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called, complementary soft binary piecewise difference operation is
Keywords: defined and its basic properties are investigated. We obtain many
Soft set _ striking analogous facts between difference operation in classical
Soft set operations theory and complementary soft binary piecewise difference

Conditional complement o e . .
oneiional complements operation in soft set theory. Also, by obtaining the relationships

between this new soft set operation and all other types of soft set
operations, we aim to contribute to the soft set literature with the
help of examing the distribution rules.

Yeni Bir Esnek Kiime islemi: Tiimleyenli Esnek ikili Parcali Fark \) islemi
Arastirma Makalesi
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Kosullu timleyenler ikili pargali fark islemi arasinda bir¢ok carpici benzer 6zellikler elde

edilmistir. Ayrica bu islem ile diger tiim esnek kiime islemleri
arasindaki iligkiler dagilma kurallar yardimiyla incelenerek, esnek
kiime literatiiriine katkida bulunma amaglanmustir.
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1.Introduction
Molodtsov (1999) intoduced Soft Set Theory to overcome the uncertainties. Since 1999, the theory has

been applied to many fields such as decision-making as in Ozlii (2022a, 2022b), and Paik and Mondal
(2022), measurement theory, operations research, optimization theory, game theory, information
systems and some algebraic structures as in Atagiin and Aygiin (2016), and Addis et al. (2022). Riaz
and Hashimi (2019) and Ayub et al. (2021) studied Linear Diophantine Fuzzy Sets and Linear
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Diophantine Fuzzy aggregation operators and Riaz et al. (2021, 2023) on Spherical Linear Diophantine
Fuzzy Sets fuzzy modeling which are some top recent topics as novel mathematical approaches to model
vagueness and uncertainty. First contributions as regards soft set operations were made by Maji et al.
(2003) and Pei and Miao (2005). Then, Ali et al. (2009) introduced and examined many soft set
operations such as restricted and extended soft set operations. The basic properties of soft set operations
were discussed and Sezgin and Atagiin (2010) illustrated the interconnections of soft set operations with
each other. Sezgin et al. (2019) defined a new soft set operation called the extended difference of soft
sets, and Stojanovic (2021) defined and examined the extended symmetric difference of soft sets. When
the studies on the operations of soft sets are examined, it is seen that the operations in soft set theory
proceed under two main headings, restricted soft set operations and extended soft set operations.
Cagman (2021) defined two conditional complements of sets as a new concept of set theory. With the
inspiration of this study, Sezgin et al. (2023c) defined some new complements of sets. Aybek (2024)
also transferred these complements to soft set theory, and some new restricted soft set operations and
extended soft set operations were defined. Demirci (2024), Sarnalioglu (2024), and Akbulut (2024)
defined a new type of extended operation by changing the form of extended soft set operations using the
complement at the first and second row of the piecewise function of extended soft set operations and
studied the basic properties of them in detail. Moreover, a new type of soft difference operations was
defined in Eren (2019), and by being inspired by this study, Yavuz (2024) and Sezgin and Yavuz (2023a)
defined some new soft set operations, which they call binary piecewise soft set operations, and they
studied their basic properties in detail, too. Also, in some studies (Sezgin and Demirci, 2023; Sezgin and
Sarialioglu, in press; Sezgin and Atagiin, 2023; Sezgin and Yavuz, 2023b; Sezgin and Aybek, 2023;
Sezgin et al., 2023a, 2023b), studies continued on soft set operations by defining a new type of binary
piecewise soft set operation. They changed the form of soft binary piecewise operation by using the
complement at the first row of the soft binary piecewise operations.

The purpose of this study is to contribute to the literature by defining a new soft set operation which we
call “complementary soft binary piecewise difference operation”. For this aim, the definition of the
operation, and its example are given. The algebraic properties like closure, unit and inverse element,
and abelian property of this new operation are examined in detail. We obtain many stunning analogous
facts between the difference operation in classical theory and complementary soft binary piecewise
difference operation in soft set theory. By examing the distribution rules, it is aimed to contribute to the

literature by obtaining the relationship between this operation and other types of soft set operations.

2. Preliminaries

Definition 2.1. Let U be the universal set, E be the parameter set, P(U) be the power set of Uand Q € E.
A pair (C,Q) is called a soft set over U where C is a set-valued function such that C:Q — P(U).
(Molodtsov, 1999)
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Throughout this paper, the set of all the soft sets over U (no matter what the parameter set is) is
designated by Sg(U). Let A be a fixed subset of E and S,(U) be the collection of all soft sets over U
with the fixed parameters set A. Clearly, S5 (U) is a subset of Sg(U) and, in fact, all the soft sets are the

elements of Sg(U).

Definition 2.2. (C, Q) is called a relative null soft set (with respect to the parameter set Q), denoted by
Dq, if C(t) = @ for all teQ and (C, Q) is called a relative whole soft set (with respect to the parameter
set Q), denoted by Uq if C(t) = U for all t€Q. The relative whole soft set (with respect to the universe
set of parameters E, denoted by Ug, is called the absolute soft set over U (Ali et al., 2009)

Definition 2.3. For two soft sets (C, Q) and (Y, 1), we say that (C, Q) is a soft subset of (Y,I) and it is
denoted by (C,Q) € (Y, D), if Q€ I and C(t) € Y(t), Vte Q. Two soft sets (C,Q) and (Y,) are said to
be soft equal if (C, Q) is a soft subset of (Y, 1) and (Y, I) is a soft subset of (C, Q) (Pei and Miao, 2005).

Definition 2.4. The relative complement of a soft set (C, Q), denoted by (C, Q)", is defined by (C,Q)" =
(C",Q), where C": Q = P(U) is a mapping given by (C,Q)" = U\C(t) for all t € Q (Ali et al., 2009).
From now on, U\C(t)=[C(t)]" will be designated by C’(t) for the sake of designation.

Two conditional complements of sets as a new concept of set theory, that is, inclusive complement and
exclusive complement were defined in Cagman (2021). For ease of illustration, we show these
complements as + and 6, respectively. These complements are binary operations, and are defined as
follows: Let Q and I be two subsets of U. I-inclusive complement of Q is defined by, Q+I1=Q’Ul, and
the I-Exlusive complement of Q is defined by Q81=Q’NI’. Here, U refers to a universe, and Q’ is the
complement of P over U. For more information, we refer to Cagman (2021).

The relations between these two complements were examined in detail by Sezgin et al. (2023c), and
they also introduced such new three complements as binary operations of sets as follows: Let Q and |
be two subsets of U. Then, Q*I=Q’ul’, Qyl=Q NI, QAI=QuUI" (Sezgin et al., 2023c). These set
operations were also conveyed to soft sets and Aybek (2024) defined restricted and extended soft set
operations and examined their properties.

Now, we can categorize all types of soft set operations as follows: Let "V" be used to represent the set
operations (i.e.,V can be N,U\, A+0,*, Ay), then restricted operations, extended operations,
complementary extended operations, soft binary piecewise operations, complementary soft binary
piecewise operations are defined in soft set theory as follows:

Definition 2.5. Let (C,Q) and (Y, I) be soft sets over U. The restricted V operation of (C, Q) and (Y, )
is the soft set (H,S), denoted by (C,Q)Vg(Y,I) = (H,S), where S=QnI=+@ and Vte S, H(t) =
Q()V Y(t). (Ali et al., 2009; Sezgin and Atagiin, 2011; Aybek, 2024).

Definition 2.6. Let (C, Q) and (Y, I) be soft sets over U. The extended V operation of (C,Q) and (Y, 1) is
the soft set (H,S), denoted by (C,Q)V:(Y,I) = (H,S), whereS=QuUland Vt € S,
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C(v), teQ\L
H ={ Y@, te\Q
CHVY(), telnqQ.

(Maji et al. 2003; Ali et al. 2009; Sezgin et al. 2019; Stojanovic, 2021; Aybek, 2024).
Definition 2.7. Let (C, Q) and (Y, I) be soft sets over U. The complementary extended V operation (C, Q)

and (Y, I) is the soft set (H,S), denoted by (C, Q);l< (Y,) = (H,S),whereS=QUI, Vt €S,
Cc'(v), t € Q\I
H(t) = Y'(v), te\Q,
ClHvY(t), teQnl

(Sarialioglu, 2024; Demirci, 2024; Akbulut, 2024).
Definition 2.8. Let (C, Q) and (Y, I) be soft sets over U. The soft binary piecewise V operation of (C, Q)

and (Y, ) is the soft set (H,Q), denoted by (C, Q); (Y,1) = (H, Q), where VteQ,
C(), teQ\l

H(t)=
Ct) VY(t), teQNI

(Eren, 2019; Yavuz, 2024, Sezgin ve Yavuz, 2023a)

Definition 2.9. Let (C,Q) and (Y, I) be soft sets over U. The complementary soft binary piecewise V

%k
operation of (C, Q) and (Y, I) is the soft set (H,Q), denoted by (C, Q) ~ (Y,I) = (H, Q), where VteQ,
v

C (), teQ\l
H(t)=

Ct) VY(t), teQNI
(Sezgin and Sarialioglu, in press; Sezgin and Demirci, 2023; Sezgin and Atagiin, 2023; Sezgin and
Aybek, 2023; Sezgin et al., 2023a, 2023b; Sezgin and Yavuz, 2023b; Sezgin and Dagtoros, 2023).

3. Complementary Soft Binary Piecewise Difference (\) Operation and Its PropertiesDefinition

3.1. Let (C,Q) and (Y, I) be soft sets over U. The complementary soft binary piecewise difference (\)
%

operation of (C, Q) and (Y, I) is the soft set (A,Q), denoted by, (C,Q) ~ (Y,I) = (A, Q), where VjeQ,
\

C (), jeQMl

Al)=
CONYG), jeQnt
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Note that if the parameter sets of the soft sets are the same, say Q, then the complementary soft binary

*
piecewise difference operation of (C, Q) and (Y, Q) is the soft set (K,Q) denoted by, (C,Q) ~ (Y,Q) =
\

(K, Q), where VjeQ,

C0), j€Q\Q
K@)=

CO\Y(), jeQnI

Here since Q\Q=0@; we can ignore the first line of the piecewise function under these cases, and thus the
complementary soft binary piecewise difference (\) operation turns out to be the restricted difference

of soft sets. The same argument is valid when the parameter set of the second soft set is E.

Example 3.2. Let E=(e,,e,,e3,e41be the parameter set Q={e, e5} and I={e,, e3,e4}be the subsets of E

and U={h;,h,,h;,h,,hs} be the initial universe set. Assume that (C,Q) and (,I) are the soft sets over
U defined as following:

(C,Q={( €4, {hz,hs})a (es,{hy,hy,hs})} and (Y, 1)={( ez,{hy, hs,hs}), (e5.{hz,hs,h,}),(es.{ hs, hs})}.
£ 3

Let (C,Q) ~ (Y,D=(A,Q). Then,
\

C (), jeQul
Al)=
CONY(G),  jeQnl

Since Q={e;, es} and Q\I={e;}, so A(e;) = Q’(e;)={hy,h3,h,}, and since QNI={e;}so A(e3)=
%

C(e3)\Y(e3)=C(e3)NY’(e3)={hy, hy,hs}N{hy,hs}={h, hs}. Thus, (C,Q) “\‘ (Y,D={(eq.{hq,h3,hy), (e3,

{hy, hs})}.

Theorem 3.3. (Algebraic properties of the operation)

%
1) The set Sg(UV) is closed under the operation ~ .
\
%
Proof: It is clear that ~ is a binary operation in Sg(U). That is,
\

*
~ 1 Sg(U)x Se(U)— Sg(U)
\
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((C.Q). (Y.) =(AQ)
%
Hence, when (C,Q) and (Y1) are two soft sets over U, then so is (C,Q) ~ (Y,1).
\

* * * *

2) [(C.Q)~ (Y, Q)] ~ (A.Q)#(C.Q) ~ [(Y.Q) ~ (A.Q)].
\ \ \ \

* *
Proof: Let (C,Q) ~ (Y,Q)=(T,Q), where T(j)=C(j)nY’(j) for all jeQ. Let (T,Q) ~ (A,Q)=(M,Q), where
\ \

£
M()=T()nA’(j) for all jeQ. Thus, M()=[CG) NY’()]NA’(j) for all jeQ. Let (Y,Q)~ (A,Q)=(L,Q),
\

*
where L(j)=Y(j)NA’(j) for all jeQ. Let (C,Q) ~ (L,Q)=(N,Q), where N(j)=C(j)nL’(j) for all jeQ. Thus,
\

N@G)=C@G)n [Y’()UA()] (2) for all jeQ. It is seen that (1)#(2). That is, for the soft sets whose parameter

%
sets are the same, the operation ~ does not have associativity property. Moreover, we have the

\

following:

* * * *

3) [(C.Q) ~ (Y:D]~ (A2)#(C.Q) ~ [(Y.1) ~ (A 2)].
\ \ \ \

%
Proof: Let (C,Q)~ (Y,)=(T,Q), where VjeQ;
\
c (), jeQ\ul
T()=
CH)NY (), jeQNI
%
Let (T,Q) ~ (A,Z2) =(M,Q), where VjeQ;
\
T°()), jeQ\Z
M(@)=
T() NA’(j), jeQNz
Thus,
" C(j), je(Q\N\z=QNIrnz’
M(j)= | C’(G)uY(), je(QNIN\Z=QNINZ’
1 Ch)nA (), je(@\hNZ=QNI'nz
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[CHNY (GInA (), je(QNINZ=QNINZ
*

Let (Y,) ~ (A,2)=(K,I), where Vjel,
\

Y°(j), jenz
K(]F{
YG)NA'G), jelnz

*
Let (C,Q) ~ (K,D=(S,Q), where VjeQ;
\

C()), jeQ\l
S()=
C(NK (), jeQnl
Thus,
C(j), jeQ\l
S(G)=1 C@G) nY()), jeQN(1-2)=QNINZ’

CHNIY*G)VAG)]. jeQNINZ)=QNINZ
Here let’s handle jeQ-I in the second equation of the first line. Since Q\I=QN1I’, if jel’, then jeQ\l or
je(lUZ)’. Hence, if jeQ\l, then jeQNI’NZ’ or jeQNI’NZ. Thus, it is seen that M+S. That is, for the soft

%
sets whose parameter sets are not the same, the operation ~ does not have associativity property on the
\
set Sg(U).
% *

4) (C,Q)“\'(Y-l)i(Y.l) ”{(C,Q)-

%
Proof: Let (C,Q) ~ (Y,)=(A,Q). Then, VjeQ;
\

C(j), jeQ\l
A)=
CiNY’G), jeQnl

*
Let (Y,1) ~(C,Q)=(T,I). Then Vjel;
\

Y’(j), JeNQ
T()=
Y() NQG).  jelnQ
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Here, while the parameter set of the soft set of the left-hand side is Q; the parameter set of the soft set

of the right-hand side is I. Thus, by the definition of soft equality

* *

(C.Q)~ (Y.NAY.N)~(CQ).
\ \

%
Hence, the operation ~ does not have commutative property in the set Sg(U), where the parameter sets

\

S
of the soft sets are different. Moreover, the operation ~ does not have commutative property where the

\
parameter sets of the soft sets are the same; since CG)NY’(H)EY(G)NQ’().

%

5)(C.Q) : (C.Q)=0q.

%
Proof: Let (C,Q) ~ (C,Q)=(A,Q), where A(j)=C(j) NC’(j)= @ for all jeQ. Thus (A,Q)= @q. That is,
\
%
the operation ~ does not have idempotency property on the set Sg(U).

\

%

6) (C,Q)<®Q= (C.Q).

%
Proof: Let @¢=(S,Q). Then, VjeQ; S(j)= @. Let (C,Q)~ (S,Q)=(A,Q), where A(j)=C(j)nS’(j) for all
\

j€Q. Hence, VjeQ; A()=C(j)nS’(j)=C(j)nU=C(j). Thus, (A,Q)=(C,Q). Note that, for the soft sets whose
%
parameter set is Q, @, is the right-identity element for the operation ~ in the set Sg(U).

*
7) g : (C.Q)=0q.

%
Let 04=(S.Q). Then, VjeQ; S(j)= 0. Let (S,Q) ~ (C,Q)=(A.Q), where A(j)=S({)NC’(j) for all jeQ. Thus,
\

vjeQ; A()=S()NC’((4)=0NC(j)=0, hence (A,Q)=0. Note that, for the soft sets whose parameter set is

%
Q, @q is the left-absorbing element for the operation ~ in the set Sg(U).
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*

8) (C,Q)“\' P=(C.Q).

%
Proof: Let @g=(S,E). Hence VjeE; S(j)=0. Let (C,Q) ~ (S,E)=(A,Q). Thus, A(j)=C(j)NS’(d) for all
\

JEQNE=Q. Hence, VjeQ, A(j)=C(j)NS’(j)=C(j)NU=C(j), so (A,Q)=(C,Q).

Note that, for the soft sets (no matter what the parameter set is), @ is the right identity element for the

*
operation ~ in the set Sg(U).

*x
905~ Q=g

%
Proof: Let @g=(S,E). Hence VjeE; S(j)=0. Let (S,E) ~ (C,Q) =(A,E). Thus, VjeE,
\

$*(), jeBE\Q=Q’

Ad)=
SGHNC (), j€QNE=Q

Hence, vjeQ’, S*(j)=U and for all jeQ, SG)NC’(j)= @NQ’(j)= @, so (A,Q)=Uq.
%

10) (C,Q)’{‘ UQz(Z)Q.

%
Proof: Let Ug = (T,Q). Then, VjeQ; T(j)=U. Let (C,Q) ~ (T,Q)=(A,Q), where A(j)=C()NT’(j), VjeQ.
\

Thus, VjeQ; AG)=C()NT’()=C()N@=0, hence (A,Q)=0q.
ES

11) Uq“\“ CQ=CQ"

*
Proof: Let Ug=(T,Q). Then, VjeQ; T()=U. Assume that (T,Q)~(C,Q)=(A,Q), where
\

A(G)=T@G)NC’(j), VjeQ. Hence, VjeQ; A(G)=T@()NC’(j)=UNC’(j)=C’(j). Thus, (T,Q)=(C,Q)".

*
12) (C,Q) ~\« Up=0q.
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*
Proof: Let Ug =(T,E). Hence, VjeE, T(j)=U. Let (C,Q)~ (T, E)=(A,Q), where A(j)=C(j)NT"(j) for all
\

j€QNE=Q. Hence, VjeQ, A(j)=C({)NT’(j)=C(j)NB=C(j), so (A,Q)=0q.

*
13) Ug : (C.Q=(C, Q"

%
Proof: Let Ug=(T,E). Then, VjeE; T(j)=U. Let (T,E) ~(C,Q)=(A,E), where VjeE;
\

@), jeE\Q=Q
Al)=
TONCG),  jeENQ=Q

Hence VjeQ; A()=T()NC’(j)=UNC’(j)=C’(j), thus (A,Q)=(C,Q)".

*

14) (C.Q) : (C.Q) =(C.Q).

%
Proof: Let (C,Q)=(A,Q). Hence, VjeQ; A(j)=C’(j). Let (C,Q) ~ (A,Q) =(T,Q), where T(j)=C(j)NA’(j)
\

for all VjeQ. Hence, Vje Q; T(j)=C()NA’(j)=C({)NC(j)=C(j), thus (T,Q)=(C,Q). Note that, the relative
%
complement of every soft set is its right identity element for the operation ~ in the set Sg(U).

*

15 (CQ)" ;(C,Q):(C. Q"

%
Proof: Let (C,Q)'=(A,Q). Hence, VjeQ; A(j)=C’(j). Let (A,Q) ~ (C,Q)=(T,Q), where T(j)=A()NC’(j)
\

forall jeQ. Hence, VjeQ; T(j)=A({)NC’(§)=C’(G)NC’(§)=C’(j), thus (T,Q)=(C, Q)". Note that, the relative
%
complement of a soft set is the left absorbing element of its own soft set for the operation ~ in the set

\
Sg(U).

*

16) [(C,Q)A\'(Y,l)]’=(C,Q)$(Y,|)-

67



*
Proof: Let (C,Q)~(Y,)=(AQ). Then, VjeQ,
\

C (), jeQ\l
A()=

CO)NY’(j), jeQNl
Let (A,Q) '=(T,Q), so VjeQ,

C(), jeQl

T()=
C(Guy(), jeQnl

Thus, (T,Q)=(C,Q)+(Y,I).

In classical theory, CNY = U & C = Uand Y = U. Now, we have the following:
*

17) (C,Q) ~\J(Y, Q)=Uq ©(C,Q) =Ugand (Y,Q) = Dq.

%
Proof: Let (C,Q)~ (Y,Q) = (T,Q). Hence, T(j)=C(j)NY’(j) for all jeQ. Since (T,Q) = U, VjeQ,
\

T(j)=U. Hence, VjeQ, T(j)=C(j)NY’(j)=Ue Vj € Q,C(j)=U and Y’(j)=U & VjeQ, C(j)=U and Y(j)= @
©(C,Q) =Ugand (Y,Q) = .
In classical theory @ < C for all C. Now, we have the following:

* *
18) @q E(C,Q) ~(Y.,1) and @; E(Y,I) ~(C,Q).
\ \
Proof: Let @¢=(S,Q). Hence, VjeQ, S(j)=0.

*
Let (C,Q)~(Y,D=(A,Q). When considering the soft subset axioms, )QSQ and ii) VjeQ; S(j)=0,
\

* *
@<C’(j), and @SC()NY’(j). Thus, B E((C,Q) ~ (Y,I). The proof of the theorem @; E(Y,I) ~ (C,Q) is
\ \

similar to the above proof.

In classical theory, C < U for all C. Now, we have the following:

£ ES
19) (C.Q) ~ (Y.)E Uq and (Y,) ~(C,QE Uy
\ \
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*
Proof: Let Uy=(T,Q). Hence, VjeQ, T(j)=U. Let (C,Q) ~ (Y,1)=(A,Q). When considering the soft
\

%
subset axioms, i)Q<SQ and ii) VjeQ; T(j)=U, so C’(j)€U and C(j) n Y’(j) €U. Thus, (C,Q) ~(Y,I)
\

%
€ Uq. The proof of the theorem (Y,1) ~(C,Q)E Uy is similar to the above proof.

In classical theory, C\Y € C and Y\C € Y. Moreover, C\Y € Y’ and Y\C € C' Now, we have the
following analogy:

* * *
20) (C.Q) ((Y,Q)i(C,Q) and (Y,Q) : (C.Q) E(Y,Q). Moreover, (C,Q) : (Y.QE(Y,Q) "and (Y,Q)

*

“\' (CQECQ)"

%
Proof: Let (C,Q)~ (Y,Q)=(A,Q). First of all, Q< Q. Moreover, A(j)=C(j)NY”’(j) for all vjeQ. Since
\

* *
vjeQ, A(G)=C(H)NY’()EC(), thus (A,Q)=(C,Q)<(Y,Q)§(C,Q)- (Y,Q)I(C,Q)i(Y,Q) can be shown

£ £
similarly. Since ¥jeQ, AG)=CG)NY’G)SY’(), (A,Q)=(C,Q) ~ (Y,Q)E (G, A)". (Y,Q)~ (C,QE(C,Q)
\ \

can be shown similary.

In classical theory, C\Y=CNY’. Now we have the following analogy.

% %
21) (C!Q) ~ (YiQ) :(C!Q) ~ (Y' Q)r
\ N
*
Proof: Let (C,Q)~ (Y,Q)" = (A, Q), where A(j)=C(j)NY"(j) for all jeQ. Hence, AG)=C@)\Y(j)
n

*
for all jeQ. Thus, (A,Q)=(C,Q) ~ (Y,Q).
\

In classical theory, CUY=(C\Y)U(Y\C)u(CNY). Now, we have the following analogy:
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% % % % % %

22) (C,Q) ~ (Y, Q=[(C,Q) ~ (Y,Q)] ~ [(Y, Q) ~ (C, Q] ~[(C,Q) ~ (Y,Q)].
v \ U \ U N

* * *
Proof:  Let (C,Q)I(Y,Q)=(A,Q), (Y,Q);(C,QF(K,Q) and  (C,Q)~(Y.Q=(T,Q). Then,
n
A()=C@)NY"(j) for all jeQ and K(j)=Y({)NC’(j) for all jeQNQ=Q. And T(j)=C(j)NY(j) for all jeQ.
*
Now, let (AQ)~(KQ)=(M,Q), where M@()=A(j)UK(G) for all jeQ. Thus,
U
*
M@G)=[CHNY’GIVLYFINC’(§)]. Now let (M,Q) ~ (T,Q)=(W,Q) where W(j)=M(j)uT(j) for all jeQ.
V]
*
Thus, W({H)=[CHNY’GIULYGNC GIVICHNY()I=CGIUY(). Now, assume that (C,Q)~ (Y,Q) =
U
(D, Q), where VjeQ, D(j)=C(j)uY(j) for all jeQ. It is seen that (D,Q)=(T,Q).

In classicl theory; C=(C\Y)u(CNY) and Y=(C\Y)U(CNY). Now, we have the following analogy:

* * * * * *

23) (C,Q=[(C,Q)~ (Y, Q)] ~[(C,Q) ~(Y,Q)] and (Y,Q)=[(Y,Q)~ (C,Q)]~[(C,Q) ~ (Y,Q)]
\ U n \ U N

% %
Proof: Let (C,Q) ~ (Y,Q)=(A,Q), where A(j)=C(j)NY’(j) for all jeQ and (C, Q) ~(Y,Q)=(K,Q), where
\ n
%
K(@§)=C@)NY(j) for all jeQ. Let (A,Q) ~ (K,Q)=(T,Q), where T(j)=A(j)UK(j) for all jeQ. Therefore,
U

vieQ, TH=ICHNY GHIVICHNY (I=C(). Hence, (T.Q)=(C.Q).
In classical theory, C U Y=(C\Y)U Y and C U Y=(Y\C)UC. Now, we have the following analogy.

* * * % * *

24) (C' Q) ~ (YaQ):[(CaQ) ~ (Y,Q)] ~ (Y’Q) and (C' Q) ~ (Y,Q):[(Y,Q) ~ (C’Q)] ~ (C’Q)
U \ U U \ U

% %
Proof: Let (C,Q) ~ (Y,Q)=(A,Q), where A(j)=C({)NY"(j) for all jeQ and (A, F) ~(Y,Q)=(K,Q), where
\ U
%
K(@()=A@()uY(j) for all jeQ. Thus, (A,Q) ~ (Y,Q)=(K,Q), where K(§)=[C(H)NY’(j)]UY(j) for all jeQ. So,
U
% %

K()=[C()uUY ()] for all jeQ. Assume that (C, Q) ~ (Y,Q)=(S,Q), hence (K,Q)=(S,Q)=(C, Q) ~ (Y,Q).
U V)

In classical theory, CE Y & C\Y = @. Moreover, we have the following analogy.

70



*

25) (C,Q)E(Y.Q=(C.Q) : (Y. Q)=0q.

%
Proof: Let (C,Q)E(Y,Q). Then C(H)EY(j), VjeQ. And let (C,Q)~ (Y,Q)=(A,Q). Then, A(j)=C()\Y()
\

%
for all jeQ. Since VjeQ, C(j)SY(j), then C(G)\Y(j)=@, and hence (A,Q)=(C,Q)~ (Y,Q)=0q, For the
\

%
converse, we need to show that when (C,Q)~ (Y,Q)=@q, then (C,Q)E(Y,Q). To show this, let
\

£
(C,Q)~ (Y,Q)= (T, Q). Then, T(j)=C()\Y(j) for all jeQ. Since, (T,Q)=Q, vjeQ, C()\Y(j)=0. Then,
\

C@)<Y(j),vjeQ. Thus, (C,Q)E(Y,Q).

In classical theory, if CNY=@, then C\Y=C. Now, we have the following analogy:

% *
26) If (C,Q) ~ (Y, Q) = @q, then (C,Q):(Y,Q) =(C.Q).
N
*
Proof: Let (C,Q) ~(Y,Q)=(A,Q). Then, A()=C(j)NY(j) for all jeQ. Since, (A,Q)=0q, A(j)=0 for all
N

j€Q. Thus, A()=C()NY(j)=0, and so, C()\Y(j)=C(j), VjeQ.

* *

Let (C,Q) ~\» (Y,Q)=(S,Q). Then, S()=C()\Y(j) for all jeQ. Thus, (S,Q)=(C,Q) ~\J(Y,Q):(C,Q).

In classical theory, (C\Y)NY=@ and (Y\C)NC=@. Now, we have a similar analogy:

% % * %

27) [(C,Q) ~ (Y, Q)] ~ (Y,Q)=0q and [(Y,Q) ~ (C,Q)] ~ (C,Q)=0q
\ N \ n

* %
Proof: Let (C,Q)~ (Y,Q)=(A,Q). Then, A(j)=C()NY’(j) for all jeQ. And let (A,Q)~ (Y,Q)=(T,Q),
\ n
where T(j)=A@)NY(j) for all jeQ. Thus VjeQ, TH=[CHNY’({)]NY(j) for all jeQ. So, T(j)=0 for all
* %

j€Q. Since VjeQ, T(j)=0, (T,Q)=0q. Moreover, [(Y,Q) ~ (C,Q)] ~ (C,Q)=0 can be shown similarly.
n
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* * * * * *

REMARK 1: [(C,Q) ~\' (Y,Q)] *{ (Y,.Q)=(C.Q) “\* (Y,Q) and [(Y.,Q) ( (C.Q) ; (C.Q=(Y.Q) : (C.Q) by
(26) and (27). This is an analogy of (C\Y)\Y=C\Y and (Y\C)\C=Y\C.

In classical theory, (C\Y)N(Y\C)=@. Now, we have the following analogy.

* % * * S *

28) [(C,Q) ~ (Y, Q)] ~ [(Y,Q) ~ (C,Q)]=8¢q and [(Y,Q) ~ (C,Q)] ~ [(C,Q) ~ (Y,Q)]=0q
\ N \ \ N \

* %
Proof: Let (C,Q) ~ (Y,Q) =(A,Q). Then, A(j)=C()NY’(j) for all jeQ. Let (Y,Q)~ (C,Q)=(K,Q). Then,
\ \

%
K({=Y({)NC’(j) for all jeQ. And let (A,Q) ~ (K,Q)=(T,Q), where T(j)=A()NK(j) for all jeQ. Thus,
N
TO=ICHNY GINLYE)NC ()] for all jeQ. Hence, T(j)=0 for all jeQ. Since VjeQ, T(j)=9, (T,Q) =0q.
% % %
Moreover [(Y,Q) ~ (C,Q)] ~ [(C,Q) ~ (Y,Q)]=0 can be shown similarly.
n \

* * * *
REMARK 2: From the theorem (26) and (28), [(C,Q) ~ (Y,Q)] ~ [(Y,Q) ~ (C,Q)]=[(C,Q) ~ (Y,Q)] and
\ \ \ \

% % % %
[(Y,Q)~(C,Q)]~[(C,Q)~ (Y, QI=[(Y,Q) ~(C,Q)]. This is an anology of (C\Y)\(Y\C)=C\Y and
\ \ \ \

(Y\C)\(C\Y)=Y\C.
In classical theory, (C\Y)N(CNY)=0 and (Y\C)N(CNY)=@. Now, we have the following analogy.

* * * * * *

29) [(C,Q) ~ (Y.Q)] ~ [(C.Q) ~G,Q)]=2q and [(Y,Q) ~ (C,Q)] ~ [(C,Q) ~ G,Q)]=0q.
\ N N \ N N

% %
Proof: Let (C,Q) ~ (Y,Q)=(A,Q). Then, A(j)=C(j)NY"(j) for all jeQ. Let (C,Q) ~ (Y, Q)=(K,Q). Then,
\ n
%
K@§)=C@G)NY([) for all jeQ.And let (A,Q)~ (K,Q)=(T,Q), where T(j)=A(j))NK(j) for all jeQ. So,
n

TG)=[CHNY G)INICENY ()] for all jeQ. Hence, T(j)= @ for all jeQ. Since VjeQ, T(j)= 0, (T.Q)=0q.

* * *
Moreover, [(Y,Q)~ (C,Q)] ~[(C,Q) ~ G,Q)]=0¢ can be shown similarly.
N n
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* * % *

REMARK 3: By theroem (26) and (29), [(C,Q)~ (Y,Q)]~ ([(C,Q)~G,Q)]=[(C,Q)~(Y,Q)] and
\ N \

% % % %
[(Y,Q)~(C,Q)]~I[(C,Q~GQI=[(Y,Q ~(C,Q)]. This is an analogy of (C\Y)\(C\Y)=C\Y and
\ n \

(Y\CO)\(Y\C)=Y\C.
In classical theory, CN(Y\C) =@ and YN(C\Y) =@. Now, we have the following analogy.

% * % *
30)(C,Q) ~[(Y.Q) : (C,QJ=9q and (Y,Q) ~[(C,Q) ( (Y,Q)]=0q
)] N

% %
Proof: Let (Y,Q)~ (C,Q)=(A,Q). Then, A(j)=Y({)NC’(j) for all jeQ. Let (C,Q) ~ (A,F)=(K,Q). Then,
\ n
K(@§)=C@)NA() for all jeQ. Thus, K(j)=C@H)N[Y({)NC’(j)] for all jeQ. Hence VjeQ, K(j)=9, for all jeQ.
% %
Since VjeQ, K(j)=0, (K,Q)=0q. Moreover (Y,Q) ~ [(C,Q) ~ (Y,Q)]=0 can be shown similarly.
n

* * * *
REMARK 4: By (26) and (30), (C,Q):[(Y,Q);(C, QI=(C.Q) and (Y,Q)“\“[(C,Q):(Y,Q)]=(Y,Q)-

This is an analogy of C\(Y\C)=C and Y\(C\Y)=Y.

In classical theory, C\(C\Y)=CNY and Y\(Y\C)=CNY. Now, we have the following:

* * * * * *
31) (C.Q)~[(C.Q)~ (Y, QI=(C.Q) ~ (Y,Q) and (Y.Q) ~ [(Y,Q) ~ (C,Q)]= (C.Q) ~ (Y.Q).
\ \ n \ \ n

% %
Proof: Let (C,Q) ~(Y,Q)=(A,Q). Then, A(j)=C())\Y(j) for all jeQ. Let (C,Q)~ (A,Q) =(K,Q). Then,
\ \
K(@§)=C()\A() for all jeQ. Thus, K(G)=CHWCH)\Y()) for all jeQ. Hence VjeQ, K(j)=C() n Y(j) for
* * * *

all jeQ. Thus VjeQ, (K,Q)=(C,Q) ~ (Y,Q). Moreover (Y,Q)«\—[(Y,Q)~\—(C, Q)]=(C,Q) ~ (Y,Q) can be
n n

shown similarly.

In classical theory, C\(CNY)=C\Y and Y\(CNY)=Y\C. Now we have the following:
* %* * % % *
32) (C.Q) '{ [(C.Q)~ (Y,Q)I=(C.Q) ~ (Y.Q) and (Y,Q) ~ [(Y,Q) ~ (C,Q)]=(C,Q) “\' (Y.Q).

n \ \ n
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* *
Proof: Let (C,Q)~ (Y,Q)=(A,Q). Then, A(j)=C(j)NY() for all jeQ. Let (C,Q)~ (A,Q)=(K,Q). Then,
n \

K(@§)=C()\A(j) for all jeQ. Thus, K(G)=C{)\[(C(G)NY()] for all jeQ. Hence VjeQ, K(j)=C(d)\ Q(d) for
% % % %

all jeQ. Thus, VjeQ, (K,Q):(C,Q)~\»(Y,Q). Moreover (Y,Q) : [(Y,Q)~ (C,Q)]=(C,Q);(Y,Q) can be
N

shown similarly.
4. Distribution Rules

In this section, the distribution of complementary soft binary piecewise difference (\) operation over

other soft set operations are examined in detail and many interesting results are obtained.

4.1. Distribution of complementary soft binary piecewise difference (\) operation over extended

soft set operations:

i) Left-distribution of complementary soft binary piecewise difference (\) operation over extended

soft set operations:

The followings are satisfied, whenQ N I'NZ = @.

* * *
1) (C,Q)< [(Y:)Ne(A,2)=[(C.Q) : (.n] G[(A2) ~(CQ]
Y

Proof: Let first handle the left-hand side of the equality, and let (YY,I) N¢(A,Z)=(M,lUZ) where VjeluZ,
T Y(), jeN\Z
MG)= | AGL,  jezu

YG)NAG), jelnz

%k
Assume that (C,Q) ~ ( M,1uZ)=(N,Q), where VjeQ;
\

C’(j), j€Q\ (Iu2)
NG)=
ciNM’(), jeQN(luz)

Hence,
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T C()), jeQ\ (luz) =QNI'nNz’
N(j)= CGHNY (), j€QN(I\2)= QNINZ’

C()NA’ (), jeQN(Z\= QNInz

CG)NIY G)UA’ ()], jeQNINZ= QNINZ

* *

Now let’s handle the right-hand side of the equality [(C,Q) ~ (Y,I)] T[(A,Z) ~ (C,Q)]. Assume that
\ Y
%
(C,Q)~ (Y,D=(V,Q), where VjeQ;
\
C (), je Q\I
V()=
Ci)NY (), jeQnl
%
Let (A,2) ~(C,Q) =(W,Q), where VjeZ;
Y
A()), j€2\Q
W()=
A’(HNC()), j€eZNQ
Let (V,Q) U (W,2)=(T,Q), where VjeQ;
V()), jeQ\Z
TG)= | VHUWQ), jeQnz
Hence,
- C), j€@Q-1)-Z=QnIrnz’
CH)NY’(), je(QNN-z=QNINZ’
TG)=| CGuA (), je (Q-DN(Z-Q)=0
| chuaenen, j€@QDNEZNQ=QNINZ
[CHNY(HUA(), je(QNHN(Z-Q)=0
[COHNY MIVIAGNCH],  1e(QNHN(ZNQ)=QNINZ

It is seen that N=T.
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* * *

2) (C,Q)“\' [(Y:)Ue(A,2)=[(C.Q) ; (.n] A[Aa2) ~(CQ)]

Y
* * *
3) (C,Q)z [(Y.N2(AD)I=[(C.Q) : (v.nl 7 [(AZ) ~(CQ)
n
* * *
\ \ n

i) Right-distribution of complementary soft binary piecewise difference (\) operation over
extended soft set operations:

%) £ %k
1) [(C,Qu.(Y,)] ~(AZ2)= [(C.Q~(AZ)] u. [(Y,]) ~(AZ)], where QNINZ’=0
\ \ \

* * *
Moreover, [(C,Q)U; (Y,)] ~(A2)= [(C.Q)~(AZ2)] n. [(Y,]) ~(A.Z)]where QNINZ=@.
\ \ \
Proof: Let’s first handle the left-hand side of the equality. Let (C,Q) U.(Y,1)=(M,Qul) where VjeQul
C(), jeQ\l
M@) = YQ) jehQ
CHUY(), jeQnl

%
Suppose that (M,QuUI) ~ (A,Z2)=(N,Qul), where VjeQuI,;
\

M(j), je(QuINz
NG)=
 MG)NA’G), jeQunnz
()} je(QU\z=QnI'nz’
Y°(j), j€(NQ)\z=Q’NINZ’
N(j)= CG)NY’G), je(QNN\z=QNINZ’
| CG)NA’(), je(@Q\hNZ=QNrnz
Y(§)NA’(), je(N\Q)NZ=Q’NINZ
i [CHHUY({HINA’G), je(QNNNZ=QNINZ
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* *
Now let’s handle the right-hand side of the equality: [(C,Q)~ (A,Z2)] U, L(Y,]) ~(AZ)]. Let
\ \

*
(C,Q)~ (A,2)=(V,Q), where VjeQ;
\

C (), jeQ\z
V()=
C(HNA’(), jeQnz

%
Let (Y,I) ~(A,2)=(W,I), where Vjel;
\

Y’ (), jeN\z

W()=
Y({HNA’(), jeINZ

Assume that (V,Q)U. ( W,1)=(T,Qul), where VjeQuUI,
V()), jeQ\l

TG)= 4 WQ), jelQ

V() UW(), jeQnl

Hence,
(), je(@Q\Z\I=QNInz’
C(H)NA’(j), je(QnZ)\=QnInz
Y'(j), je(\2)\Q=Q’nINZ’
TG)= | YG)NA’(), je0NZ)\Q=Q’NINZ
= CHUY (), j€(Q\2)N(\2)=QNINZ’
C’OUIYHNA*G)] j€Q)NAINZ)=9
[CHNAOIVY’ (), i€(QNZ)N1\2)=9
[COHNAGIVIYHDNA* ()], je(QRNZ)NINZ)=QNINZ
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* * *

It is seen that that N=T. [(C,Q)U.(Y,)]~ (A,Z)= [(C,Q)~ (A, 2)INI(Y.]) ~(A,Z)],where QNINZ=@
\ \ \

can be shown as well.

* * *
2) [(CQN: (Y.N] ~(AZ)= [(CQ~(AZ)] n. [(Y.]) ~(AZ)], whereQNINZ’=9.
\ \ \

* * *
Moreover, [(C,Q)n. (Y,)] ~(A2)= [(C.Q)~(A,2)] u. L(Y,I) ~(A,Z)],where QNINZ=0.
\ \ \

£ £3 *k

3) [(C,QA(Y,D] ~(A,2)=[(C,Q)~ (A D)]U[(Y,]) ~ (A,Z)], where QNINZ’=Q’NINZ=0.
\ \ 9
%k ES *

4) [(C.O\e (Y.D]~ (A, 2)=[(C,Q) ~ (AD]N[(Y.I) ~(A,Z)].where QNINZ’=Q’NINZ=0.
\ \ 0

4.2. Distribution of complementary soft binary piecewise difference (\) operation over

complementary extended soft set operations:

i) Left-distribution of complementary soft binary piecewise difference (\) operations over extended
complementary soft set operations:

The followings are satisfied when QNI’'NZ =@.
% * %

1) (CQ) “\“ [v.h ;kg(A,Z)]:[(C,Q) ~(Y.NIT[(A.Z) ~(C.Q]
n n

%
Proof: Let’s first handle the left-hand side of the equality. Assume (Y,I) 0 (A,2)=(M,luZ), so VjeluZz,
€
CY()), jeNz

M@) = 2 A’(), jez\l

Y’ G)NA(), jelnz

*
Let (C,Q) ~ (M,1UZ)=(N,Q), then VjeQ,
\

C (), jeQ\(luz)
NG)=

C@HNM’(j), jeQNluz)
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(), jeQ\(luz) =Qnrnz’

Ch)NY(), jeQn(\2)= QnInZ’
NG)= | CHNAG), jeQN(z\)=QNI'nz

CHNIYGUAG], jeQnINz= QNINZ

* *

Now let’s handle the right-hand side of the equality [(C,Q)~ (Y,)] U [(A,Z) ~(C,Q)]. Let (C,Q)
N N
*
~ (Y,l):(V,Q), SO VjEQ,
N
C (), jeQMl
V()=
ChHNY(§), jeQnNl
*
Let (A,Z2) ~ (C,Q) =(W,2), hence VjeZ,
N
A’()), jeQ\Z
W(j)=
A(NC(H), jezZzNQ
Assume that (V,Q)U(W,Z2)=(T,Q), hence VjeQ,
TG)=| V0. jeQ\Z
V(Iuw(), jeQnz
Hence,
(), je(Q\\z=QNrnz’
CH)NY(), je(QNN\Z=QNINZ’
TG)= | CGHUA3), je(@Q\HN(Z2\Q)=0
1 CHUIAGNCH)], je(@\IHN(ZNQ)=QNIrnz
[CGNY(HIUA’(| j€(QNHN(2\Q)=0
[CHNYDIVIAGNCH],  je(QNHNZNQ)=QNINZ

—

It is seen that that N=T.
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* % *

2) (CQ)~ LY. T(A,Z)] = [(C.Q)~(Y.h] n [(AZ) ~(CQ)]
\ £ n n
* % * *
3) (C,Q): LY. +£(A,Z)] = [(CQ~(Y.n] A [(AZ) ~(CQ)
N Y
* * % *
4)(C,Q) ~ [(YJ)Y (A2)] = [(CQ~(Y.H] T [(A2) ~(CQ)
\ € n Y

ii) Right-distribution of complementary soft binary piecewise difference (\) operation over

complementary extended soft set operations:

*
DICQ) S (V)] ~A2)= [(CQGAD] U [(V.) §(AD)] where QNINZ=0.
SR

%
Proof: Let’s first handle the left-hand side of the equality, let (C,Q) _ (Y,1)=(M,Qul), where VjeQUI;
€

C (), jeQu
MG) = Y(), jehQ
C’()uY°(), jeQnl

%
Let (M,QuUI) ~ (A,Z2)=(N,Qul), where VjeQul;
\

M (j), je(QuUINZ
NG)=
MG)NA’(),  je(QuDNZ
Thus,
C()), je(Q\©\z=QNrnz’
Y (), je(\Q)\z=Q’NINZ’
NG)= |CGNY(), je(@N\z=QNnInZ’
| eoenag) je@QHNz=QNIrnz
Y’ ()HNA’(j), je(\Q)NZ=Q’NINZ
[C’HUY’(GINA’G), je(QNINZ=QNINZ
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Now let handle the right hand side of the equality: [(C,Q)g(A,Z)]US[(Y,I)g(A,Z)]. Assume that
(C.Q)5(AZ)=(V.Q), where VjeQ;
C(), jeQ\Z

V()=
C()NA’(), jeQNZ

Let (Y.1) o (A.Z)=(W.1), where Vjel;

Y(j), jeNz
W()=
Y’ ()NA’(), jeINZ
Assume that (V,Q)U. (W,1)=(T,Qul), where VjeQuUI;

V(j), jeQu
TO)= - WaQ), jehQ

V(HHuw(), jeQnl

Thus,
" C(j), je(Q2\I=QNInz’
C’()NA(), je@N2\I=QNINZ
Y (), je(\2)\Q=Q°NINZ’
TO)= | YG)NA’(), je(INZ)\Q=Q’NINZ
7 ChuY), je(@Q2)N(1\Z2)=QNINZ’
CHUIY GNA* ()], j€(@Q\Z)NINZ)=9
[C)NA(IVY(), j€(QN2)N(N\Z)=0
[CONAGIVIY HNAG)] je(QNZ)NANZ)=QNINZ
It is seen that that N=T.

*
DICQ 4 (VD] ~(A2= [CQGAD] ne LY. §(A2)]. where QUINZ'-0,
=T

*
3)[(C,Q) j_: (Y,h] ;(A,Z)z[(C,Q)E(A,Z)] Ug [(Y,I)\(A,Z)],Where QNINZ’=Q’NINZ=0.
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*
4)[(C,Q) :Z(Y,I)] '\~(A,Z)=[(C,Q)’GV(A,Z)] Nne L(Y,I) \(A,Z)] where QNINZ’=Q’NINZ=0.

4.3. Distribution of complementary soft binary piecewise difference (\) operation over soft binary

piecewise operations:

i) Left -distribution of complementary soft binary piecewise difference (\) operation over soft

binary piecewise operations:

The followings are satisfied when QNI’'NZ =@.

X £ 3 £ 3
1) (C.Q~ LY.NTUAZ] = [([CQ~(Y.H] A [(AZ ~(CQ)]
\ \ Y

Proof: Let’s first handle the left-hand side of the equality, let (Y,1)U(A,Z)=(M,I), where Vjel;

Y(), jehz
M(j)=
YG)UAG), jelnZ
*
Let (C,Q) ~ (M,)=(N,Q), where VjeQ;
\
C (), jeQul
N@)=
CnM’(j), jeQnl
Thus,
C(), jeQM
NG)=  ci)NY’(), jeQN(1\2)= QNINZ’
CHNLY’GNA’G)] jeQNINZ
* *
Now let’s handle the right-hand side of the equality: [(C,Q)~ (Y,)] A [(A,Z)~(C,Q)]. Let
\ Y

*
(C,Q)~ (Y,D=(V,Q), where VjeQ;
\

C (), jeQul
V()=
CHNY (), jeQnl
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%
Let (A,2) ~(C,Q)=(W,2), where VjeZ;
Y
A’()), j€Z2\Q
W()=
A’(G)NC(G), jeZNQ

Suppose (V,Q)N (W,2)=(T,Q), where VjeQ;

V(). jeQ\z
T()=

VEHNW(), jeQnz
Therefore,

CC), je(Q\N\Z =QNI'nz’
CHNY’ (), je(Qn\z=QnInZ’
C()NA), j€(Q\NN(Z2\Q)=0

T(J'): C’G)NIA’GNCH)L, j€(Q\HN(ZNQ)=QNrnz
[CHNY (INA’G), j€(QNHN(Z2\Q)=0
_[CONY° HINIAGINCEH] j€(@NDN(ZNQ)=QNINZ

Here let handle jeQ\l in the first equation of the first line. Since Q\I=QNI’, if jel’, then jeZ\l or je(IUZ)’.
Hence, if jeQ\l, then jeQNI’NZ’ or jeQNI’NZ. Thus, it is seen that that N=T, where QNINZ=0.

* * *

2)(C,Q);[(Y,l)ﬁ(A,Z)]=[(C,Q)<(Y,l)] U [(AZ) ~(C,Q]
Y

* * *
3)(C,Q)”<[(Y.|)7\(A,Z)]= [(C,Q);(Y,l)] A [(AZ) ~(CQ]

n

* * *

4)(C,Q)“\'[(Y.|)§(A,Z)]= [(C,Q)“\'(YJ)] U [(A2) ~(CQ)

N

il) Right-distribution of complementary soft binary piecewise difference (\) operation over soft

binary piecewise operations:

The followings are satisfied when QNI’'NZ=0.
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* * *
) ICAAY.DN] ~A2= [(CQA~MAD] A LY. ~AD]
\ \ \

Proof: Let’s first handle the left-hand side of the equality. Suppose (C,Q)N(Y,1)=(M,Q), where VjeQ,

C(), jeQul
M()=
CHNYE),  jeQnl

*
Let (M,Q) ~ (A,2)=(N,Q), where VjeQ,
\

M(j), jeQ\z
N@)=
M@)NA’(j), jeQNZ
Thus,
TC(j), je(Q\\Z =QNIrnz’
NG)=|C’(G)uY’ (), je(QNN\Z= QNINZ’
) C()NA’(), je(Q\hNz=QNrnz
[CHNY@INAG),  je(@NNNZ=QNINZ

* %
Now let’s handle the right-hand side of the equality: [(C,Q)~(A.2)] A [(Y,]) ~(A,2)]. Let
\ \

*
(C,Q)~ (A,2)=(V,Q), where VjeQ;
\

C (), jeQ\z
C(G)NA’(j), jeQNnZz
*

Let (Y,I) ~\~ (A,2)=(W,1), where Vijel;

Y*(j), jenz
W(j)=
YG)N AG), jelnz
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Suppose that (V,Q)A(W,D=(T,Q), where VjeQ;

V), jeQll
TG)=
VEHNW(E),  jeQnl
CC (), je (Q\2\I=QNI'NZ’
C(j)NA’(j), je(QNZ)\=QNInz
TG)= | CO)NY’(), je(Q\2)N(1\2)=QNINZ’
| convanaon j€(Q\Z)N(INZ)=0
[CHNA’(NY’(), j€(QNZ)NM2)=9
[CONAONIYONA'G],  jeQNZNANZ)=QNINZ

It is seen that that N=T.

* * *

2) [(C,ATY,D] ~(A2)= [(CQ~(A2] T [(Y,)~(A2D]
\ \ \

C

%k ES &
3) LCAXNY.N] ~(AZ2)= [(CQ~((AZ] T LY. ~(A2)]
\ \ 9

C

%k ES *
4) [(CANY.N] ~(A2)= [(CQ~AD] A [(Y.]) ~(AD]
\ \ 9

D

4.4. Distribution of complementary soft binary piecewise difference (\) operation over

complementary soft binary piecewise operations:

i) Left-distribution of complementary soft binary piecewise difference (\) operation over

complementary soft binary piecewise operations:

The followings are satisfied when QNI’NZ=0@.

* * * *
1) (CQ)~ LY.n~AZ)] = [(CQ~ (Y.h] A [(AZ) ~ (CQ)]
\ * N N
%
Proof: Let’s first handle the left-hand side of the equality, let (Y,I) ~ (A,Z2)=(M,I), where Vjel,
%
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Y*(j), jeNz
M(j)
Y’()UA’(j), jeInZ

%
Let (C,Q) ~ (M,)=(N,Q), where VjeQ;
\

C(j), jeQul
NG)=
CHNM’(), jeQNl

Thus,
CC()), jeQ\l
NG)= | CG)NY(), j€eQN(I\2)= QNINZ’

CEHNICYG)NAG)], jeQNINz= QNINZ

* *
Now let’s handle the right-hand side of the equality: [(C,Q)~ (Y.)] A [(A,Z)~ (C,Q)]. Let
n N

*

(C,Q)~ (Y,)=(V,Q), where VjeQ;
n

C(j), jeQu
V()=
CG)NYG), jeQnl
*

Suppose that (A,Z) ~ (C,Q) =(W,Z), where VjeZ;
n

A(), j€2\Q
W()=

A(G)NC(G), jeZNQ

Let (V,QN(W,2)=(T,Q), where VjeQ;

V() jeQ\z
TG)=
V(i) NW(), jeQnz
Hence,
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TC (), je(Q\D\Z =QNI'nz’

ci)NY(), je(QNIN\Z=QNINZ’
C(G)NA°(), 1€E@Q\DN2\Q)=0
TG)=CONAGNCH], j€(@Q\DN(ZNQ)=QNI'NZ

[CHNYHI NAG), j€(QNNN(Z\Q)=0

[CONYDINAGNCAH],  Je(QNDNZNQ)=QNINZ

Take care that since Q\I= QN1I’, if jeI’, then jeZ\l or je(IUZ)’. Hence, if jeQ\l, jeQNI’NZ’ or jeQNI'NZ.
Thus, it is seen that that N=T.

£S5 E'3 ¥ £ 3

2) (CQ~ [(Y.h~(AZ)] = [(CQ~(Y.D] T [(AZ) ~(CQ)]
\ 0 N n
* * * *

3) (C.Q~ LY.H~AD] = [(CQ~(Y.H] A [(AZ) ~(CQ)]
\ + N Y
* £ 3 sk £ 3

4) (C!Q) ~ [(le ~ ('A‘!Z)j| = [(C’Q) ~ (Y’I)] U [(A,Z) ~ (C’Q)]
\ Y n Y

ii) Right-distribution of complementary soft binary piecewise difference (\) operation over

complementary soft binary piecewise operations:

The followings are satisfied when QNINZ’=0@.

k K
1) [(CA) ~(Y.N] ~(AZ)= [(CQgAD] & [(Y.l)g(AZ)]Proof: Lets first handle the left-hand
0

*
side of the equality, let (C,Q) ~ (Y,)=(M,Q), where VjeQ,
0
C (), jeQ\l
M(@)=
conNy (), jeQnl
*
Let (M,Q) ~ (A,2)=(N,Q), wherevjeQ,
\
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M’(j), jeQ\Z
NG)=
M@G)NA(), jeQnZ

Hence,
C(j), je(Q\D\Z=QNnInz’
N@G)= CHUY()), je(QNN\Z=QNINZ’

C’(H)NA’(), je(Q\)NI=QNI'NZ

[C’()NY’()INAG), je(QNNNZ=QNINZ
Now let's handle the right-hand side of the equality [(C.Q)q(AZ)] A [(Y.)g(AZ)]. Let

(C.Q)g(A2)=(V.Q), where VjeQ;

CG), jeQ\Z
V()=
C()NA’G), jeQNZ

Assume that (Y1)  (A,Z)=(W,1), where Vjel;

Y(j), jez
W()=
Y’ ()NA’G), jelnZ

Let (V,Q)A(W,1)=(T,Q), where VjeQ;

V() jeQ\
T@)= S
L VONW(E) - jeQnt
[ c), je(Q2\=0nI'NZ’
C(NA’G), j€(@QNZ\=QNI'NZ
Ta)= | CONYQ) j€(Q\)N(N\2)=QNINZ’
| CONIY GNA G, 1€(@Q\)NANZ)=0
[CHNAHOINYE), 1€(QNZ)NN\Z)=0
[CHNAOINTY G)NA()], je(QNZ)NINZ)=QNINZ

It is seen that that N=T.
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% *

2 (CA~(Y.D] ~(AZ2)= [CQAD]
*

~

C

[(Y ) g(A2)]

3 *
)CA~(Y.D] ~(AD= [(CQHA)]
+

C

[(Y,I)((A,Z)]

* *
HICA~YD] ~(AZ2)= [(CQHAZ)]
Y

~

D

(YD (A2)]

4.5. Distribution of complementary soft binary piecewise difference (\) operation over restricted
soft set operations:
The followings are satisfied when INZ = @andQNINZ =@
* k *
0 0

Proof: Let’s first handle the left-hand side of the equality, suppose (Y,I)Nr(A,Z2)=(M,INZ), and so
%

vjeINZ, M()=Y()NA(). Let (C,Q) : (M,INZ)=(N,Q), s0 VjeQ,
(), jeQ\Inz)

N()=
CHnM’(j), jeQNUINZ)

Thus,

(), jeQ\(Inz)

NG)=

| CO) NIy’ OuA Q). jeQNANZ)

%k %k
Now let’s handle the right-hand side of the equality: [(C,Q)~(Y,1)] ug [(C,Q)~(AZ)]. Let
0 0
*
(C.Q)~(Y,)=(V,Q) and VjeQ,
0
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C(), jeQMl

V()=
C’()NY’(), jeQnl
%k
Let (C,Q) ~ (A,Z)=(W,Q) and VjeQ,
0
C(j), jeQ\z
W(j)=

C(NA’(j), jeQNnz

Assume that (V,Q)Ur(W,Q) =(T,Q), so VjeT(j)=V([j)UW()),

CcGucaQ), je(Q@\HN(Q\Z)
TG)=| CcOuCcOHNA ], je(Q@\HhN(QNZ)
[CHNY’ (IVE ), je(QNHN(R\Z)

[CONY OIVICHNA ()], je(QNDNQNZ)

Thus,
C(), jeQnrnz’
TG)= CG), jeQnrnz
(), jeQnInz’

[CHNY OIVICGNA()],  jeQNINZ

Considering the parameter set of the first equation of the first row, that is, Q\(INZ); since
Q\(INZ)=QN(INZ)", an element in (INZ)' may be in NZ, in Z\l or (IUZ). Then, Q\(INZ) is equivalent to
the following 3 states: QNINZ"), QN(I'NZ) and QN(I'NZ"). Hence, that N=T.

£ k %k
2) (C,Q) ; [(Y.DUR(A,Z2)=[(C,Q) ~ (Y.D]NR[(C.Q) ~ (A,2)].
3k %k
* k %k
3) (C,Q) ~ [(Y,DBr(AZ)]=[C,Q) ~ (Y,D]UR[(C,Q) ~ (A 2)].
\ ' y
£ %k %k
4) (C,Q) ~\* [(Y.) *r(AD]=[(C,Q) ~ (Y,D]NR[(C,Q) ~ (A,2)].
+ +
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* * *
5) (C.Q)~ [(Y.Dyr(AD]=(C.Q) ~ (Y.N]INRI(C,Q) ~ (A,2)].

\ % +
* * *
6) (C.Q) : [(Y.DAR(AZ)]I=[(C.Q) ~ (Y, D]URI(C.Q) ~ (AD)].
S ¥
* * *
7 [(CQ) “\' [(Y.D\r(A2)]=[(C,Q) ~ (Y.D]NR[(C.Q) ~ (AZ)],
y 0
* * *
8) (C,Q)I[(Y,|)+R(A,Z)] =[(C.Q) ~ (Y.DINR[C.Q) ~ (A, 2)].
+ *

5. Conclusion

The concept of soft set operations is a critical idea just like essential operations on numbers and primary
operations on sets. Soft set operations are the operations that are applied to two or more soft sets to
develop a relationship between them. The operations in soft set ideas have continued beneathneath
fundamental headings as restricted soft set operations and extended soft set operations. In this paper, a
new type of soft set operation which we call complementary soft binary piecewise difference operation
has been defined. The algebraic properties of the operation have been investigated. We have obtained
some interesting analogous facts between the difference operation in classical theory and
complementary soft binary piecewise difference operation in soft set theroy. Also, we have obtained the
relationships between this new soft set operation and other types of soft set operations such as extended
opearation, complementary extended operations, soft binary pecewise operations, complementary soft
binary piecewise operations intersectiona and restricted operations. This research is to serve as a basis
for many applications, especially decision making cryptography. Since soft set is a powerful
mathematical tool for uncertain object detection, with this study, researchers may suggest some new
encryption or decision-making methods based on soft sets. Moreover, studies on the soft algebraic

structures may be handled again as regards the algebraic properties by the operation defined in this

paper.
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