·
∪ U(R), where R

is the disjoint union of J(R) and U(R). It is clear that, J(R)
·
∪ U(R) ⊂ R. Conversely,

let x ∈ R, we have two cases either x ∈ J(R) or x /∈ J(R). If x ∈ J(R), then we have
the result. If x /∈ J(R), then every element of R which is not contained in J(R) is a unit.
Hence, any element of the quotient ring R/J(R) is a unit. Then the element x has inverse
in the ring R. Hence, x ∈ U(R). So, R ⊂ J(R)

·
∪ U(R). Then, we have R = J(R)

·
∪ U(R).

It is clear that J(R)
·
∪ U(R) is the empty set and the union is disjoint.
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(e) ⇒ (f): We have J(R) is the set of all non-unit elements. Let a be a non-unit
element of R. Then by (c), a ∈ J(R). By Proposition [1.9,[6]], which says x ∈ J(R) ⇔
1 − x is unit in R. Then 1 − a is unit in R.

(f) ⇒ (g): Let J(R) be the unique maximal ideal of R. Let e be an arbitrary idempotent
in the ring R. Then e(1−e) = e−e2 = 0 ∈ J(R). By hypothesis, the unique maximal ideal
implies that J(R) is prime ideal in R. Then e ∈ J(R) or 1 − e ∈ J(R). We observe that e
and 1−e cannot both be elements of J(R) because this would imply 1 = e+(1−e) ∈ J(R),
which is a contradiction. Then, if e ∈ J(R), then 1 − e /∈ J(R) and so 1 − e is a unit in R,
then e = 0 in this case. Similarly, if 1 − e ∈ J(R), then e is unit in R. Hence, 1 − e = 0.
Then, e = 1. Hence, R contains exactly two idempotents namely 0R and 1R.

(g) ⇒ (a): Suppose that J(R) is not unique maximal right ideal in R. Assume that R
is an Artinian ring. It follows that R has many finitely maximal ideals. Let M1, M2 be
two maximal ideals. Then J(R) ⊂ M1 and J(R) ⊂ M2. Let x ∈ R, x /∈ J(R) and x /∈ M .
Then we get chains of right ideals of R

R ̸= xR ⊇ x2R ⊇ x3R ⊇ ... ̸= 0.

and
{a ∈ R : xa = 0} ⊆ {a ∈ R : x2a = 0} ⊆ {a ∈ R : x3a = 0} ⊆ ...

As our assumption (R is Artinian ring ), there is a positive integer n such that

xnR = xn+1R = ... = x2nR.

and

{a ∈ R : xna = 0} = {a ∈ R : xn+1a = 0} = ... = {a ∈ R : x2na = 0}.

In particular, there is an element b ∈ R such that xn = x2nb. Then

x2nb(1 − xnb) = xn(1 − xnb) = xn − x2nb = 0.

which implies that xnb(1 − xnb) = 0, thus (xnb)2 = xnb and

xnbR ⊆ xnR = x2nbR.

Since rank(x2nbR) ≤ rank(xnbR), we conclude that xnbR = xnR /∈ {0, R}. In particular,
xnb /∈ {0, 1}. Thus, xnb is a third idempotent in R which is contradiction our assumption.
Then J(R) is the unique maximal right ideal in R.

□

Definition 4.7. Any ring with identity which satisfies any condition (and hence all) in
the proposition above is called local ring. (See the book [16])

Remark 4.8. In the above item (d) we have:
i. If R/J(R) is a commutative division ring, then R/J(R) is a field.
ii. If R/J(R) is a finite division ring, then R/J(R) is a field according to (Wedderburns

Theorem)[16].

Corollary 4.9. If R is a local ring, then every element in R is either unit or nilpotent.

Corollary 4.10. If R is a local ring, then N(R) = J(R).

Proof. Let 0 ̸= a ∈ J(R). Then a is non-unit element. Since R is a local ring, then a is
nilpotent element that is , a ∈ N(R). Then J(R) ⊂ N(R). It is clear that N(R) ⊂ J(R)
from definition the nilradical of a ring R is the intersection of all of the prime ideals of
the ring and define the Jacobson radical of a ring R to be the intersection of all of the
maximal ideals of R. Since all maximal ideals are prime ideals, we obtain immediately
that nilradical ⊂ Jacobson radical. Therefore, N(R) = J(R). □
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5. Graph theory
A graph theory is the study of the relationship between edges and vertices which deals

with graphs. In this section, we introduce basic concepts of graph theory with properties
of them. Other undefined notation and terminology for graph theory can be found in
[21,23,30].

Definition 5.1. A simple graph G is an ordered pair (V, E), where V is a nonempty set
of vertices and E is a nonempty set of edges. Any two distinct vertices u, v in G are called
adjacent if {u, v} ∈ E. If e = {u, v} is an edge of G, the vertex u and the edge e(as well
as v and e ) are said to be incident with each other.

Definition 5.2. A simple graph G is called a complete graph if each pair of distinct
vertices are adjacent. We denote the complete graph on n vertices by Kn some example

of complete graphs are shown in Fig 2. This graph of order n has n(n − 1)
2

edges.

Figure 2. Complete graphs

Definition 5.3. A bipartite graph is a graph G whose vertices can be partitioned into
two disjoint sets V1 and V2 with V = V1 ∪ V2, such that uv ∈ E if u ∈ V1 and v ∈ V2. The
bipartite graph is said to be complete in which vertex in V1 is joined to every vertex in
V2. When | V1 |= n1 , | V2 |= n2, we denote the complete bipartite graph by Kn1,n2 . For
example, K2,3 and K3,3 are shown in Figure below.

Figure 3. K2,3 and K3,3

Definition 5.4. A proper vertex coloring or proper coloring of a graph G is the assignment
of colors to the vertices such that all adjacent vertices have different colors. The smallest
number of colors needed to get a proper vertex coloring is called the chromatic number of
the graph, denoted χ(G).

Example 5.5. In Figure 3, χ(K2,3) = 2 and χ(K3,3) = 2.

Definition 5.6. In a graph G = (V, E), a clique is defined as an induced subgraph of G
which is complete. The number of vertices in the largest clique of G is called the clique
number, denoted by ω(G).
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Definition 5.7. A path on n vertices, denoted Pn, is a sequence of edges such that each
consecutive pair has a vertex in common.

Definition 5.8. Let R be a commutative ring with nonzero identity. A simple graph
with vertex set being the set of nonzero zero-divisors of R with (x, y) an edge if x ̸= y and
xy = 0 is called the zero-divisor graph of R, denoted by Γ(R).

Example 5.9. (1) Let R = Z4, then Γ(R) is a singleton graph.
(2) Let R = Z2 × Z2, then Γ(R) consists of two vertices which are connected by an

edge.
(3) Let R = Z8 or Z2(x)/(x3) then Γ(R) is a path of length 2 since Z8 = {0, 1, 2, 3, 4, 5, 6, 7}.

We get Z∗(Z8) = {2, 4, 6} is the vertex set since 2·8 4 = 0, 4·8 6 = 0, {2, 4} and
{4, 6} are edges in Γ(Z8). But, the set {2, 6} is not an edge in Γ(Z8) as 2·8 6 ̸= 0
in Z8. The graph Γ(Z8) is given below.

2 4 6

Definition 5.10. The compressed zero-divisor graph, denoted by Γc(R), is the compres-
sion of a zero-divisor graph, with vertices the equivalence classes induced by ∼ other than
[0] and [1], defined by

Z(Rc) = {[r] | r ∈ R}
where [r] = {s ∈ R | ann(r) = ann(s)} and two distinct equivalence classes [r] and [s] are
adjacent if and only if rs = 0.

Definition 5.11. The distance between two distinct vertices u and v of Γ(R), denoted
by d(u, v), is the length of the shortest path from u to v.
If there is no such path, then we write d(u, v) = ∞.

The following definition was introduced by Wiener [29].

Definition 5.12. Let Γ = (V, E) be a simple graph with vertex set V (Γ(R)). The Wiener
index of G is defined as

W (Γ(R)) =
∑

{u,v}⊆V (Γ(R))
d(u, v),

where d(u, v) is the length of the shortest path between all pairs of vertices in Γ(R).

Now, we will study the Wiener index of the some of local rings.

Example 5.13. (1) Consider R = Z8 = {0, 1, 2, 3, 4, 5, 6, 7}. Here Z∗(R) = {2, 4, 6} is
the vertex set of Γ(Z8). The zero-divisor graph of Z8 is complete bipartite graph K1,2,
which is given below.

2 4 6

Now, we compute the Wiener index of Γ(Z8). We obtain that d(2, 4) = 1, d(2, 6) =
2, d(4, 6) = 1, then, W (Γ(Z8)) = d(2, 4) + d(2, 6) + d(4, 6) = 1 + 2 + 1 = 4. For the
vertex set of Γc(R) we have, ann(2) = {4}, ann(4) = {2, 6}, ann(6) = {4}. Then
Z(Rc) = {[2], [4]} is the vertex set of Γc(R).

[2] [4]

(2) Let R = Z27 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, ..., 26}.
Here Z∗(R) = {3, 6, 9, 12, 15, 18, 21, 24} be the vertex set of Γ(R). For the vertex set of
Γc(R) we have, ann(3) = {9, 18}, ann(6) = {9, 18}, ann(9) = {3, 6, 9, 12, 15, 18, 21, 24},
ann(12) = {9, 18}, ann(15) = {9, 18}, ann(18) = {3, 6, 9, 12, 15, 18, 21, 24}, ann(21) =
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{9, 18}, ann(24) = {9, 18}. Then Z(Rc) = {[3], [9]} is the vertex set of Γc(R) which is
given below.

Figure 4. Γ(Z27) and Γc(Z27)

We obtain that d(3, 6) = 2, d(3, 9) = 1, d(3, 12) = 2, d(3, 15) = 2, d(3, 18) =
1, d(3, 21) = 2, d(3, 24) = 2, d(6, 9) = 1, d(6, 12) = 2, d(6, 15) = 2, d(6, 18) = 1, d(6, 21) =
2, d(6, 24) = 2, d(9, 12) = 1, d(9, 15) = 1, d(9, 18) = 1, d(9, 21) = 1, d(9, 24) = 1, d(12, 15) =
2, d(12, 18) = 1, d(12, 21) = 2, d(12, 24) = 2, d(15, 18) = 1, d(15, 21) = 2, d(15, 24) =
2, d(18, 21) = 1, d(18, 24) = 1, d(21, 24) = 2, then W (Γ(Z27)) = 43.

Remark 5.14. For Figure 4, which is related to the zero-divisor graph Γ(Z27), we
obtain the complete bipartite graph K2,6 if we delete the specific edge between 9 and
18.

(3) Consider R = Z25 = {0, 1, 2, 3, 4, 5, 6, ..., 24}. Here Z∗(R) = {5, 10, 15, 20} be the
vertex set of Γ(R). The zero-divisor graph of Z25 is given below.

10 15

5

20

For the vertex set of Γc(R) we have, ann(5) = {5, 10, 15, 20}, ann(10) = {5, 10, 15, 20},
ann(15) = {5, 10, 15, 20}, ann(20) = {5, 10, 15, 20}. Hence Z(Rc) = {[5]} is the vertex
set of Γc(R), which is a singleton graph.

[5]

Since Γ(Z25) is the zero-divisor graph, then Wiener index is
W (Γ(Z25)) = d(5, 10) + d(5, 15) + d(5, 20) + d(10, 15) + d(10, 20) + d(15, 20)

= 1 + 1 + 1 + 1 + 1 + 1 = 6.

6. Implementation of classification of finite commutative local rings
Every finite commutative ring is well known to be a product of finite commutative local

rings. Moreover, we assume in this section that our finite commutative local rings have
pn elements, for p ∈ {2, 3, 5, 7} and n ∈ {1, 2, 3, 4, 5}.

Our main concern is to use the characteristic of the ring as the following definition.
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Definition 6.1. [11] If for a ring R a positive integer n exists such that n · a = 0 for all
a ∈ R, then the least such positive integer is the characteristic of the ring R, denoted by
Ch(R). If no such positive integer exists, then R is of characteristic 0.

Remark 6.2. The following computations are well known in the literature for finite
commutative local rings. We have four cases for |R| = p4 with p ∈ {2, 3, 5, 7}.
1. There are, up to isomorphism, exactly 7, 11, 2 and a unique finite commutative local

rings of order 24 with characteristic 2, 22, 23 and 24, respectively. Hence, the overall of
finite commutative local rings of order 24 is exactly 21.

2. There are, up to isomorphism, exactly 7, 11, 3 and a unique finite commutative local
rings of order 34 with characteristic 3, 32, 33 and 34, respectively. Then, the overall of
finite commutative local rings of order 34 is exactly 22.

3. There are, up to isomorphism, exactly 7, 11, 3 and a unique finite commutative local
rings of order 54 with characteristic 5, 52, 53 and 54 respectively. Then, the overall of
finite commutative local rings of order 54 is exactly 22.

4. There are, up to isomorphism, exactly 7, 13, 3 and a unique finite commutative local
rings of order 74 with characteristic 7, 72, 73 and 74, respectively. So, the overall of
finite commutative local rings of order 74 is exactly 24.

Table 1. Characteristic of finite commutative local rings of order pn (n ≤ 5)

Char
Order p p2 p3 p4 p5

p 1

p2 2 1

p3 3 3 1
2

p4 7 11 2 1
13 3

p5

27 13 2
12 38 7 8 1

40 12 3
44 14

7. Main Results
Now, we show that the zero-divisor graphs and compressed zero-divisor graphs for finite

commutative local rings. Moreover, we will investigate the Wiener index for some finite
commutative local rings of order pn, where p ∈ {2, 3} and n = 3.

7.1. Wiener Index of Γ(R) of finite commutative local rings of order pn,
for p ∈ {2, 3} and n = 3

. Firstly, we compute Wiener index of zero-divisor graph for finite commutative local rings
when p = 2 and n = 3 such that |R|= 23

1) R1 = Z8 with characteristic 8.
2) R2 = Z2[x]/(x3) with characteristic 2.
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3) R3 = Z2[x, y]/(x2, xy, y2) with characteristic 2.
4) R4 = Z4[x]/(2x, x2) with characteristic 4.
5) R5 = Z4[x]/(2x, x2 − 2) with characteristic 4.

Example 7.1. Let R1 = Z8 then Γ(R) is a path of length 2 since Z8 = {0, 1, 2, 3, 4, 5, 6, 7}.
Then Z∗(Z8) = {2, 4, 6} is the vertex set since 2·8 4 = 0, 4·8 6 = 0, {2, 4} and {4, 6} are
edges in Γ(Z8). But, the set, {2, 6} is not an edge in Γ(Z8) as 2·8 6 ̸= 0 in Z8. The graph
Γ(Z8) is given below.

2 4 6

which is complete bipartite graph K1,2. For the vertex set of Γc(R) we have, ann(2) =
{4}, ann(4) = {2, 6}, ann(6) = {4}. Then Z(Rc) = {[2], [4]} is the vertex set of Γc(R),
and we get that W (Γ(Z8)) = 4.

[2] [4]

Example 7.2. Consider R2 = Z2[x]/(x3) = {f(x) + (x3) | f(x) ∈ Z2[x]} = {ax2 + bx +
c + (x3) | a, b, c ∈ Z2} = {0̄, 1̄, x̄, x̄2, 1̄ + x̄, 1 + x̄2, x̄ + x̄2, 1̄ + x̄ + x̄2}.
Now, we want to show that R2 is local ring. We have, J(R2) = {0̄, x̄, x̄2, x̄+ x̄2}. We know
x ∈ J(R) ⇔ 1 − x is unit in R. Then U(R2) = {1̄, 1̄ + x̄, 1̄ + x̄2, 1̄ + x̄ + x̄2}, which is unit.
Hence every element of R2 is either unit or nilpotent. Hence R2 is local ring. Therefore,
Z∗(R) = {x̄, x̄2, x̄+x̄2} is the vertex set of Γ(R) and we obtain that W (Γ(Z2[x]/(x3))) = 4.

x̄ x̄2 x̄ + x̄2

For the vertex set of Γc(R) we have, ann(x̄) = {x̄2}, ann(x̄2) = {x̄, x̄ + x̄2}, ann(x̄ + x̄2) =
{x̄2} . Then, Z(Rc) = {[x̄], [x̄2]} is the vertex set of Γc(R), Therefore, Γc(R) is a single
edge.

[x̄] [x̄2]

Example 7.3. Let R3 = Z2[x, y]/(x2, xy, y2) = {0̄, 1̄, x̄, ȳ, 1̄ + x̄, 1̄ + ȳ, x̄ + ȳ, 1̄ + x̄ + ȳ}
Now, we want to show that R3 is local ring. We have, J(R3) = {0̄, x̄, ȳ, x̄ + ȳ}. We
know x ∈ J(R) ⇔ 1 − x is unit in R. Then, U(R3) = {1̄, 1̄ + x̄, 1̄ + ȳ, 1̄ + x̄ + ȳ}.
Hence, every element of R3 is either unit or nilpotent. Therefore, R3 is local ring. Then,
Z∗(R) = {x̄, ȳ, x̄ + ȳ} is the vertex set of Γ(R).

x̄ ȳ

x̄ + ȳ

W (Γ(Z2[x, y]/(x2, xy, y2)) = d(x̄, ȳ) + d(x̄, x̄ + ȳ) + d(ȳ, x̄ + ȳ) = 1 + 1 + 1 = 3.

For the vertex set of Γc(R) we have, ann(x̄) = {x̄, ȳ, x̄ + ȳ}, ann(ȳ) = {x̄, ȳ, x̄ +
ȳ}, ann(x̄ + ȳ) = {x̄, ȳ, x̄ + ȳ}. Then Z(Rc) = {[x̄]]} is the vertex set of Γc(R) which
is a singleton graph.

[x̄]

Example 7.4. Consider R4 = Z4[x]/(2x, x2) = {0̄, 1̄, 2̄, 3̄, x̄, x̄ + 1̄, x̄ + 2̄, x̄ + 3̄}. Firstly,
we will show that R4 is local ring. We have J(R4) = {0̄, 2̄, x̄, x̄+2̄}. We know x ∈ J(R) ⇔
1 − x is unit in R. Then, U(R4) = {1̄, 3̄, x̄ + 1̄, x̄ + 3̄}. Therefore, every element of R4 is



Wiener Index of Local Rings 11

either unit or nilpotent. Hence R4 is a local ring. Then, Z∗(R) = {2̄, x̄, x̄+2̄} is the vertex
set of Γ(R).

x̄ 2̄

x̄ + 2̄

Secondly, we will show the Wiener index of Γ(Z4[x]/(2x, x2)).

W (Γ(Z4[x]/(2x, x2))) = d(x̄, 2̄) + d(x̄, x̄ + 2̄) + d(2̄, x̄ + 2̄) = 1 + 1 + 1 = 3.

However, for the vertex set of Γc(R) we have, ann(2̄) = {2̄, x̄, x̄+2̄}, ann(x̄) = {2̄, x̄, x̄+
2̄}, ann(x̄ + 2̄) = {2̄, x̄, x̄ + 2̄}. Then Z(Rc) = {[2̄]]} is the vertex set of Γc(R) which is a
singleton graph.

[2̄]

Example 7.5. Let R5 = Z4[x]/(2x, x2 − 2) = {0̄, 1̄, 2̄, 3̄, x̄, x̄ + 1̄, x̄ + 2̄, x̄ + 3̄}. Now, we
will show that R5 is local ring. We have, J(R5) = {0̄, 2̄, x̄, x̄ + 2̄}. We know x ∈ J(R) ⇔
1 − x is unit in R. Then, U(R5) = {1̄, 3̄, x̄ + 1̄, x̄ + 3̄}. Therefore, then every element of
R5 is either unit or nilpotent. Hence R5 is a local ring.Thus, Z∗(R) = {2̄, x̄, x̄ + 2̄} is the
vertex set of Γ(R).

x̄ 2̄ x̄ + 2̄

The Wiener index is 4. On the other hand, for the vertex set of Γc(R) we have, ann(2̄) =
{2̄, x̄, x̄ + 2̄}, ann(x̄) = {2̄}, ann(x̄ + 2̄) = {2̄}. Then Z(Rc) = {[2̄], [x̄]]} is the vertex set
of Γc(R). Therefore, Γc(R) is a single edge.

[x̄] [2̄]

Remark 7.6. We note that Z8 , Z2[x]/(x3) and Z4[x]/(2x, x2 − 2) have the same zero-
divisor graphs and compressed zero-divisor graphs which are single edge and they have
the same Wiener index. Also, Z4[x]/(2x, x2) and Z2[x, y]/(x2, xy, y2) have the same zero-
divisor graphs and compressed zero-divisor graphs which are singleton graph and they
have also the same Wiener index.

Table 2. Classification of finite commutative local rings of order 8.

R |R| Ch(R) |Γ(R)| Γ(R) Γc(R) W (Γ(R)) χ(Γ(R))
Z8 23 23 3 K1,2 K2 4 2

Z2[x]/(x3) 23 2 3 K1,2 K2 4 2
Z2[x, y]/(x2, xy, y2) 23 2 3 K3 K1 3 3

Z4[x]/(2x, x2) 23 22 3 K3 K1 3 3
Z4[x]/(2x, x2 − 2) 23 22 3 K1,2 K2 4 2

Proposition 7.7. Let R be a commutative local ring of order p3. Then, |Γ(R)| = p2 − 1.

Proof. Given R is a commutative local ring, then every element of R is either a unit or a
zero-divisor. Since |R| = p3, then, by multiplication table, we get that |Z(R)| = p2. From
Definition 5.8, the zero-divisor graph Γ(R) has vertices as elements of Z∗(R) = Z(R)\{0},
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and two distinct vertices are joined by an edge if and only if xy = 0. Hence, |Z∗(R)| =
|Γ(R)| = p2 − 1. □
Theorem 7.8. The zero-divisor graph of finite commutative local ring of order p3 is either
Γ(R) = Kp2−1 or Γ(R) = Kp−1,p2−p.

Proof. It is straightforward to check that the theorem holds if
R = {Z8,Z2[x]/(x3),Z2[x, y]/(x2, xy, y2),Z4[x]/(2x, x2),Z4[x]/(2x, x2 − 2)}.

First, we notice that distinct vertices of Γ(R) are adjacent if and only if xy = 0 for all
x, y ∈ V (Γ(R)). Therefore, Γ(R) = Kp2−1, which is complete graph. Next, we can split
V (Γ(R)) into two different sets V1 = {v1} and V2 = Z∗(R) − V1. Therefore, |V1| = p − 1
and |V2| = p2 − p, which is complete bipartite graph Kp−1,p2−p.

□
From the above theorem, we get the following result.

Lemma 7.9. The compressed zero-divisor graph Γc(R) of finite commutative local ring of
order p3 is either Γc(R) = Kp or Kp−1.

Proof. According to the definition, the compressed zero-divisor graph Γc(R) of R, is
the graph where the vertices are the equivalence classes of the nonzero zero-divisor. Let
|Γ(R)| = 3 and x, y, x + y ∈ V (Γ(R)). By Theorem 7.8, we get that Γ(R) is the complete
graph with 3 vertices, then ann(x) = {x, y, x + y}, ann(y) = {x, y, x + y} and ann(x +
y) = {x, y, x + y}. Hence, ann(x) = ann(y) = ann(z), it follows that the vertex set of
Γc(R) is {[x]}. Therefore, the compressed zero-divisor graph is a singleton graph. Thus,
Γc(R) = Kp−1. On the other hand, Γ(R) is the complete bipartite graph with 3 vertices,
then ann(x) = {y}, ann(y) = {x, x + y} and ann(x + y) = y. Then ann(x) = ann(x + y),
it follows that x ∼ y. Hence, Z(Rc) = {[x], [y]} is the vertex set of Γc(R). Then, the
compressed zero-divisor graph is a single edge. Therefore, Γc(R) = Kp □
Remark 7.10. If R ∼= Z8,Z2[x]/(x3),Z2[x, y]/(x2, xy, y2),Z4[x]/(2x, x2),Z4[x]/(2x, x2 −
2), then W (Γ(R)) is either pn−1 or pn−1 − 1.

. Secondly, we calculate Wiener index of zero-divisor graph for finite commutative local
rings when p = 3 such that |R|= 33

1) Z27 with characteristic 33

2) Z3[x]/(x3) with characteristic 3
3) Z3[x, y]/(x2, xy, y2) with characteristic 3
4) Z9[x]/(3x, x2) with characteristic 32

5) Z9[x]/(3x, x2 − 3) with characteristic 32

6) Z9[x]/(3x, x2 − 6) with characteristic 32

Table 3. Classification of finite commutative local rings of order 27.

R |R| Ch(R) |Γ(R)| Γ(R) Γc(R) W (Γ(R)) χ(Γ(R))
Z27 33 33 8 Fig. 4 K2 43 3

Z3[x]/(x3) 33 3 8 Fig. 4 K2 43 3
Z3[x, y]/(x2, xy, y2) 33 3 8 K8 K1 28 8

Z9[x]/(3x, x2) 33 32 8 K8 K1 28 8
Z9[x]/(3x, x2 − 3) 33 32 8 Fig. 4 K2 43 3
Z9[x]/(3x, x2 − 6) 33 32 8 Fig. 4 K2 43 3

Proposition 7.11. Let R be a commutative local ring of order p3. Then, |Γ(R)| = p2 −1.
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Proof. The proof is the same as Proposition 7.7. □

Theorem 7.12. The zero-divisor graph for finite commutative local ring of order p3 is
either Γ(R) = Kp2−1 or Fig.4.

Proof. The proof follows from the above discussions. □

From the above theorem, we obtain the following Lemma.

Lemma 7.13. Let R be a commutative local ring of order p3. Then, the compressed
zero-divisor graph is either Γc(R) = Kp−2 or Kp−1.

Proof. The proof is the same as Lemma 7.9.
□

Remark 7.14. We observe that in Fig.4, which is related to the local rings Z27, Z3[x]/(x3),
Z9[x]/(3x, x2 − 3) and Z9[x]/(3x, x2 − 6), the complete bipartite graph K2,6 if we delete
the specific edge between 9 and 18.

7.2. Wiener Index of Γ(R) for the local ring Zp[x]/(x2)
When the ring R is commutative local rings with 1, there are only two such rings (up

to isomorphism) of order p2 which are Zp[x]/(x2) and Zp2 , for any prime number p.

Table 4. Classification for the local ring Zp[x]/(x2); p is prime number.

R |R| Ch(R) |Γ(R)| Γ(R) Γc(R) W (Γ(R)) χ(Γ(R)) ω(Γ(R))
Z2[x]/(x2) 4 2 1 K1 K1 0 1 1
Z3[x]/(x2) 9 3 2 K2 K1 1 2 2
Z5[x]/(x2) 25 5 4 K4 K1 6 4 4
Z7[x]/(x2) 49 7 6 K6 K1 15 6 6
Z11[x]/(x2) 121 11 10 K10 K1 45 10 10
Z13[x]/(x2) 169 13 12 K12 K1 66 12 12

Observation 7.15. 1. If R = Zp[x]/(x2), where p is prime then |R| = p2.
2. For the local ring Zp[x]/(x2), χ(Γ(R)) = ω(Γ(R)) in Table 4.

Proposition 7.16. If R = Zp[x]/(x2) and |R| = p2, then |Γ(R)| = p − 1.

Proof. Let p be a prime number. We have Z∗(Zp[x]/(x2)) = {x, 2x, ...(p − 1)x}. For
every x, y in Z∗(Zp[x]/(x2)), clearly xy = 0. So, |Γ(Zp[x]/(x2)| = p − 1. □

Theorem 7.17. The zero-divisor graph of Zp[x]/(x2) is Kp−1.

Proof. If a ∈ Z(Zp[x]/(x2)), then for any two distinct vertices a, b ∈ Z∗(Zp[x]/(x2)), so
ab = 0, each vertex of Γ(Zp[x]/(x2)) is adjacent to every other vertex. Furthermore, there
are p − 1 nonzero elements, so the zero-divisor graph of (Zp[x]/(x2)) has p − 1 vertices.
Therefore, Γ(Zp[x]/(x2)) is Kp−1. □

Lemma 7.18. The graph Γc(Zp[x]/(x2)) is a singleton graph.

Proof. It is obvious. □

Theorem 7.19. If p be a prime number and R = Zp[x]/(x2), then

W (Γ(R)) = (p − 1)(p − 2)/2.
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Proof. Let p be a prime number. If R = Zp[x]/(x2), then by Theorem 7.17, Γ(R) = Kp−1,
i.e. each vertex is adjacent to the remaining (p−1) vertices. Therefore, if every two distinct
vertices u, v ∈ Γ(R), then we have d(u, v) = 1. Hence

W (Γ(R)) =
∑

d(u, v) =
∑
u̸=v

1 =
(

p − 1
2

)
= (p − 1)(p − 2)/2.

□
Remark 7.20. If p be a prime number and R = Zp[x]/(x2), then

|Γ(R)| = χ(Γ(R)) = ω(Γ(R)).

8. Construction graphs with Wiener index
We first explain the construction and obtain some examples regarding getting zero-

divisor graphs for finite commutative rings. Second, we will find the Wiener index of
zero-divisor graph for this finite commutative ring.

8.1. Wiener index with the direct product of two finite fields
Let Fq be a finite field of order q and characteristic p, where q = pn for a prime number

p and a natural number n.

Example 8.1. (1) Let F4 = Z2[x]/(x2+x+1) be a field of order four and characteristic
2. Then R ∼= F4 × F4 = {(0, 0), (0, 1), (0, x), (0, x + 1), (1, 0), (1, 1), (1, x), (1, x +
1), (x, 0), (x, 1), (x, x), (x, x+1), (x+1, 0), (x+1, 1), (x+1, x), (x+1, x+1)}. Hence
Z∗(R) = {(0, 1), (1, 0), (0, x), (x, 0), (0, x + 1), (x + 1, 0). Then Γ(R) consists of six
vertices and the Wiener index, W (Γ(R)) = 21.

v1 v2

v3 v4

v5 v6

Now, we compute Γc(R). Then Z(Rc) = {[(0, 1)], [(1, 0)]} is the vertex set of
Γc(R). Then we obtain that Γc(R) is a single edge with two vertices, which is
complete bipartite graph K1,1 and W (Γc(R)) = 1.

[(0,1)] [(1,0)]

Theorem 8.2. If R ∼= Fq × Fq, where Fq be a finite field, then |Γ(R)| = 2(q − 1).

Proof. Let Fq be a finite field of order q, where q = pn for a prime number p and
a natural number n. Let R ∼= Fq ×Fq. Then there exist two maximal ideals which
are either of the form A ×Fq where A is maximal ideal in Fq or of the form Fq × B
where B is maximal ideal in Fq. Suppose A ̸= {0} and B ̸= {0}, then A and B
have inverses in Fq, which are A−1 and B −1. Therefore, the vertex set of nonzero
zero-divisors of R is 2(q − 1). Thus, |Z∗(R)| = |Γ(R)| = 2(q − 1); q = pn. □
Theorem 8.3. If R ∼= Fq × Fq, where Fq be a finite field, then the Wiener index
of Γ(Fq × Fq) is

W (Γ((Fq × Fq)) = 3q2 − 8q + 5
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Proof. By Theorem 8.2, if R ∼= Fq × Fq, where Fq be a finite field then |Γ(R)| =
2(q − 1). We partition Z∗(R) into two different sets V1 and V2 with V = V1 ∪ V2
where |V1| = |V2| = q − 1. Let x, y ∈ V (Γ(R)). It is clear that d(x, y) = 0 if x = y.
Thus we may assume that x and y are distinct vertices. We have the following
cases.

Case 1: x, y ∈ V1. Then xy ̸= 0, so d(x, y) ̸= 1. Since every vertex in V1 is
adjacent to every vertex in V2, we get that d(x, y) = 2. Therefore,

∑
x,y∈V1 d(x, y) =

2(q − 2).
Case 2: x ∈ V1 and y ∈ V2. Then xy = 0, so d(x, y) = 1 and

∑
x∈V1,y∈V2 d(x, y) =

q − 1. Therefore, by above cases and the definition of the Wiener index 5.12. We
obtain that

W (Γ(Fq × Fq)) = 2(q − 1) [2(q − 2) + (q − 1)]
2

= (q − 1)(3q − 5)
= 3q2 − 8q + 5.

□
Remark 8.4. If R ∼= Fq × Fq, where Fq be a finite field, then the compressed
zero-divisor graph of Fq × Fq is a single edge with the Wiener index 1.

8.2. Wiener index with the tensor product of two finite fields
Now, we are dealing with the tensor product of two finite fields. We shall use the

following result for our purpose. The proof of this theorem is well-known and we will omit
it.

Theorem 8.5. Let p be a prime number and let m, n be two natural numbers. Write
gcd(m, n) = d to be the greatest common divisor of m and n. Also, write l = lcm(m, n)
to be the least common multiple. The tensor product Fpm

⊗
Fpn is isomorphic to a direct

sum of d copies of Fpl . In particular, Fpm
⊗

Fpn is a field if and only if d = 1.

Example 8.6. Let F24 be a field of order 16 where the elements of GF (16) are
GF (16) = Z2[x]/ < p(x) >= {ax3 + bx2 + cx + d | a, b, c, d ∈ Z2}.

We denote these as :
g0 = 0x3 + 0x2 + 0x + 0 g8 = 1x3 + 0x2 + 0x + 0
g1 = 0x3 + 0x2 + 0x + 1 g9 = 1x3 + 0x2 + 0x + 1
g2 = 0x3 + 0x2 + 1x + 0 g10 = 1x3 + 0x2 + 1x + 0
g3 = 0x3 + 0x2 + 1x + 1 g11 = 1x3 + 0x2 + 0x + 1
g4 = 0x3 + 1x2 + 0x + 0 g12 = 1x3 + 1x2 + 0x + 0
g5 = 0x3 + 1x2 + 0x + 1 g13 = 1x3 + 1x2 + 0x + 1
g6 = 0x3 + 1x2 + 1x + 0 g14 = 1x3 + 1x2 + 1x + 0
g7 = 0x3 + 1x2 + 1x + 1 g15 = 1x3 + 1x2 + 1x + 1

It follows that, GF (16) = {g0, g1, g2, g3, g4, g5, g6, g7, g8, g9, g10, g11, g12, g13, g14, g15}.
Then, we construct the ring R = F24

⊗
F22 ∼= F24 × F24 . This ring has zero-divisors

which are v1 = (g0, g1), v2 = (g0, g2), v3 = (g0, g3), v4 = (g0, g4), v5 = (g0, g5), v6 =
(g0, g6), v7 = (g0, g7), v8 = (g0, g8), v9 = (g0, g9), v10 = (g0, g10), v11 = (g0, g11), v12 =
(g0, g12), v13 = (g0, g13), v14 = (g0, g14), v15 = (g0, g15), v16 = (g1, g0), v17 = (g2, g0), v18 =
(g3, g0), v19 = (g4, g0), v20 = (g5, g0), v21 = (g6, g0), v22 = (g7, g0), v23 = (g8, g0), v24 =
(g9, g0), v25 = (g10, g0), v26 = (g11, g0), v27 = (g12, g0), v28 = (g13, g0), v29 = (g14, g0), v30 =
(g15, g0). Hence, Γ(R) consists of 30 vertices. Therefore,
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Z∗(R) = {v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22,
v23, v24, v25, v26, v27, v28, v29, v30}.

The Wiener index of this graph is W (Γ(R)) = 645.

Remark 8.7. We observe that the figure above in this zero-divisor graph can be parti-
tioned into different sets V1 = {v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15} and
V2 = Z∗(R) − V1 where every v1 ∈ V1 and every v2 ∈ V2 such that v1v2 ∈ E, where
| V1 |= 15 , | V2 |= 15. The bipartite graph is called complete, denoted by K15,15.

8.3. Wiener Index for the local matrix algebra
We compute the Wiener index of zero-divisor graph for finite local ring. Also, we

calculate the compressed zero-divisor graph for the same local ring.

Example 8.8. For the field K = F2

Consider R =


 a 0 b

0 a c
0 0 a

 : a, b, c ∈ F2


It is clear to show that R is commutative local ring with identity 1R which has characteristic
2. Now, we will show that (R, +, ·) is local ring. We have |R| = 23 = 8.

Then J(R) =


0 0 0

0 0 0
0 0 0

 ,

0 0 1
0 0 0
0 0 0

 ,

0 0 0
0 0 1
0 0 0

 ,

0 0 1
0 0 1
0 0 0


Since x ∈ J(R) ⇔ 1 − x is unit in R. Then the units of R are

U(R) =


1 0 0

0 1 0
0 0 1

 ,

1 0 1
0 1 0
0 0 1

 ,

1 0 0
0 1 1
0 0 1

 ,

1 0 1
0 1 1
0 0 1


We observe that R is the disjoint union of the unit and the Jacobson radical. Also, every
element of R is either unit or nilpotent. Therefore, (R, +, · ) is local ring.

Here Z∗(R) =


0 0 1

0 0 0
0 0 0

 ,

0 0 0
0 0 1
0 0 0

 ,

0 0 1
0 0 1
0 0 0

 is the vertex set of Γ(R).
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Then the zero-divisor graph of R is given below.

A C

B

The Wiener index of this graph of the local ring, W (Γ(R)) = d(A, B)+d(A, C)+d(B, C) =
1 + 1 + 1 = 3. For the vertex set of Γc(R), we have ann(A) = {A, B, C}, ann(B) =
{A, B, C}, ann(C) = {A, B, C}. So, Z(Rc) = {[A]} is the vertex set of Γc(R).

[A]

Theorem 8.9. Let p be a prime number.

Let R =


 a 0 b

0 a c
0 0 a

 : a, b, c ∈ Fp

 be a commutative local ring of order p3. Then

• |V (Γ(R))| = p2 − 1.
• The zero-divisor graph of R is a complete graph.
• The compressed zero-divisor graph of R is a singleton graph.

• W (Γ(R)) = (p2 − 1)(p2 − 2)
2

.

Proof. Firstly, since R is a commutative local ring, then every element of R is either a
unit or a zero-divisor. The Jacobson radical of R is the subalgebra of R with zero diagonal.

That is, J(R) =


 0 0 b

0 0 c
0 0 0

 : b, c ∈ Fp

 and has order p2. Since R has order p3, the

number of units in R is p3 − p2. Therefore, |V (Γ(R))| = p2 − 1. Secondly, we observe
that the diagonal in Jacobson matrices are all zero. Hence, any two distinct vertices
x, y ∈ V (Γ(R)) are adjacent; xy = 0. Therefore, Γ(R) = Kp2−1 which is a complete graph.
Thirdly, by definition of the compressed zero-divisor graph, we get that all vertices collapse
to a singleton graph. Lastly, it is straightforward from the definition of the Wiener index
and the direct computations. □

9. Discussion
In the past several years, there are a lot of unsolved problems in abstract algebra and

graph theory. Furthermore, many researchers have determined some connection between
commutative ring theory and graph theory to solve it by associating a suitable graph.
The notion of the Wiener index of zero-divisor graph was introduced by Ahmadi and
Jahni-nezhad [1], who demonstrated the Wiener index of zero-divisor graph of rings Zn,
for the case n = p2 and the case n = pq. In this paper, we discuss the Wiener index
of zero-divisor graph of finite commutative local rings of order 8 and 27. Moreover, we
generalize the Wiener index of the zero-divisor graph of Zp[x]/(x2) for any prime number
p. Many of researchers can general theses analyses. We would like to mention that the
work in zero-divisor graphs of commutative rings are active and we mention the following
new articles [4, 15,26].

10. Conclusion
In this paper, we investigate a problem in algebraic graph theory. We give an extensive

overview of the relevant literature. In Section 4, we study the basic notions of local rings.
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By Proposition 4.6, we find that any ring with identity which satisfies any condition in
this proposition is called local ring. In Section 5, we give the definition of zero-divisor
graph, compressed zero-divisor graph and Wiener index. Furthermore, we calculate the
Wiener index of zero-divisor graphs of finite commutative rings. Also, we investigate the
some examples of the Wiener index of zero-divisor graph Γ(R) for finite commutative local
rings. In Section 6, we determine the classification of finite commutative local rings with
characteristic of the ring. In Section 7, we first compute the Wiener index of zero-divisor
graph for finite commutative local rings when p = 2 and p = 3. Second, we will focus
on the Wiener index of Γ(R) for Zp[x]/(x2). In Section 8, we first give the construction
of the zero-divisor graph of the tensor product of two finite fields. This constructions
helps to understand of the graph structure. Second, we focus on the Wiener index for the
local matrix algebra. The researchers observe that there are substantial types of finite
commutative local rings, which also motivate others to compute the Wiener index for
them. The research in this topic is vast. For further theory and investegation, we refere
to the new references [13,24,32].
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