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 Abstract 
Article Info Routine soil chemical and physical laboratory analysis provides a better 

understanding of the soil by evaluating its quality and functions. Demands for the 
development of national Mid-infrared (MIR) spectral libraries for predicting soil 
attributes with high accuracy have risen substantially in the recent past. Such MIR 
spectral library is usually regarded as a fast, cheap and non-destructive technique for 
estimating soil properties compared to laboratory soil analysis. The main objective 
of this research was to assess the performance of the Hungarian MIR spectral library 
in estimating four soil properties namely: Cation Exchange Capacity (CEC), 
Exchangeable Mg and Ca and pH water at different scenarios. Archived soil samples 
were scanned and spectra data were saved in the Fourier transform infrared 
spectrometer OPUS software. Preprocessed filtering, outlier detection and 
calibration sample selection methods were applied to the spectral library. MIR 
calibration models were built for soil attributes using partial least square regression 
method and the models were validated with sample predictions. R2, RMSE and RPD 
were used to assess the goodness of calibration and validation models. MIR spectral 
library had the ability to estimate soil properties such as CEC and exchangeable Ca 
and Mg through various scale models (national, county and soil type). The findings 
showed that the Hungarian MIR spectral library for estimation of soil properties has 
the ability to provide good information on national, county and soil type scales at 
different levels of accuracy.  
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Introduction 
Soil is an important element of agricultural production especially in agroecology. Food security, water 
security, energy sustainability, climate stability, biodiversity preservation, and the provision of ecosystem 
services all depend on soil (McBratney et al., 2014). It is critical to recognize and monitor soil physical and 
chemical attributes using innovative approaches. Routine soil chemical and physical laboratory analysis must 
be performed to evaluate soil functions. Conventional laboratory techniques are widely regarded as accurate 
methods for characterizing soil attributes, however, they sometimes have been viewed as impractical due to 
their time-consuming, and occasional imprecision (Demattê et al., 2019). Many new soil analysis techniques 
have recently been developed, in particular, diffuse reflectance spectroscopy. In essence, an Infrared  (IR) 
spectrum provides a chemical profile of the sample. Soil infrared spectroscopy techniques have demonstrated 
several advantages over wet chemistry methods. This approach is cheap, utilizes tiny subsamples and have 
the advantage that a single spectrum of soil sample integrates many attributes with high precision (Raphael, 
2011;  Waruru et al., 2015). It permits rapid acquiring of soil data, does not require the use of chemical extracts 
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that might harm the environment  and allows for the scanning diverse of soil types without samples dilution 
(Siebielec et al., 2004; Viscarra Rossel et al., 2006; Seybold et al., 2019). The IR spectroscopy is a repeatable 
and reproducible analytical approach for predicting soil properties (Soriano-Disla et al., 2014).   

The electromagnetic spectrum of infrared radiation ranges from 0.7 µm to 1 mm that contains: near-infrared 
(0.70 - 2.5 µm), mid-infrared (2.5 - 25 µm) and far-infrared (25 - 1000 µm) (Nocita et al., 2015). The two most 
important spectral ranges for soil investigation and analysis are mid-infrared and near-infrared (Wijewardane 
et al., 2018). The mid-infrared (MIR) spectroscopy spectrum contains a high reflectivity, useful spectral 
features and gives greater information on soil attributes (Shepherd and Walsh, 2007; Bo Stenberg et al., 2010). 
This is due to the fact that MIR range results are based on fundamental molecular vibrations that are absorbed 
at the specific wavelengths of electromagnetic radiation, while vis-NIR spectra result from overtones and 
combination bands which are complex and more difficult to describe than those recorded in the MIR region. 
The type of molecular motions, functional groups, or bonds present in the soil sample can be identified through 
mid-infrared spectroscopy since every frequency correlates to a certain quantity of energy and a specific 
molecular motion such asstretching, bending, etc (Tinti et al., 2015). The MIR range shows high-density peaks 
(Shepherd and Walsh, 2007; Soriano-Disla et al., 2014), containing much mineral composition information on 
soils such as Si-bearing minerals and iron forms. The basic vibrations of functional groups in minerals and 
organic matter of soil samples are used to explain the strong absorption of mid-infrared spectra (Shepherd 
and Walsh, 2007). MIR has been confirmed to show better results and high predictions for several soil 
properties across soil types in comparison to near-infrared spectroscopy (Pirie et al., 2005; Minasny and 
McBratney, 2008). In order to build predictive models, data from mid-infrared spectroscopy can be grouped 
into spectral libraries (harmonized point-dataset with coupled reflectance and analytical reference 
measurements) with the progress of mid-infrared spectroscopy in soil science. Many publications show soil 
attributes have been efficiently estimated based on the mid-infrared spectral library with high accuracy. It has 
been usefully applied to predict various physical (Kasprzhitskii et al., 2018), biological and chemical soil 
properties (Reeves and Smith, 2009; Acqui et al., 2010). On the other hand, traditional soil surveys and fresh 
soil sampling campaigns are costly and time-consuming. Legacy soil samples have an abundance of spectral 
information that can be utilized to improve the calibration models of the mid-infrared spectral library. The 
majority of large soil spectral databases are built from archived historical soil samples (Rossel and Webster, 
2012).  

Multivariate statistical techniques have given a powerful approach for soil component discrimination, such as 
partial least square regression (PLSR). PLSR has been used for soil attributes prediction from the spectral 
library and can quantify varied soil attributes with a high level of accuracy (Seybold et al., 2019). PLSR is easy 
to compute and understand (Wijewardane et al., 2018), and commonly integrates PCA and multiple regression 
(Wold et al., 2001). 

Although soil spectroscopy methods have been used in previous years in literature to predict some soil 
attributes in Hungary, the potential use of an extensive national MIR spectral library that contains different 
soil types for estimating soil properties is yet to be intensively explored. Therefore, the present study 
objectives were: i) to build a multivariate statistical models using PLSR based on Hungarian MIR spectral 
libaray and ii) to test the predictive capacity of the Hungarian spectral library in the spectral based estimation 
of key some chemical soil properties (CEC, exchangeable Ca and Mg and pH in water). 

Material and Methods 
Hungarian MIR spectral library and soil samples 

The spectral library consists of 2200 soil samples, corresponding to horizons of 543 soil profiles. The soil 
samples collected from the laboratory bank archives of Soil Information Conservation and Montoring System 
(SIMS), representing 10 Hungarian counties which are: Baranya, Fejer, Komarom_Esztergom, Nograd, Pest, 
Tolna,  Bacs-Kiskun, Bekes, Csongrad and Jasz-Nagykun-Szolnok (Figure 1). These samples belong to the first 
SIMS project survey of 1992. The MIR spectral library was built at the Hungarian University of Agriculture and 
Life Sciences, Szent István Campus. 

Previously, all soil samples were dried, mashed, and filtered via a two-millimetre sieve, with the remaining 
part stored in SIMS archives in plastic containers at room temperature. Three hundred gram from each sample 
were packaged in plastic sacs and shipped out to the Department of Soil Science, Godollo. Coning and 
quartering was done to obtain 20 g of soil subsamples, which were then grinded to less than 0.5 (fine 
powdered particle size between 20 and 53um) by hand using an agate pestle and mortar.  Through a micro 
spatula, the fine soil samples were put into aluminium sample cups, and one by one the loaded samples were 
placed in the sample holding tray. Excess soil was removed to reduce sample surface roughness and the 
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surface was leveled with a straight-edged tool. The Bruker Alpha II with a spectral range of 2500 – 25000 nm 
(4000 – 500 cm-1) was used to scan the 2200 soil samples given for this study under DRIFT mode. A scan of 
the gold background was taken before the measurement of each sample to account for variations in 
temperature and moisture content. Gold background is used as a reference material in mid-infrared 
spectroscopy methods since it does not absorb infrared light (Nash, 1986). Every soil sample was read three 
times using three subsamples, and each spectrum was produced from 47 scans. Soil spectra were measured 
following the protocol proposed by the World Agroforestry Centre (Dickens, 2014). The collected information 
of all spectra was saved with the Fourier Transform Infrared Spectrometer (FTIR) spectrometer OPUS 
software.  

 
Figure 1.  Spread of sampling points according to counties in Hungary 

In terms of soil reference data, physical and chemical soil parameters were determined at the horizon level 
using conventional laboratory methods in the frame of the SIMS project and have been stored in the project 
database since 1992. TIM (1995) gave details for reference laboratory methods used in the conventional 
database of SIMS. The conventional database was subjected to quality and consistency checks before being 
used as soil reference data for calibration models. 

Spectral data mangement 

Initially, the transformation of measured spectral reflectance to absorbance value was performed using the 
equation: 

Absorbance = log (1/Reflectance) 

Absorbance spectra were preprocessed with a moving average window of 17 bands and Savitzky-Golay 
filtering methods (Savitzky and Golay, 1964).  

Principal Component Analysis (PCA) was  applied to reduce the dimension of the spectral library and improve 
computational efficiency for different model scenarios of our data. Mahalanobis distance outlier detection 
method was carried out on principal component scores of spectral data to identify samples that deviate from 
the average population of spectra (Shepherd and Walsh, 2002; Waruru et al., 2014). Based on standard 
arbitrary threshold methods, the samples with a Mahalanobis dissimilarity larger than one were considered 
outliers. Detected outlier samples were filtered away from the mid-infrared spectral library dataset at 
different levels of the scenarios then further investigation and calibration were performed on the remaining 
soil samples. 

Kennard-Stone Sampling method (Kennard and Stone, 1969) was applied to the spectral library data to define 
how many observations (samples) should be listed in calibration. Optimal calibration sample sets was selected 
and the remaining samples were retained for the validation set.  

Spectroscopic modeling for soil properties prediction  

The mid-infrared spectral library and soil reference data, including the depths of horizons, were merged into 
one dataset. Three modelling scenarios were used. Consequently, the dataset was split according to 10 
counties, 6 soil types and the national scenario that included the whole dataset. Furthermore, depending on 
the KSS method, the dataset of each sub-scenario was split into a calibration dataset and validation datasets. 
In this research, PLSR (Lorber et al., 1987) statistical models were fitted between latent variables (mid-
infrared spectral library) and response variables (soil attributes) based on calibration data using the highest 
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number of principal components and oscorespls method (Wadoux et al., 2020). For each soil property, the 
PLSR regression coefficients were plotted using the number of components. The built PLSR models and the 
appropriate number of components were used to predict soil properties using spectra on the calibration and 
validation datasets. Four soil properties in the frame of this study were predicted, including, exchangeable 
calcium (Ca++), exchangeable magnesium (Mg++), pH water, and Cation Exchange Capacity (CEC). R software 
(R Core Team, 2022) was used for spectral displaying, analysis and modelling processes. Models development 
and predictions were performed using the caret package interface (Max et al., 2016) and PLSR function from 
pls package (Liland et al., 2016). 

Models performance and accuracy  

Coefficient of determination (R2), ratio performance to deviation (RPD) and root mean square error (RMSE) 
were used to determine the goodness and inaccuracy of the model's predictions.  

R2    =
∑ (ŷ𝒊 − ȳ𝒊  ) 𝟐 

𝑛

𝑖=1

∑ (𝑌𝒊 − ȳ𝒊  ) 𝟐 
𝑛

𝑖=1

 

RMSE =    √
1

𝑛
  ∑(ŷ𝑖 − 𝑌𝑖) 2 

𝑛

𝑖=1

    

RPD =    sy/RMSE 

ŷ indicates the spectral library's predicted value, while ȳ and y represent the observed value average and 
observed value of reference soil database respectively n represents the sample number where I is equivalent 
to 1, 2, …, while, 𝑠𝑦  the observed values' standard deviation. 

eval function of R was used to derive the goodness measurement of prediction and validation models. 

Results and Discussion 

Summary statistics of spectral library soil attributes 

In this study, the predictability of 4 soil attributes were assessed at different scenarios. Figure 2 shows the 
distribution of the dataset for soil attributes at the national level. The soil attributes of the spectral library 
dataset showed wide-ranging distributions, as well as based on frequency histograms, many of them were 
skewed from the normal distribution (Figure 2). These factors were expected in this database, since the 
samples were derived from different depths and horizons of soil types at wide spatial variability covering 
several variations of climatic conditions, geological formation and parent material, land cover and human 
activities.  

 

Figure 2. Distribution of dataset for soil properties 

 

http://ejss.fesss.org/10.18393/ejss.1309753
https://github.com/topepo/caret
https://github.com/bhmevik/pls


M.A.MohammedZein et al. Eurasian Journal of Soil Science 2023, 12(4), 300 - 309 

 

304 

 

Mid-Infrared spectral signature and regression coefficient of PLSR models 

Absorbance signatures in the MIR spectral library were due to fundamental molecular vibrations described 
by peaks related to different compounds (Figure 3), mainly minerals and organic constituents. Despite, the 
overlapping bands and exchangeable cations are not spectrally active, several absorption bands linked to 
certain functional groupings were identified (Figure 3). For example, many exchangeable cations influence the 
position and strength of the wide band around 3400 1/cm. Its position falls in the order of K+, Na+, Ca2+ and 
Mg2+, which corresponds to the cation's increasing polarizing strength (charge/radius). These findings are in 
agreement with the results of some earlier authors such as Madejová (2003) and Tinti et al., (2015). 

 
Figure 3. Absorbance mid-infrared spectral library of different Hungarian soil types using Bruker alfa II 

On ther hand, the regression coefficient of PLSR illustrated the association between the mid-infrared 
frequencies and the soil constituents. The plots of PLSR regression coefficients vs wavelength for calibration 
models of the 4 soil attributes at national levels data are shown in figure 4. In this context Viscarra Rossel et 
al. (2006) stated that the positive peaks belong to the interest components, whilst negative peaks refer to 
interfering components. It's worthwhile to mention that some important wavelengths for the CEC prediction 
model are almost similar to those of the clay. For instance, the weak bands at 400 1/cm and significant broad 
wavelengths between 1000 to 1500 1/cm. The important bands for predicting exchangeable calcium are those 
near 400, 900, 1300, 720 and 1800 1/cm with the latter two bands attributed to diagnostic peaks for calcite 
(Figure 4) which may consistent with the result obtained by Nguyen et al. (1991). The peak bands for models 
prediction of exchangeable magnesium are those near 400 and 1200 1/cm, in addition to bands near 1440, 
1470, and 875 1/cm which are representative of carbonate and may be caused by the presence of magnesium 
carbonate and dolomite (Figure 4). Figure 4 also showed that the regression coefficients for exchangeable Ca 
and Mg prediction models are identical in many spectral regions to those of the clay and organic matter, 
indicating that these soil properties are associated with each other. 

 
Figure 4. PLSR models' standard regression coefficient for predicting CEC, Exch. Mg, Ca, and pH water 
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Hungarain Spectral Library Model Performance 

Cation Exchange Capacity 

The calibration model of CEC at the national  scale reached a R2 of 0.61 and RMSE of 8.24 and the validation 
set reached respective R2 and RMSE of 0.57 and 7.78 (Table 1). At the counties level, Baranya and Tolna 
showed a R2 ≥  0.90, while Fejer had R2 of 0.83, and three counties showed R2 of  0.68 (Bekes, Csongrad and 
Jasz-Nagykun-Szolnok) while only one county showed R2 below 0.55 (Bacs-Kiskun) in the calibration models. 
Validation sets showed only four counties had R2 ≥ 0.60, while the remaining six counties had R2 ≤ .051. At 
the soil type scenarios, brown forest soils and alluvial and colluvial soils showed the best calibration results 
(R2 of 0.86 and RMSE of 3.96 and 4.29 respectively) whereas Chernozem soils had R2 of 0.47 and RMSE of 
7.08 and were the worst result (Table 1). Validation sets showed two soil types had R2 ≥ 0.70 (brown forest  
and Skeletal soils). Four soil types showed R2 ≤ 0.50. The poor results were expected since CEC is not 
spectrally active, while the other good results were due to the contribution of clay minerals and organic carbon 
matter to the prediction of CEC and they are correlated with each other (Stenberg et al., 2010). Demattê et al. 
(2019) showed similar prediction accuracy ranges (R2 0.97 – 0.11) for CEC in the Brazilian spectral library. In 
addition, several studies with good predictions were observed by Pirie et al. (2005) that showed prediction 
reached a R2 of 0.82 in small spectral library (415 soil samples). Terhoeven-Urselmans et al. (2010) also 
achieved the good accuracy (R2 = 0.83) for 4438 global soil samples. 

Table 1. PLSR model values, descriptive statistics and results of calibration and validation prediction models of CEC 

                         Calibration set Validation set 

CEC cmol(+)/kg n Min Max  Mean R2 RMSE RPD n Min  Max Mean R2 RMSE RPD 

National 241 1.48    119.9        26.14 0.61 8.24 1.60 1959 1.64    116.5 24.94    0.57 7.78 1.53 

C
o

u
n

ti
es

 

Pest 98 2.38 59.63 22.69 0.76 5.68 2.05 294 2.15 67.40 25.14 0.65 7.00 1.70 

Baranya 70 3.85 67.94 25.05 0.90 3.39 3.24 141 5.61 42.61 24.07 0.80 2.67 2.23 
Fejer 49 4.76 66.80 27.76 0.83 5.35 2.42 186 8.34 83.12 27.74 0.38 8.25 1.27 

Komarom-Esztergom 35 7.73 60.28 23.13 0.65 6.38 1.72 125 8.39 46.40 22.03 0.61 4.90 1.60 

Nograd 55 3.33 57.22 28.56 0.77 6.82 2.11 88 2.95 49.82 27.64 0.73 5.42 1.93 
Tolna 39 5.50 119.9 29.48 0.96 4.73 4.96 153 5.55 53.00 24.86 0.51 5.41 1.44 

Bacs-Kiskun 98 2.25 54.47 16.44 0.50 7.71 1.42 186 1.48 84.21 11.63 0.28 7.58 1.18 
Bekes 70 11.2 57.66 34.09 0.68 5.51 1.77 132 3.41 58.39 33.71 0.45 6.72 1.35 

Csongrad 50 4.38 48.00 25.04 0.68 7.67 1.77 116 5.66 49.67 28.19 0.31 11.41 1.21 

Jasz-Nagykun-Szolnok 40 1.68 42.44 24.14 0.68 6.37 1.78 179 5.42 61.73 29.33 0.49 5.79 1.41 

So
il

 t
y

p
es

 Chernozem  149 2.89 46.40 23.56 0.47 7.08 1.38 530 3.41 61.73 26.99 0.32 6.93 1.22 
Brown forest  99 3.85 57.22 23.66 0.86 3.96 2.73 395 2.95 49.82 23.83 0.77 4.22 2.09 
Alluvial & colluvial  55 2.86 59.63 26.47 0.86 4.29 2.70 153 2.25 53.00 22.31 0.48 6.51 1.40 
Meadow  149 1.68 119.89 32.64 0.55 11.84 1.49 261 4.51 68.16 32.32 0.50 7.44 1.42 
Skeletal  99 2.38 61.57 16.45 0.50 8.25 1.43 200 1.48 49.33 11.31 0.70 4.84 1.84 

 Salt-affected  27 6.70 66.83 32.51 0.68 8.11 1.81 64 4.20 84.21 29.75 0.04 13.6 1.03 

Exchangeable Mg and Ca 

The exchangeable Mg and Ca of both calibration and validation models showed decrease and variance  results. 
The calibration results at national level were good for exchangeable Mg but were satisfactory for exchangeable 
Ca with respective R2 values being 0.77 and 0.54 and RPD values 2.09 and 1.48. Whereas validation model 
sets had R2 values of Mg and Ca of 0.52 and 0.48, respectively (Tables 2 and 3). Calibration prediction at county 
levels for exchangeable Mg showed 4 counties had R2 ≥ 0.90 and 3 counties had R2 lower than 0.55 (Table 3) 
while, exchangeable Ca showed 6 counties had R2 ≥ 0.80 and only Csongrad county had R2 lower than 0.55 
(Table 2). However, the validation prediction results had R2 ranging from 0.14 to 0.66 for exchangeable Mg 
and ranging from 0.18 to 0.74 for exchangeable Ca (Tables 2 and 3). 

Calibration predictions for exchangeable Mg were satisfactory (R2 lower than 0.75) for all soil types except 
Alluvial and colluvial soils (R2 of 0.94 and RPD of 4.01) and Meadow soils (R2 of 0.82 and RPD of 2.37; Table 
9) whereas calibration predictions for exchangeable Ca were poorer (R2 ≤ 0.50 and RPD ≤ 1.42) for three soil 
types, but was excellent for brown forest soils (R2 of 0.96 and RMSE of 1.56) and alluvial and colluvial soils 
(R2 of 0.83 and RMSE of 3.32; Table 2). Validation results of soil types had R2 ranging from 0.33 to 0.60 for 
exchangeable Mg and ranging from 0.32 to 0.71 for exchangeable Ca except salt-affected soils had R2 of 0.01 
(Tables 2 and 3).  

The poor model results were not expected but we posit that exchangeable Ca and Mg may be present in low 
concentrations, not have particular MIR absorption features as well as the lack of correlation with spectrally 
active properties. Ng et al., (2022) concluded that the high correlation with spectrally active elements or the 
element concentration itself in soils is primarily responsible for prediction accuracy of the elemental 
concentrations. Furthermore, inverse links with carbon content may also justify the low prediction results, 
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suggesting less sites for exchangeable cations on soil charges (from organic matter) that may be filled by H+. 
TIM (1995) reported that soil conditions in Hungary show soil nutrient use stagnated between 1985 and 1990, 
and reduced sharply after 1990. Soil nutrient balance became negative compared to the period of 1981 to 
1986. These reasons, in addition to different land nutrition management conditions, may justify the low 
exchangeable (Ca++ and Mg++) predictions and CEC in various areas, counties and soil types in Hungary. 
Exchangeable Ca was predicted with fairly good accuracy (R2 = 0.85) by Rossel et al. (2008) followed by 
exchangeable Mg (R2 = 0.78). Similarly, study by   Stenberg and Rossel (2010) observed good predictions for 
exchangeable Ca (R2 = 0.89) and Mg (R2 = 0.76). Pirie et al. (2005) however, reported lower performance for 
exchangeable Mg (R2 = 0.69) and exchangeable Ca (R2 = 0.64). Similarly, study by Terhoeven-Urselmans et al. 
(2010) observed lower predictions for exchangeable Mg (R2 = 0.54) and exchangeable Ca (R2 = 0.78).   

 Table 2. PLSR model values, descriptive statistics and results of calibration and validation prediction models of 
exchangeable Ca 

                         Calibration set Validation set 

  Ca cmol(+)/kg n Min Max  Mean R2 RMSE RPD n Min  Max Mean R2 RMSE RPD 
National 241 0.67    87.46 18.52 0.54 6.72    1.48   1959 0.60    85.52 17.54    0.48 6.21 1.39   

C
o

u
n

ti
es

 

Pest 0.87 49.06 16.34 0.75 4.51 2.00 294 0.67 45.89 18.39 0.63 5.15 1.66 1.70 
Baranya 2.00 54.03 18.13 0.91 2.74 3.36 141 4.44 35.05 17.21 0.74 2.65 1.98 2.23 

Fejer 3.29 48.05 18.58 0.91 2.67 3.36 186 5.36 53.92 20.92 0.37 5.53 1.26 1.27 

Komarom-Esztergom 5.18 45.79 17.41 0.63 5.29 1.67 125 5.30 34.85 16.57 0.59 3.99 1.57 1.60 
Nograd 1.67 38.40 18.56 0.80 4.60 2.26 88 1.35 30.72 18.04 0.73 3.74 1.95 1.93 

Tolna 3.83 87.46 21.78 0.95 3.84 4.46 153 3.79 39.07 19.33 0.42 4.65 1.32 1.44 
Bacs-Kiskun 1.51 40.89 11.36 0.84 2.86 2.54 186 0.82 59.07 8.71 0.36 5.25 1.26 1.18 

Bekes 4.96 41.52 21.97 0.98 1.23 6.48 132 5.74 42.32 22.57 0.18 6.78 1.11 1.35 

Csongrad 1.76 45.13 16.44 0.09 9.50 1.06 116 2.67 39.17 18.78 0.34 8.49 1.24 1.21 
Jasz-Nagykun-Szolnok 0.60 31.33 15.51 0.57 5.44 1.55 179 3.12 45.31 18.76 0.36 6.01 1.26 1.41 

So
il

 t
y

p
es

 Chernozem  1.54 33.76 17.50 0.34 6.15 1.23 530 4.46 45.31 21.13 0.40 5.51 1.29 1.22 
Brown forest  1.68 38.40 16.95 0.96 1.56 5.34 395 1.35 35.43 16.45 0.67 3.62 1.75 2.09 
Alluvial & colluvial  2.28 40.46 19.33 0.83 3.32 2.45 153 1.51 39.07 16.25 0.50 4.91 1.41 1.40 
Meadow  0.60 87.46 20.85 0.66 7.39 1.73 261 2.92 53.92 20.57 0.32 6.83 1.21 1.42 
Skeletal  0.87 45.13 12.11 0.50 6.00 1.42 200 0.67 40.24 8.65 0.71 3.67 1.86 1.84 

 Salt-affected  2.91 45.89 17.04 0.43 8.07 1.35 64 2.07 59.07 14.31 0.01 9.51 0.96 1.03 

Table 3. PLSR model values, descriptive statistics and results of calibration and validation prediction models of 
exchangeable Mg 

                         Calibration set Validation set 

  Mg cmol(+)/kg n Min Max  Mean R2 RMSE RPD n Min  Max Mean R2 RMSE RPD 

National 241 0.67    87.46 18.52 0.54 6.72    1.48   1959 0.60    85.52 17.54    0.48 6.21 1.39   

C
o

u
n

ti
es

 

Pest 0.87 49.06 16.34 0.75 4.51 2.00 294 0.67 45.89 18.39 0.63 5.15 1.66 1.70 

Baranya 2.00 54.03 18.13 0.91 2.74 3.36 141 4.44 35.05 17.21 0.74 2.65 1.98 2.23 
Fejer 3.29 48.05 18.58 0.91 2.67 3.36 186 5.36 53.92 20.92 0.37 5.53 1.26 1.27 

Komarom-Esztergom 5.18 45.79 17.41 0.63 5.29 1.67 125 5.30 34.85 16.57 0.59 3.99 1.57 1.60 

Nograd 1.67 38.40 18.56 0.80 4.60 2.26 88 1.35 30.72 18.04 0.73 3.74 1.95 1.93 
Tolna 3.83 87.46 21.78 0.95 3.84 4.46 153 3.79 39.07 19.33 0.42 4.65 1.32 1.44 

Bacs-Kiskun 1.51 40.89 11.36 0.84 2.86 2.54 186 0.82 59.07 8.71 0.36 5.25 1.26 1.18 
Bekes 4.96 41.52 21.97 0.98 1.23 6.48 132 5.74 42.32 22.57 0.18 6.78 1.11 1.35 

Csongrad 1.76 45.13 16.44 0.09 9.50 1.06 116 2.67 39.17 18.78 0.34 8.49 1.24 1.21 

Jasz-Nagykun-Szolnok 0.60 31.33 15.51 0.57 5.44 1.55 179 3.12 45.31 18.76 0.36 6.01 1.26 1.41 

So
il

 t
y

p
es

 Chernozem  1.54 33.76 17.50 0.34 6.15 1.23 530 4.46 45.31 21.13 0.40 5.51 1.29 1.22 
Brown forest  1.68 38.40 16.95 0.96 1.56 5.34 395 1.35 35.43 16.45 0.67 3.62 1.75 2.09 
Alluvial & colluvial  2.28 40.46 19.33 0.83 3.32 2.45 153 1.51 39.07 16.25 0.50 4.91 1.41 1.40 
Meadow  0.60 87.46 20.85 0.66 7.39 1.73 261 2.92 53.92 20.57 0.32 6.83 1.21 1.42 
Skeletal  0.87 45.13 12.11 0.50 6.00 1.42 200 0.67 40.24 8.65 0.71 3.67 1.86 1.84 

 Salt-affected  2.91 45.89 17.04 0.43 8.07 1.35 64 2.07 59.07 14.31 0.01 9.51 0.96 1.03 

pH in water 

Overall, the predictions for soil chemical reaction within the different scenarios were poor. Soil pH in water at 
the national level had the poorest results in both groups of calibration and validation datasets (Table 4). In 
general, many counties pH models were better than the national and soil type levels. Four counties including 
Baranya, Bacs-Kiskun, Bekes and Jasz-Nagykun-Szolnok had high predictions (R2 = 0.91– 0.98 and RMSE = 
0.12 – 0.32) in calibration sets, while two counties included Tolna and Csongrad represented the worst results 
(R2 = 0.09 and 0.04, respectively; Table 4) in the calibration data sets. Three counties had R2 raning from 0.59 
to 0.78, while other counties had R2 ≤ 0.51 in validation sets. 

With reference to the soil types and with regard to calibration sets only brown forest had the highest results 
(R2 of 0.94 and RMSE of 0.28). Salt-affected soils and alluvial and colluvial soils represented satisfactory 

http://ejss.fesss.org/10.18393/ejss.1309753


M.A.MohammedZein et al. Eurasian Journal of Soil Science 2023, 12(4), 300 - 309 

 

307 

 

models (R2 of 0.69 and 0.62, respectively; Table 4), while all the validation datasets results had R2 ≤ 0.38. The 
poor model results were expected because this attribute lacked direct spectral responses, while others good 
results may be due to correlation between pH and soil organic carbon and carbonates (Minasny et al., 2009; 
Reeves, 2010; Sarathjith et al., 2014). Terhoeven-Urselmans et al. (2010) obtained a higher prediction of water 
pH (R2 = 0.81) at a global level of spectral library compared to our results. Generally, Figure 4 and the 
descriptive statistics tables showed some soil attributes had small datasets that may have affected the 
prediction's accuracies. Reeves and Smith (2009) found that dataset diversity, parent materials, land uses, and 
climate such as our spectral library can lead to poor model prediction results. 

Table 4. PLSR model values, descriptive statistics and results of calibration and validation prediction models of pH 
(water) 

                         Calibration set Validation set 

  Mg cmol(+)/kg n Min Max  Mean R2 RMSE RPD n Min  Max Mean R2 RMSE RPD 
National 241 4.80 9.84        7.90    0.29     1.17     1.19    1959 4.00    10.51      7.88    0.18 1.02 1.10 

C
o

u
n

ti
es

 

Pest 98 5.19 10.4 7.75 0.47 0.97 1.38 294 4.92 10.5 7.94 0.51 0.57 1.43 

Baranya 70 4.21 9.12 7.65 0.91 0.32 3.28 141 5.28 8.84 7.68 0.78 0.40 2.15 
Fejer 49 6.54 9.57 8.01 0.65 0.33 1.70 186 6.08 9.77 7.99 0.17 0.88 1.10 

Komarom-Esztergom 35 4.92 8.92 7.69 0.70 0.53 1.84 125 5.09 8.78 7.81 0.43 0.81 1.34 
Nograd 55 4.77 8.41 1.48 0.16 1.48 1.10 88 4.80 8.45 6.94 0.69 0.45 1.81 

Tolna 39 5.12 8.72 7.76 0.09 1.37 1.06 153 5.01 8.51 7.88 0.05 0.99 1.03 

Bacs-Kiskun 98 6.62 10.0 8.19 0.97 0.14 5.45 186 6.37 9.84 8.09 0.59 0.37 1.57 
Bekes 70 5.92 9.88 8.09 0.91 0.24 3.43 132 6.25 9.52 8.00 0.19 0.81 1.11 

Csongrad 50 6.87 9.90 8.32 0.04 2.28 1.03 116 4.00 10.1 8.17 0.13 2.76 0.94 
Jasz-Nagykun-Szolnok 40 6.14 9.92 8.01 0.98 0.12 6.67 179 5.88 9.96 7.93 0.32 0.57 1.21 

So
il

 t
y

p
es

 Chernozem  149 6.19 9.92 8.16 0.18 1.28 1.11 530 5.85 9.97 8.02 0.02 1.12 1.01 
Brown forest  99 4.21 9.12 7.41 0.94 0.28 3.94 395 4.77 8.73 7.26 0.38 0.96 1.28 
Alluvial & colluvial  55 6.65 9.57 7.99 0.62 0.31 1.63 153 5.50 9.28 7.94 0.33 0.49 1.23 
Meadow  149 6.52 10.1 8.13 0.13 1.05 1.08 261 4.00 9.88 7.99 0.16 1.04 1.10 
Skeletal  99 5.21 8.89 7.82 0.17 0.99 1.10 200 5.25 8.92 7.97 0.15 0.87 1.09 

 Salt-affected  27 5.92 10.5 8.98 0.69 0.67 1.83 64 7.22 10.51 8.89 0.34 0.68 1.24 

Conclusion 
Based on the final findings of this study, the following points can be concluded: 
1. The MIR spectral library reported with 2200 soil samples based on legacy soil samples of the Hungary 

SIMS project as well as, predicting an array of four soil chemical properties. 
2. Models were built using PLSR for national level, ten counties and six soil types using the SIMS reference 

soil database and the spectral library data.  
3. The results were logical for the CEC, exchangeable Ca and Mg which are not spectrally active but 

correlated with other active elements. 
4. For soil properties that are not spectrally active with low content in the soil or have small sizes of samples, 

the prediction can turn out to be inaccurate, like pH water.  
5. The results showed that legacy soil samples can be used to generate a spectral library with good quality 

information.  
6. The developed Mid-infrared spectral library therefore can provides a way for rapid soil properties 

estimation at low cost and with short time compared to the conventional method. 
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