

RESEARCH ARTICLE

On topological complexity of Gorenstein spaces

Smail Benzaki^{*}, Youssef Rami

Moulay Ismail University, Department of Mathematics B. P. 11 201 Zitoune, Meknès, Morocco

Abstract

In this paper, using Sullivan's approach to rational homotopy theory of simply connected finite type CW complexes, we endow the Q-vector space $\mathcal{E}xt_{C^*(X;\mathbb{Q})}(\mathbb{Q}, C^*(X;\mathbb{Q}))$ with a graded commutative algebra structure. Thus, we introduce new algebraic invariants referred to as the Ext-versions of the ordinary higher, module, and homology Topological Complexities of X_0 , the rationalization of X. For Gorenstein spaces, we establish, under additional hypotheses, that the new homology topological complexity, denoted $HTC_n^{\mathcal{E}xt}(X,\mathbb{Q})$, lowers the ordinary $HTC_n(X)$ and, in case of equality, we extend Carasquel's characterization for $HTC_n(X)$ to some class of Gorenstein spaces (Theorem 1.2). We also highlight, in this context, the benefit of Adams-Hilton models over a field of odd characteristic especially through two cases, the first one when the space is a 2-cell CW-complex and the second one when it is a suspension.

Mathematics Subject Classification (2020). Primary 55M30, Secondary 55P62

Keywords. higher topological complexity, Eilenberg-Moore functor, Sullivan algebra, Gorenstein spaces

1. Introduction

The concept of topological complexity TC(-) was introduced by Michael Farber in [6]. It is a numerical invariant that measures the difficulty of planning continuous motions of a mechanical system along its configuration space X. Formally, $TC(X) = secat(\Delta_X)$, the sectional category of the diagonal map $\Delta_X : X \to X \times X$, defined as the smallest integer m such that there exist m + 1 local homotopy sections $s_i : U_i \to X$ such that $\{U_i\}$ form an open cover of $X \times X$. Intuitively, this means that we can divide $X \times X$ into m + 1 parts, and on each part, the system has a well-defined continuous motion. Since its introduction, the concept TC has been studied in various contexts such as robotics, algorithmic topology, and algebraic topology. Later, Y. Rudyak ([19]) generalizes Farber's concept by introducing its higher analogous denoted $TC_n(X)$ $(n \ge 2)$ and defined as the sectional category, $secat(\Delta_X^n)$, of the n-diagonal $\Delta_X^n : X \to X^n$ so that $TC(X) = TC_2(X)$.

In [4], J. Carrasquel used the characterization à la Félix-Halperin to give an explicit definition of the *(higher)* rational topological complexity $TC_n(X_0)$, of the rationalization

^{*}Corresponding Author.

Email addresses: smail.benzaki@edu.umi.ac.ma (S. Benzaki), y.rami@umi.ac.ma (Y. Rami) Received: 06.06.2023; Accepted: 02.03.2024

 X_0 of X, which turns out to lower $TC_n(X)$ (cf. Definition 4.1 below). He also introduced higher (rational) homology (resp. module) topological complexity $HTC_n(X)$, (resp. $mTC_n(X)$) and showed that they interpolate $zcl_n(X) := nilkerH^*(\Delta_X^n; \mathbb{Q})$ and $TC_n(X_0)$.

In this paper, we approach the study (rational versions) of the aforementioned invariants for *Gorenstein spaces*. These were introduced in [11] with the aim of deepening the study, in the context of local algebra, of the *Lusternik-Scnirelmann category* $cat_{LS}(X) = secat(* \hookrightarrow X)$ [17]. Recall from [20] that a finite *n*-dimensional subcomplex X of \mathbb{R}^{n+k} is a Poincaré complex if and only if its *Spivak fiber* F_X (see §4) is a homotopy sphere. In particular, when X has finite $cat_{LS}(X)$ and $\mathbb{K} = \mathbb{Z}_p$ for p prime or zero, a *local analogue of the Spivak characterization* in terms of the Eilenberg-Moore Ext functor $\mathcal{E}xt$ reads as follows [11, Theorem 3.1]:

$$\begin{aligned} H^*(X, \mathbb{Z}_p) \text{ is a Poincaré duality algebra } &\Leftrightarrow (F_X)_{(p)} \simeq (\mathbb{S}^k)_{(p)} \\ &\Leftrightarrow \dim \mathbb{E} xt_{C^*(X; \mathbb{Z}_p)}(\mathbb{Z}_p, C^*(X; \mathbb{Z}_p)) = 1 \end{aligned}$$
(1.1)

(cf. §2 for the definition of Poincaré duality algebras and the functor $\mathcal{E}xt$). The equivalences in (1.1) make sense to the following definition [11]:

Definition 1.1. X is a Gorenstein space over \mathbb{K} if dim $\mathcal{E}xt_{C^*(X;\mathbb{K})}(\mathbb{K}, C^*(X;\mathbb{K})) = 1$.

For instance, if X is finite dimensional then [11, Proposition 4.5, Theorem 3.1]:

E.g. every closed manifold is Gorenstein over any field \mathbb{K} . In the rational case, if $\dim \pi_*(X) \otimes \mathbb{Q}$ is finite dimensional then X is Gorenstein over \mathbb{Q} [11, Proposition 3.4]. In particular, every rationally elliptic space X (i.e. if its rational homology and rational homotopy are both finite dimensional) is Gorenstein over \mathbb{Q} . Another advantageous homotopy invariant that allows to better (algebraically) characterize Poincaré duality spaces is the morphism of \mathbb{K} -graded vector spaces:

$$ev_{C^*(X;\mathbb{K})} : \mathcal{E}xt_{C^*(X;\mathbb{K})}(\mathbb{K}, C^*(X;\mathbb{K})) \to H^*(X,\mathbb{K})$$

called the *evaluation map* of X over \mathbb{K} [11] (cf. §2 for more details).

In fact, we have [13, Corollary 2]:

$$X \text{ is a Poincaré duality space} \Leftrightarrow \begin{cases} (i) X \text{ is a Gorenstein space}, \\ (ii) ev_{C^*(X,\mathbb{K})} \neq 0, \\ (iii) H^*(X;\mathbb{Q}) \text{ is a Gorenstein algebra.} \end{cases}$$

In order to highlight our goal, notice that while the (ordinary) rational higher Topological Complexities $TC_n(X_0)$ has a simple geometric interpretation (as it is the case for $TC_n(X)$), its calculation is among NP-hard problems [16]. The complexities $mTC_n(X)$ and $HTC_n(X)$ are algebraic approximations of $TC_n(X_0)$ that can be determined using the same techniques as those used to calculate or at least approximate $cat_{LS}(X_0)$ ([11],[10],[8]). In fact, fewer are spaces for which the invariants $HTC_n(X)$, $mTC_n(X)$ and $TC_n(X_0)$ are determined. However, in [15], a new invariant $L(X_0)$ is introduced and it is shown that $cat_{LS}(X_0) + L(X_0) \leq TC_n(X_0)$ for any pure elliptic coformal space. It is also established that $TC_n(X_0) = \dim \pi_*(X) \otimes \mathbb{Q}$ for certain particular families of spaces.

In this work, inspired by Carrasquel's characterizations, we will introduce new algebraic approximations of $TC_n(X)$ which we call *Ext-versions topological complexities* and establish some inequalities between these invariants. To this end, we first endow, in section 3, the graded Q-vector space

$$\mathbf{A} =: Hom_{C^*(X;\mathbb{Q})}((P,d), C^*(X;\mathbb{Q}))$$

with a homotopy multiplicative structure (see §3 below) denoted in all that follows by

$$\mu_{\mathbf{A}}: \mathbf{A} \otimes \mathbf{A} \to \mathbf{A},$$

where (P, d) is a semi-free resolution of $(\mathbb{Q}, 0)$ (cf. §2 for more details).

The cohomology of A is

$$\mathcal{A} = \mathcal{E}xt_{C^*(X;\mathbb{Q})}(\mathbb{Q}, C^*(X;\mathbb{Q})),$$

and our first main result reads:

Theorem 1.2. The graded vector space A endowed with the product $\mu_A := H^*(\mu_A)$ is a graded commutative algebra with unit. Moreover, the evaluation map

$$ev_{(X,\mathbb{Q})}: \mathcal{E}xt_{C^*(X;\mathbb{Q})}(\mathbb{Q}, C^*(X;\mathbb{Q})) \to H^*(X;\mathbb{Q})$$

is a morphism of graded algebras.

Next, recall that ([5]) a morphism of graded commutative differential algebra (cdga for short) $\varpi : (C,d) \to (D,d)$ admits a homotopy retraction if there exists a map $r : (\Lambda V \otimes C, d)) \to (C,d)$ such that $r \circ \iota = Id_C$, where $\iota : (C,d) \to (\Lambda V \otimes C, d)$ is the relative model of ϖ . As a particular case, consider any Sullivan algebra ($\Lambda V, d$) and denote by $\mu_{A,n} : A^{\otimes n} \to A$ the *n*-fold product of $\mu_A : A \otimes A \to A$. Using [4, Definition 9], we state in terms of the cdga projection

$$\Gamma_m : (\mathbf{A}^{\otimes n}, d) \to \left(\frac{\mathbf{A}^{\otimes n}}{\left(\ker\left(\mu_{\mathbf{A}, n}\right)\right)^{m+1}}, \overline{d}\right)$$

the following

- **Definition 1.3.** (a): $sc(\mu_{A,n})$ is the least m such that Γ_m admits a homotopy retraction.
 - (b): $msc(\mu_{A,n})$ is the least m such that Γ_m admits a homotopy retraction as $(A^{\otimes n}, d)$ -modules.
 - (c): $Hsc(\mu_{A,n})$ is the least m such that $H(\Gamma_m)$ is injective.
 - (d): nil ker $(\mu_{\mathcal{A},n}, \mathbb{Q})$ is the longest non trivial product of elements of ker $(\mu_{\mathcal{A},n})$.

As a particular case, given $A = (\Lambda V, d)$ a Sullivan model of X, the aforementioned (rational) *Ext*-version invariants are denoted respectively $\operatorname{TC}_{n}^{\mathcal{E}xt}(X,\mathbb{Q})$, $\operatorname{mTC}_{n}^{\mathcal{E}xt}(X,\mathbb{Q})$, $\operatorname{mTC}_{n}^{\mathcal{E}xt}(X,\mathbb{Q})$, $\operatorname{mTC}_{n}^{\mathcal{E}xt}(X,\mathbb{Q})$. We call theme respectively, the rational, module, homology topological complexity and *Ext*-version zero cup length.

Then, we prove the following

Theorem 1.4. Let X be a 1-connected finite type CW-complex. If X is a Gorenstein space over \mathbb{Q} and $ev_{C^*(X,\mathbb{Q})} \neq 0$, then

$$HTC_n^{\mathcal{E}xt}(X,\mathbb{Q}) \le HTC_n(X)$$

for any integer $n \geq 2$. Furthermore, if $(\Lambda V, d)$ is a Sullivan minimal model of X, [f] is the generating class of \mathcal{A} and $m = HTC_n^{\mathcal{E}xt}(X, \mathbb{Q})$, then:

$$HTC_n(X) = HTC_n^{\mathcal{E}xt}(X, \mathbb{Q}) =: m \Leftrightarrow f(1)^{\otimes n} \in (\ker \mu_n)^m \setminus (\ker \mu_n)^{m+1}.$$

Notice that the hypotheses on X imply that it is either (i) a Poincaré duality space over \mathbb{Q} or else (ii) $H^*(X, \mathbb{Q})$ is not noetherian and not a Gorenstein graded algebra [13, Theorem 3]. Moreover, it is well known that if X satisfies the Poincaré duality property then $\omega = f(1)$ is a cocycle representing its fundamental class. Thus, (cf. Remark 4.6), our theorem extends, Corollary 5.5 in [5], to spaces of the class (ii).

The following corollary presents some essential classes of spaces satisfying the previous theorem

Corollary 1.5. The hypothesis of Theorem 1.4 and hence its conclusions are satisfied in the following cases:

- (a) X is rationally elliptic,
- (b) $H_{>N}(X,\mathbb{Z}) = 0$, for some N, and $H^*(X,\mathbb{Q})$ is a Poincaré duality algebra,
- (c) X is a finite 1-connected CW-complex and its Spivak fiber F_X has finite dimensional cohomology.

The rest of the paper is organized as follows. In section 2 we summarize the tools essential for the rest of the document, while section 3 is dedicated to the proof of Theorem 1.1. In section 4, we formally introduce the Ext-version of higher, module and homology topological complexities. In Section 5 we will extend a part of Theorem 1.2 and its corollary to the sub-category $CW_r(R)$ when $R = \mathbb{K}$ is a field of odd characteristic and implement the advantageous computational properties of Adams-Hilton models [1] to obtain explicit calculations of the homotopy invariant $\mathcal{A} = \mathcal{E}xt_{C^*(X,\mathbb{K})}(\mathbb{K}, C^*(X,\mathbb{K}))$ when X is a suspension or a two-cell CW-complex.

2. Preliminaries

Let \mathbb{K} denote an arbitrary ground field unless otherwise stated.

2.1. Eilenberg-Moore Ext

A graded module is a family $A = (A^i)_{i \in \mathbb{Z}}$ of \mathbb{K} -modules denoted also $A = \bigoplus_{i \in \mathbb{Z}} A^i$. Every $a \in A^i$ is of degree *i* denoted thereafter |a|.

A linear map of graded modules $f : A \to B$ of degree |f| is a K-linear map sending each A^i to $B^{i+|f|}$. If |f| = 0 we call it a morphism of graded modules.

In all that follows, unless otherwise stated, modules are over \mathbb{K} and we will assume that $A^i = 0$ if i < 0.

A graded algebra A is a graded module together with an associative multiplication $\mu_A : A \otimes A \to A$ that has an identity element $1_A =: 1 \in A^0$. We will put $\mu_A(x \otimes y) =: xy$. Notice that $|\mu_A| = 0$. Moreover, if we have $ab = (-1)^{|a||b|} ba$ for all $a, b \in A$, then A is said to be commutative.

A differential graded algebra (A, d) (dga for short) is a graded algebra A together with a linear map $d: A \to A$ of degree |d| = +1 that is a derivation $d(ab) = d(a)b + (-1)^{|a|}ad(b)$, and satisfying $d \circ d = 0$.

A morphism of dga $f : (A, d) \to (B, d)$ is a linear map of degree zero satisfying f(aa') = f(a)f(a'), and compatible with the differential d: f(da) = d(f(a)).

A dga algebra A is said to be augmented if it is endowed with a morphism $\varepsilon : A \to \mathbb{K}$ of graded algebras.

A (left) graded (A, d) module is a graded module M equipped with a linear map $A \otimes M \to M$, $a \otimes m \mapsto am$ of degree zero such that a(bm) = (ab)m and 1m = m, and a differential d satisfying $d(am) = (da)m + (-1)^{|a|}a(dm)$, $m \in M$, $a \in A$.

A morphism of (left) graded modules over a dga (A, d) is a morphism $f : (M, d) \to (N, d)$ compatible with the differential: $d \circ f = f \circ d$.

A left (A, d)-module (M, d) is said to be semi-free if it is the union of an increasing sequence $M(0) \subset M(1) \subset M(2) \subset \cdots \subset M(n) \subset \cdots$ of sub (A, d)-modules such that M(0) and each M(i)/M(i-1) is A-free on a basis of cycles. Such an increasing sequence is called a semi-free filtration of (M, d).

A semi-free resolution of an (A, d)-module (M, d) is an (A, d)-semi-free module (P, d) together with a quasi-isomorphism (i.e. a morphism inducing an isomorphism in homology) $m: (P, d) \xrightarrow{\simeq} (M, d)$ of (A, d)-modules. Each of P(0) and P(i)/P(i-1) has the form $(A, d) \otimes (V(i), 0)$ where V(i) is a free K-module. Thus the surjections $P(n) \to A \otimes V(n)$ split and the differential d satisfies:

$$P(n) = P(n-1) \oplus (A \otimes V(n))$$
 and $d: V(n) \to P(n-1)$.

Every (A, d)-module (M, d) has a semi-free resolution $m : (P, d) \xrightarrow{\simeq} (M, d)$ ([12, Prop. 6.6]) and if $m' : (P', d) \xrightarrow{\simeq} (M, d)$ is a second semi-free resolution, then, there exists an equivalence

$$\alpha: (P', d) \longrightarrow (P, d)$$

of (A, d)-modules such that $m \circ \alpha$ and m' are homotopic morphisms, denoted $m \circ \alpha \simeq_A m'$.

Particularly, let (A, d) be a differential graded algebra and $(P, d) \xrightarrow{\simeq} (\mathbb{Q}, 0)$ an (A, d)-semi-free resolution of $(\mathbb{Q}, 0)$. This defines the graded (A, d)-module

$$Hom_{A}((P,d),(A,d)) = \bigoplus_{p \ge 0} Hom_{A}^{p,*}((P,d),(A,d)) = \bigoplus_{p \ge 0} \bigoplus_{i \ge 0} Hom_{A}(P^{i}, A^{i+p}),$$

which, endowed with the differential

$$D(f) = d \circ f - (-1)^{p} f \circ d; \quad f \in Hom_{A}^{p,*}((P,d), (A,d)),$$

yields the Eilenberg-Moore Ext functor:

$$\mathcal{E}xt_{(A,d)}(\mathbb{K}, (A,d)) = H^*(Hom_A((P,d), (A,d)), D).$$

This is an invariant up to homotopy of differential graded algebras (see [11, Appendix] or [7, Appendix]). Moreover, [11, Remark 1.3], if $(A, d) \xrightarrow{\simeq} (B, d)$ is a quasi-isomorphism of differential graded algebras, then $\mathcal{E}xt_{(A,d)}(\mathbb{K}, (A, d))$ is identified with $\mathcal{E}xt_{(B,d)}(\mathbb{K}, (B, d))$ via natural (induced) isomorphisms

$$\mathcal{E}xt_{(A,d)}(\mathbb{K}, (A,d)) \xrightarrow{\cong} \mathcal{E}xt_{(A,d)}(\mathbb{K}, (B,d)) \xleftarrow{\cong} \mathcal{E}xt_{(B,d)}(\mathbb{K}, (B,d)).$$
(2.1)

Particularly, $\mathcal{E}xt_{C^*(X;\mathbb{K})}(\mathbb{K}, C^*(X;\mathbb{K}))$ and $\mathcal{E}xt_{C^*(\Omega X;\mathbb{K})}(\mathbb{K}, C_*(\Omega X;\mathbb{K}))$ depend only on the homotopy class of X.

The highest N such that $[\mathcal{E}xt_{C^*(X;\mathbb{K})}(\mathbb{K}, C^*(X;\mathbb{K}))]^N \neq 0$ is called the formal dimension of X. It is denoted $fd(X,\mathbb{K})$.

2.2. Evaluation map and Gorenstein spaces

Let $\rho: (P,d) \xrightarrow{\simeq} (\mathbb{K},0)$ be a minimal (A,d)-semi-free resolution of $(\mathbb{K},0)$. Consider the chain map

$$cev_{(A,d)} : \operatorname{Hom}_{(A,d)}((P,d), (A,d)) \longrightarrow (A,d)$$

given by $f \mapsto f(z)$, where $z \in P$ is a cocycle representing 1 in K. We call it the *chain* evaluation map of (A, d). Passing to homology, we obtain the natural map

$$ev_{(A,d)}: \mathcal{E}xt_{(A,d)}(\mathbb{K}, (A,d)) \longrightarrow H^*(A,d),$$

called the evaluation map of (A, d). The definition of $ev_{(A,d)}$ is independent of the choice of (P, d) and z. The evaluation map $ev_{(X,\mathbb{K})}$ of X over \mathbb{K} is by definition the evaluation map of $C^*(X,\mathbb{K})$.

A Poincaré duality algebra over \mathbb{K} is a graded algebra $H = \{H^k\}_{0 \le k \le N}$ such that $H^N = \mathbb{K}\alpha$ and the pairing $\langle \beta, \gamma \rangle \alpha = \beta\gamma, \ \beta \in H^k, \ \gamma \in H^{N-k}$ defines an isomorphism $H^k \xrightarrow{\cong} Hom_{\mathbb{K}}(H^{N-k}, \mathbb{K}), \ 0 \le k \le N$. In particular, $H = Hom_{\mathbb{K}}(Hom_{\mathbb{K}}(H, \mathbb{K}), \mathbb{K})$ is necessarily finite dimensional.

A Poincaré duality space at \mathbb{K} is a space whose cohomology with coefficients in \mathbb{K} is a Poincaré duality algebra. In this case, the cohomology class α such that $H^N(X;\mathbb{K}) = \mathbb{K}\alpha$ has degree $N = fd(X,\mathbb{K})[11, \text{Proposition 5.1}]$. It is called the fundamental class of X.

A Gorenstein algebra over \mathbb{K} is a differential graded algebra (A, d) whose associated graded vector space $\mathcal{E}xt_{(A,d)}(\mathbb{K}, (A, d))$ is one dimensional.

A space X is Gorenstein over K if the cochain algebra $C^*(X; \mathbb{K})$ is a Gorenstein algebra. For instance, let X be a simply connected CW complex. If in addition X is finite dimensional, then, $C^*(X; \mathbb{K})$ is Gorenstein if and only if $H^*(X; \mathbb{K})$ is a Poincaé duality algebra [11, Theorem 3.1]. However, if dim $\pi_*(X) \otimes \mathbb{Q} < \infty$ then, on one hand, X is a Gorenstein space even though X has infinite dimension [11, Proposition 3.4] (see also Corollary 1 above) and, on the other hand, dim $H^*(X, \mathbb{Q}) < \infty$ if and only if $ev_{C^*(X; \mathbb{Q})} \neq 0$ ([18]).

3. The Q-algebra $\mathcal{E}xt_{C^*(X;\mathbb{Q})}(\mathbb{Q}, C^*(X;\mathbb{Q}))$

Along this section, the ground field is \mathbb{Q} . Recall that to every finite-type simplyconnected space X, it is associated a quasi-isomorphism $(\Lambda V, d) \xrightarrow{\simeq} A_{PL}(X)$ from a free commutative differential graded algebra (cdga for short) $(\Lambda V, d)$ to the commutative graded algebra $A_{PL}(X)$ of polynomial forms with rational coefficients [12]. This latter is connected to $C^*(X, \mathbb{Q})$ via a sequence of quasi-isomorphisms. More explicitly, $\Lambda V = TV/I$ where I is the graded ideal spanned by $\{v \otimes w - (-1)^{deg(u)deg(v)}w \otimes v, v, w \in V\},$ $V = \bigoplus_{n\geq 2}V^n$ is a finite-type graded vector space and the differential d is a derivation defined on V satisfying $d \circ d = 0$. $(\Lambda V, d)$ is called a *Sullivan model* of X. This model is said to be *minimal* if d is decomposable, i.e. $d: V \to \Lambda^{\geq 2}V$ where $\Lambda^{\geq 2}V$ denotes the graded vector space spanned by all the monomials $v_1 \dots v_r$ $(r \geq 2)$, such a model is unique up to isomorphisms [12].

Let (X, x_0) be a based simply-connected finite type CW-complex and denote by

$$m: (\Lambda V, d) \xrightarrow{\simeq} A_{PL}(X)$$

its minimal Sullivan model. In fact, the multiplicative structure of $(\Lambda V, d)$, $\mu_{\Lambda V} : \Lambda V \otimes_{\mathbb{Q}} \Lambda V \to \Lambda V$ is compatible with the one induced on $C^*(X, \mathbb{Q})$ by the diagonal map $\Delta_X : X \to X \times X$, and the same holds for the augmentation $\varepsilon_{\Lambda V} : (\Lambda V, d) \to (\mathbb{Q}, 0)$ and the inclusion $\iota : \{x_0\} \hookrightarrow X$.

A $(\Lambda V, d)$ -semi-free resolution of $(\mathbb{Q}, 0)$ has the form $(P, d) = (\Lambda V \otimes \Lambda sV, d) \xrightarrow{\simeq} (\mathbb{Q}, 0)$ where sV is the suspension of V defined by $(sV)^k = V^{k+1}$ and d(sv) = -s(dv) for all $v \in V$, and is called the acyclic closure of $(\mathbb{Q}, 0)$, [9].

We are now ready to define a homotopy multiplication on $A =: Hom_{(\Lambda V,d)}(\mathbb{Q}, (\Lambda V, d)):$

$$\mu_{A} : A \otimes A \to A$$

in the sens that it only depends on the homotopy class of the model $m : (\Lambda V, d) \to A_{PL}(X)$ (cf. the uniqueness property bellow). Passing to cohomology μ_A induce an associative multiplicative structure with unit on $\mathcal{A} =: \mathcal{E}xt_{(\Lambda V,d)}(\mathbb{Q}, (\Lambda V, d))$ denoted

$$\mu_{\mathcal{A}}: \mathcal{A} \otimes \mathcal{A} \to \mathcal{A}$$

The proof of Theorem 1.1 follows from the following

Theorem 3.1. The \mathbb{Q} -vector space \mathcal{A} , endowed with $\mu_{\mathcal{A}}$, is a graded commutative algebra with unit. Moreover, the evaluation map is a morphism of graded algebras.

Proof. Let $f, g: P \to \Lambda V$ be elements in A representing two classes in \mathcal{A} . As ΛV is commutative, the left ΛV -module P is also a right ΛV -module by setting $x \cdot a = (-1)^{|x||a|} a \cdot x$, $x \in P$ and $a \in \Lambda V$.

Multiplicative structure:

First, we consider

$$egin{aligned} f\otimes g:P\otimes_{\mathbb{Q}}P&\longrightarrow\Lambda V\otimes_{\mathbb{Q}}\Lambda V\ &x\otimes y&\longmapsto(-1)^{|g||x|}f(x)\otimes g(y), \end{aligned}$$

and *I* the ideal generated by $x \cdot a \otimes y - x \otimes a \cdot y$; $x, y \in P$ and $a \in \Lambda V$. It is straightforward that the map $\mu_{\Lambda V} \circ (f \otimes g)$ sends *I* to zero, which then induces, on the quotient $P \otimes_{\Lambda V} P = P \otimes_{\mathbb{Q}} P/I$, the dashed map

defined by:

$$\mu_{\mathcal{A}}(f \otimes g) \coloneqq f.g : P \otimes_{\Lambda V} P \longrightarrow \Lambda V$$
$$x \otimes y \longmapsto (-1)^{|g||x|} f(x)g(y)$$

For any $a \in \Lambda V$ and $x, y \in P$, we have $(f \cdot g)((a \cdot x) \otimes y) = (-1)^{|f \cdot g||a|} a(f \cdot g)(x \otimes y)$. Therefore $f \cdot g$ is a ΛV -morphism.

Next, we show that $Q = P \otimes_{\Lambda V} P$ is a ΛV -semi-free resolution. Recall that a semi-free resolution (P, d) of \mathbb{Q} has the form $W \otimes_{\mathbb{Q}} \Lambda V$ with $W = \bigoplus_{i=0}^{+\infty} W(i)$ and each W(i) is a free graded \mathbb{Q} -module and $d: W(k) \to P(k-1)$, with the semi-free filtration given by $P(k) = \bigoplus_{i=0}^{k} W(i) \otimes_{\mathbb{Q}} \Lambda V$ [12]. Therefore,

$$Q = (W \otimes_{\mathbb{Q}} \Lambda V) \otimes_{\Lambda V} (W \otimes_{\mathbb{Q}} \Lambda V) = (W \otimes_{\mathbb{Q}} W) \otimes_{\mathbb{Q}} \Lambda V.$$

Let $Z = W \otimes_{\mathbb{Q}} W$ and put $Q(k) = \bigotimes_{i=0}^{k} Z(i) \otimes_{\mathbb{Q}} \Lambda V$ where $Z(l) = \bigoplus_{i+j=l} W(i) \otimes_{\mathbb{Q}} W(j)$ is obviously a free graded \mathbb{Q} -module since each W(i) is. For any $x \otimes y \in W(i) \otimes W(j)$, we easily verify that

$$dx \otimes y \in P(i-1) \otimes W(j) \subseteq Q(k-1)$$
 and $x \otimes dy \in W(i) \otimes P(j-1) \subseteq Q(k-1)$,

whence $D: Z(k) \to Q(k-1)$. It results that $(Q, D) \xrightarrow{\simeq} (\mathbb{Q}, 0)$ is a ΛV -semi-free resolution of $(\mathbb{Q}, 0)$. This defines a multiplication

$$\mu_{A} : A \otimes A \to A$$

on $A = Hom_{(\Lambda V, d)}(\Lambda V \otimes \Lambda sV, \Lambda V).$

Now, since $(\Lambda V, d)$ has an associative structure, we deduce that μ_A is associative. Passing to cohomology we acquire a well-defined map of vector spaces:

$$\mu_{\mathcal{A}} : \mathcal{E}xt_{(\Lambda V,d)}(\mathbb{Q}, (\Lambda V, d)) \otimes_{\mathbb{Q}} \mathcal{E}xt_{(\Lambda V,d)}(\mathbb{Q}, (\Lambda V, d)) \longrightarrow \mathcal{E}xt_{(\Lambda V,d)}(\mathbb{Q}, (\Lambda V, d))$$
$$[f] \otimes [g] \longmapsto [f \cdot g]$$

that is an associative multiplication on $\mathcal{E}xt_{(\Lambda V,d)}(\mathbb{Q}, (\Lambda V, d))$.

Uniqueness:

Let $m' : (\Lambda V', d') \xrightarrow{\simeq} A_{PL}(X)$ be another minimal Sullivan model of X i.e. in the homotopy class of $m : (\Lambda V, d) \xrightarrow{\simeq} A_{PL}(X)$ [12, proposition 12.7]. We know that $(\Lambda V, d)$ and $(\Lambda V', d')$ are isomorphic [12, Proposition 12. 10]. Clearly, the same applies for associated semi-free resolutions $Q = P \otimes_{\Lambda V} P$ and $Q' = P' \otimes_{\Lambda V} P'$. It results, from the above commutative triangle, that μ_A is independent of the choice of a minimal model of X.

Unit element:

Let $\varepsilon : \Lambda V \to \mathbb{Q}$ be the augmentation. Recall that $P = \Lambda V \otimes \Lambda s V$ is a $(\Lambda V, d)$ -semi-free resolution of $(\mathbb{Q}, 0)$.

We extend ε to $\varepsilon' = \varepsilon \otimes \varepsilon_{\Lambda sV} : \Lambda V \otimes \Lambda sV \to \mathbb{Q}$, then we compose it with the injection $i : \mathbb{Q} \to \Lambda V$ and obtain $\tilde{\varepsilon} : \Lambda V \otimes \Lambda sV \to \Lambda V$ a representative of a class in

358

 $\mathcal{E}xt_{(\Lambda V,d)}(\mathbb{Q}, (\Lambda V, d))$. Now, for $f : \Lambda V \otimes \Lambda s V \to \Lambda V$, a representative of an arbitrary class in $\mathcal{E}xt_{(\Lambda V,d)}(\mathbb{Q}, (\Lambda V, d))$, we have

$$f \cdot \tilde{\varepsilon} : (\Lambda V \otimes \Lambda s V) \otimes_{\Lambda V} (\Lambda V \otimes \Lambda s V) = \Lambda V \otimes \Lambda s V \otimes \Lambda s V \to \Lambda V$$

and the map

$$\begin{aligned} \theta &= Id_{\Lambda V \otimes \Lambda s V} \otimes \varepsilon_{\Lambda s V} : \quad \Lambda V \otimes \Lambda s V \otimes \Lambda s V &\longrightarrow \quad \Lambda V \otimes \Lambda s V \\ & 1 \otimes s v \otimes 1 &\longmapsto \quad 1 \otimes s v; \\ & 1 \otimes s v \otimes s w &\longmapsto \quad 0; \\ & 1 \otimes 1 \otimes s v &\longmapsto \quad 0 \end{aligned}$$

makes the following diagram commutative:

Thus, it defines a homotopy unit element for $A = Hom_{(\Lambda V,d)}((P,d), (\Lambda V,d))$. Passing to cohomology, we get $[f] \cdot [\tilde{\varepsilon}] = [f]$ and similarly $[\tilde{\varepsilon}] \cdot [f] = [f]$. Henceforth, the class $[\tilde{\varepsilon}]$ defines a unit element for $\mu_{\mathcal{A}}$.

Commutativity:

Let τ be the flip map $\tau: P \otimes_{\Lambda V} P \to P \otimes_{\Lambda V} P; x \otimes y \mapsto (-1)^{|x||y|} y \otimes x$. The diagram

is commutative.

clearly τ being a quasi-isomorphism, $f \cdot g \sim g \cdot f$ and $[f \cdot g] = (-1)^{|f||g|} [g \cdot f]$ so that, the multiplication on A is homotopy commutative and consequently, it is commutative on \mathcal{A} .

We respectively conclude that A is a homotopy commutative differential graded algebra with unit and $\mathcal{E}xt_{(\Lambda V,d)}(\mathbb{Q}, (\Lambda V, d))$ is a graded commutative \mathbb{Q} -algebra with unit.

Finally, it is clear that the following diagram, where cev is the chain evaluation map of $(\Lambda V, d)$, is commutative:

$$\begin{array}{ccc} \mathbf{A} \otimes \mathbf{A} & & \stackrel{\mu_{\mathbf{A}}}{\longrightarrow} \mathbf{A} \\ & & \downarrow_{cev \otimes cev} & & \downarrow_{cev} \\ (\Lambda V, d) \otimes (\Lambda V, d) & \stackrel{\mu_{\Lambda V}}{\longrightarrow} (\Lambda V, d). \end{array}$$

Thus, passing to cohomology

we deduce that the evaluation map is a morphism of graded algebras.

4. Ext-versions approximations and the main theorem

Recall that we still assume that $\mathbb{K} = \mathbb{Q}$, and let (A, d) be any commutative differential graded model for a space X, i.e. (A, d) is quasi-isomorphic to the cdga $A_{PL}(X)$ (cf. the beginning of Section 3), and $(\Lambda V, d)$ its minimal Sullivan model given by the quasiisomorphism $\theta : (\Lambda V, d) \xrightarrow{\simeq} (A, d)$ [12]. Referring to [5], the cdga morphism

$$\mu_n^{\theta} := (\mathrm{Id}_A, \theta, \dots, \theta) : (A, d) \otimes (\Lambda V, d)^{\otimes n-1} \to (A, d)$$

is a special model, called an *s*-model, for the path fibration $\pi_n : X^I \to X^n$, the substitute of the *n*-fold diagonal map $\Delta_X^n : X \to X^n$. This allows the following

Definition 4.1. (a): $TC_n(X_0)$ is the least m such that the projection

$$\rho_m: \left(A \otimes (\Lambda V)^{\otimes n-1}, d\right) \to \left(\frac{A \otimes (\Lambda V)^{\otimes n-1}}{\left(\ker \mu_n^{\theta}\right)^{m+1}}, \overline{d}\right)$$

admits an algebra retraction.

- (b): mTC_n(X) is the least m such that ρ_m admits a retraction as $(A \otimes (\Lambda V)^{\otimes n-1}, d)$ -module.
- (c): $\operatorname{HTC}_n(X)$ is the least m such that $H(\rho_m)$ is injective.
- (d): nil ker $H^*(\Delta_X^n, \mathbb{Q})$ is the longest non trivial product of elements of ker $H^*(\Delta_X^n, \mathbb{Q})$.

These invariants are ordered as follows ([5])

$$nil \ker H^*(\Delta_X^n, \mathbb{Q}) \le \operatorname{HTC}_n(X) \le \operatorname{mTC}_n(X) \le \operatorname{TC}_n(X_0) \le \operatorname{TC}_n(X).$$
 (4.1)

Inspired by the previous definition, we introduce the *Ext-version* of the original invariants. Now if we take θ to be the identity of ΛV , $\mu_n^{\theta} = \mu_n^{Id_{\Lambda V}}$ becomes the *n*-fold multiplication in ΛV denoted by

$$u_n: (\Lambda V)^{\otimes n} \to \Lambda V_n$$

Therefore, $nil \ker H^*(\Delta_X^n, \mathbb{Q}) = nil \ker H^*(\mu_n).$

In a similar way, we put

$$\mu_{\mathbf{A},n}: \mathbf{A}^{\otimes n} \to \mathbf{A} \qquad \text{and} \qquad \mu_{\mathcal{A},n}: \mathcal{A}^{\otimes n} \to \mathcal{A}$$

where $A := Hom_{\Lambda V}((P, d), (\Lambda V, d))$ and $\mathcal{A} := H(A) = \mathcal{E}xt_{(\Lambda V, d)}((P, d), (\Lambda V, d))$. Then (cf. Definition 1.3) we have

Definition 4.2. (a): $\operatorname{TC}_{n}^{\mathcal{E}xt}(X,\mathbb{Q})$ is the least *m* such that the projection

$$\Gamma_m : (\mathbf{A}^{\otimes n}, d) \to \left(\frac{\mathbf{A}^{\otimes n}}{(\ker(\mu_{\mathbf{A}, n}))^{m+1}}, \overline{d}\right)$$

admits a homotopy retraction.

- (b): $mTC_n^{\mathcal{E}xt}(\mathbf{X}, \mathbb{Q})$ is the least m such that Γ_m admits a homotopy retraction as $(\mathbf{A}^{\otimes n}, d)$ -module.
- (c): $\operatorname{HTC}_{n}^{\mathcal{E}xt}(X,\mathbb{Q})$ is the least m such that $H(\Gamma_{m})$ is injective.
- (d): nil ker $(\mu_{\mathcal{A},n}, \mathbb{Q})$ is the longest non trivial product of elements of ker $(\mu_{\mathcal{A},n})$.

The same arguments used to establish the inequalities in (4.1) allow the following:

$$nil \ker (\mu_{\mathcal{A},n}, \mathbb{Q}) \le \operatorname{HTC}_{n}^{\mathcal{E}xt}(X, \mathbb{Q}) \le \operatorname{mTC}_{n}^{\mathcal{E}xt}(X, \mathbb{Q}) \le \operatorname{TC}_{n}^{\mathcal{E}xt}(X, \mathbb{Q})$$

Remark 4.3. Note that when X is a Poincaré duality space, the same process followed to prove that $mTC_n(X) = HTC_n(X)$ ([5]) allows the following equality $mTC_n^{\mathcal{E}xt}(X, \mathbb{Q}) = HTC_n^{\mathcal{E}xt}(X, \mathbb{Q})$.

We are now in place to state the main theorem.

Theorem 4.4. Let X be a 1-connected finite type CW-complex. If X is a Gorenstein space over \mathbb{Q} and $ev_{C^*(X,\mathbb{Q})} \neq 0$, then

$$HTC_n^{\mathcal{E}xt}(X,\mathbb{Q}) \le HTC_n(X)$$

for any integer $n \ge 2$. Furthermore, if $(\Lambda V, d)$ is a minimal Sullivan model of X, [f] is the generating class of \mathcal{A} and $m = HTC_n^{\mathcal{E}xt}(X, \mathbb{Q})$, then:

$$HTC_n(X) = HTC_n^{\mathcal{E}xt}(X, \mathbb{Q}) =: m \Leftrightarrow f(1)^{\otimes n} \in (\ker \mu_n)^m \setminus (\ker \mu_n)^{m+1}.$$

Before giving the proof of the theorem, let us first recall that if X is a finite ndimensional sub-complex of \mathbb{R}^{n+k} , k > n+1 and M its regular neighborhood, the homotopy fiber F_X of the inclusion $\partial M \hookrightarrow M$ is called the *Spivak fiber* for X and it is a homotopy invariant of X. It is introduced in [20] where it is shown that X is a Poincaré complex if and only if F_X is a homotopy sphere.

The following corollary presents some essential classes of spaces satisfying the previous theorem:

Corollary 4.5. The hypothesis of 1.4 and hence its conclusions are satisfied in the following cases:

- (a) X is rationally elliptic,
- (b) $H_{>N}(X,\mathbb{Z}) = 0$, for some N, and $H^*(X,\mathbb{Q})$ is a Poincaré duality algebra,
- (c) X is a finite 1-connected CW-complex and its Spivak fiber F_X has finite dimensional cohomology.

For the sake of completeness, we present below a sketch of the proof of the corollary:

- (a) If X is rationally elliptic, then it is Gorenstein and $ev_{C^*(X,\mathbb{Q})} \neq 0$ thanks to [11, Proposition 3.4] and [18, Theorem A] respectively.
- (b) Referring to [7] (cf. also [11, Theorem 3.6]), under the hypothesis, $H^*(X, \mathbb{Q})$ is a Poincaré duality algebra if and only if X is a Gorenstein space over \mathbb{Q} . Thus, by [11, Theorem 2.2] we have dim $\pi_*(X) \otimes \mathbb{Q} < \infty$ and by [18, Theorem A] we obtain $ev_{C^*(X,\mathbb{Q})} \neq 0$.
- (c) Here using [11, Corollary 4.5], we have $H^*(X, \mathbb{Q})$ is a Poincaré duality algebra, hence it is a Gorenstein algebra. It results that X is Gorenstein over \mathbb{Q} [11, Proposition 3.2] and $ev_{C^*(X,\mathbb{Q})} \neq 0$ as in the previous case.

Proof. (of Theorem 4.1): Let $(\Lambda V, d)$ be a Sullivan minimal model of X. The projections

$$\Gamma_m : (\mathbf{A}^{\otimes n}, d) \to \left(\frac{\mathbf{A}^{\otimes n}}{\left(\ker\left(\mu_{\mathbf{A}, n}\right)\right)^{m+1}}, \overline{d}\right) \quad \text{and} \quad \rho_m : \left((\Lambda V)^{\otimes n}, d\right) \to \left(\frac{(\Lambda V)^{\otimes n}}{\left(\ker\mu_n\right)^{m+1}}, \overline{d}\right)$$

induce two short exact sequences linked by chain evaluation map

Since X is Gorenstein, $\mathcal{A} \cong \mathbb{Q}\Omega$ where Ω is the generating class represented by a cocycle $f \in \mathcal{A}^N$ of degree N = fd(X), the formal dimension of X (cf. §5, [11]). Therefore, the

diagram (4.2) induces, in cohomology, the following one

$$\begin{array}{cccc} 0 & \longrightarrow & H^{nN}(\ker{(\mu_{\mathrm{A},n})^{m+1}}) & \longrightarrow & (\mathcal{A}^{N})^{\otimes n} \stackrel{H^{nN}(\Gamma_{\mathrm{m}})}{\longrightarrow} H^{nN}(\frac{\mathrm{A}^{\otimes n}}{\ker{(\mu_{\mathrm{A},n})^{m+1}}}) & \longrightarrow & 0 \\ & & & \downarrow & & \downarrow \\ & & & \downarrow & & \downarrow e^{v_{(\Lambda V,d)}^{\otimes n}} & \downarrow H^{nN}(\theta) \\ H^{nN-1}(\frac{(\Lambda V)^{\otimes n}}{(\ker{\mu_n})^{m+1}}) & \longrightarrow & H^{nN}((\ker{\mu_n})^{m+1}) & \longrightarrow & (H^N(\Lambda V))^{\otimes n} \stackrel{H^{nN}(\rho_m)}{\longrightarrow} H^{nN}(\frac{(\Lambda V)^{\otimes n}}{(\ker{\mu_n})^{m+1}}) & \longrightarrow & 0. \end{array}$$

Now, since $ev_{(\Lambda V,d)} = ev_{C^*(X,\mathbb{Q})} \neq 0$, this is also the case for the horizontal arrow $ev_{(\Lambda V,d)}^{\otimes n}$. Thus, if $H^{nN}(\rho_m)$ is injective then $H^{nN}(\Gamma_m)$ is also injective. It results that: $HTC_n^{\mathcal{E}xt}(X,\mathbb{Q}) \leq HTC_n(X)$.

$$\begin{split} HTC_{n}^{(\Lambda V,a)} \\ HTC_{n}^{\ell xt}(X,\mathbb{Q}) &\leq HTC_{n}(X). \\ \text{Next, let } m \text{ denote the smallest integer such that } H^{nN}(\Gamma_{m}) \text{ is injective or, equivalently,} \\ f^{\otimes n} \text{ is a cocycle in } \mathbf{A}^{\otimes n} \text{ and } f^{\otimes n} \in \ker(\mu_{\mathbf{A},n})^{m} \backslash \ker(\mu_{\mathbf{A},n})^{m+1} \text{ (see Remark below). More$$
 $over, since } (\mathcal{A}^{N})^{\otimes n} \text{ is one dimensional, } H^{nN}(\Gamma_{m}) \text{ is indeed a bijection. Hence, } H^{nN}(\rho_{m}) \text{ is injective if and only if } H^{nN}(\theta) \text{ is injective. But, } ev_{(\Lambda V,d)}^{\otimes n} \text{ being non-zero, the commutativ$ $ity of the right diagram implies that this is equivalent to <math>f(1)^{\otimes n} \in (\ker \mu_{n})^{m} \backslash (\ker \mu_{n})^{m+1}. \\ \text{Notice that } \mu_{n}(f(1)^{\otimes n}) \text{ is a cocycle in } (\Lambda V)^{\otimes n} \text{ and } ev_{(\Lambda V,d)}^{\otimes n} [f^{\otimes n}] = [f(1)]^{\otimes n} \neq 0. \text{ It results} \\ \text{that } HTC_{n}(X) = HTC_{n}^{\ell xt}(X, \mathbb{Q}) =: m \Leftrightarrow f(1)^{\otimes n} \in (\ker \mu_{n})^{m} \backslash (\ker \mu_{n})^{m+1}. \end{split}$

Remark 4.6. An equivalent definition of $HTC_n(X)$, when X is a Poincaré duality space, reads as follows: It is the smallest integer $m \ge 0$ such that some cocycle ω representing the fundamental class of $(\Lambda V, d)^{\otimes n}$, can be written as a product of m elements of $ker(\mu_n)$ (not necessarily cocycles). Similarly, for any Gorenstein space X, $HTC_n^{\mathcal{E}xt}(X, \mathbb{Q})$ is the smallest integer m such that some cocycle representing the fundamental class of $\Lambda^{\otimes n}$, namely $\Omega = [f]^{\otimes n}$ where [f] designates the generating element of \mathcal{A}^N , can be written as a product of length m of elements in $ker(\mu_{A,n})$. Therefore, in order to determine $HTC_n(X)$ we may, using the precedent theorem, calculate $m = HTC_n^{\mathcal{E}xt}(X, \mathbb{Q})$, which is quite simpler since \mathcal{A}^* is one dimensional, and afterwards deal with the obstruction to have the equality.

Now, if dim $V < \infty$ and dim $H(\Lambda V, d) = \infty$ then, by [18, Theorem A], we have $(\Lambda V, d)$ is a Gorenstein but not a Poincaré duality algebra. Moreover $ev_{(\Lambda V,d)} = 0$. Hence, in this case, to compare the invariants $HTC_n^{\mathcal{E}xt}(X, \mathbb{Q})$ and $HTC_n(X)$, we determine them separately.

5. Use of the Adams-Hilton model

Let R be a principal ideal domain containing $\frac{1}{2}$, and let $\rho(R)$ denote the least non invertible prime (or ∞) in R. $CW_r(R)$ is the sub-category of finite r-connected CW-complexes X ($r \geq 1$) satisfying dim $(X) \leq r\rho(R)$.

In his attempt to extend Sullivan's theory to arbitrary rings ([14], see also [2]), S. Halperin associated to every X in $CW_r(R)$ an appropriate differential graded Lie algebra (L,∂) and showed that its Cartan-Eilenberg-Chevally complex $C^*(L,\partial)$ is, on one hand, linked with the cochains algebra $C^*(X; R)$ by a series of quasi-isomorphisms ([14, p. 274]) and, on the other hand, is quasi-isomorphic to a free commutative differential graded algebra $(\Lambda W, d)$ [14, §7]. $(\Lambda W, d)$ is then called a free commutative model of X or a minimal Sullivan model of X.

Now, if \mathbb{K} is a field with odd characteristic (containing $\frac{1}{2}$) and X is a q-connected $(q \ge 1)$ finite CW-complex such that dim $X \le q \cdot char(\mathbb{K})$, i.e. $X \in CW_q(\mathbb{K})$, it has a minimal Sullivan model $(\Lambda W, d)$ [14, Theorem 7.1].

The Adams-Hilton model ([1]) of X over \mathbb{K} is a chain algebra quasi-isomorphism $\theta_X : (TV, d) \xrightarrow{\simeq} C_*(\Omega X; \mathbb{K})$, i.e. $H_*(\theta_X)$ is an isomorphism of graded algebras. Here V satisfies

 $H_{i-1}(V, d_1) \cong H_i(X; \mathbb{K})$ and $d_1: V \to V$ is the linear part of d. (TV, d) is called a *free* model of X.

Therefore, using the isomorphism (2.1) we have successively:

$$\mathcal{E}xt_{C^*(X;\mathbb{K})}(\mathbb{K}, C^*(X;\mathbb{K})) \xrightarrow{\cong} \mathcal{E}xt_{(\Lambda W,d)}(\mathbb{K}, (\Lambda W, d)).$$

and

$$\mathcal{E}xt_{(TV,d)}(\mathbb{K}, (TV,d)) \stackrel{\cong}{\to} \mathcal{E}xt_{C_*(\Omega X;\mathbb{K})}(\mathbb{K}, C_*(\Omega X;\mathbb{K})).$$

Now, combining these two models via the isomorphism of graded \mathbb{K} -vector spaces [11, Theorem 2.1] yields

$$\mathcal{E}xt_{C^*(X;\mathbb{K})}(\mathbb{K}, C^*(X;\mathbb{K})) \xrightarrow{\cong} \mathcal{E}xt_{C_*(\Omega X;\mathbb{K})}(\mathbb{K}, C_*(\Omega X;\mathbb{K})).$$
(5.1)

gives the isomorphism of graded \mathbb{K} -vector spaces:

$$\mathcal{E}xt_{(\Lambda W,d)}(\mathbb{K}, (\Lambda W, d)) \cong \mathcal{E}xt_{(TV,d)}(\mathbb{K}, (TV, d)).$$

Argument used in the rational case allows us to conclude that $\mathcal{E}xt_{(\Lambda W,d)}(\mathbb{K}, (\Lambda W, d))$ has the structure of a graded commutative algebra with unit. The latter isomorphism serves to endow $\mathcal{E}xt_{(TV,d)}(\mathbb{K}, (TV, d))$ with the same structure. It results the following

Proposition 5.1. Let \mathbb{K} be a field with odd characteristic and $X \in CW_q(\mathbb{K})$. Then, the graded vector spaces $\mathcal{E}xt_{C^*(X;\mathbb{K})}(\mathbb{K}, C^*(X;\mathbb{K}))$ and $\mathcal{E}xt_{C^*(\Omega X;\mathbb{K})}(\mathbb{K}, C_*(\Omega X;\mathbb{K}))$ have isomorphic graded commutative algebra structures with unit. In particular, the Adams-Hilton model can be used to make this structure explicit.

Recall that $\mathcal{E}xt_{(TV,d)}(\mathbb{K}, (TV, d))$ is, as in the rational case, obtained in terms of the acyclic closure of \mathbb{K} of the form $(TV \otimes (\mathbb{K} \oplus sV), \delta)$, where the differential δ satisfies $\delta s + sd = id$, d being the differential of TV. That is, for any element $z \otimes sv$ of $TV \otimes (\mathbb{K} \oplus sV)$, we have

$$\delta(z \otimes sv) = dz \otimes sv + (-1)^{|z|} zv \otimes 1 - (-1)^{|z|} z \otimes sdv.$$

Notice that any element f in $Hom^p_{(TV,d)}((TV \otimes (\mathbb{K} \oplus sV), \delta), (TV, d))$ is entirely determined by its image of $1 \otimes (\mathbb{K} \oplus sV)$ since $TV \otimes (\mathbb{K} \oplus sV)$ is a left (TV, d)-module acting on the first factor. Thus we have

$$(D(g))(1 \otimes sv) = d \circ f(1 \otimes sv) - (-1)^p f \circ \delta(1 \otimes sv)$$
$$= df(1 \otimes sv) - (-1)^{p(|v|+1)} v f(1) + (-1)^p f(1 \otimes sdv)$$

Therefore,

(a) An element g in $Hom_{(TV,d)}^{p-1}((TV \otimes (\mathbb{K} \oplus sV), \delta), (TV, d))$ is in Im(D) if and only if g = D(f) for some f in $Hom_{(TV,d)}^{p}((TV \otimes (\mathbb{K} \oplus sV), \delta), (TV, d))$, i.e.

$$g(1 \otimes sv) = df(1 \otimes sv) - (-1)^{p(|v|+1)} vf(1) + (-1)^p f(1 \otimes sdv).$$

Consequently:

$$g \in Im(D) \Leftrightarrow g(1 \otimes sv) = df(1 \otimes sv) - (-1)^{p(|v|+1)}vf(1) + (-1)^{p}f(1 \otimes sdv) \text{ for some } f.$$

$$(5.2)$$
(b) An element $f \in Hom^{p}_{(TV,d)}((TV \otimes (\mathbb{K} \oplus sV), \delta), (TV, d)) \text{ is in } Ker(D) \text{ if and only if}$

$$D(f) = 0, \text{ that is, } df(1 \otimes sv) = (-1)^{p(|v|+1)}vf(1) - (-1)^{p}f(1 \otimes sdv). \text{ Consequently:}$$

$$f \in Ker(D) \Leftrightarrow df(1 \otimes sv) = (-1)^{p(|v|+1)}vf(1) - (-1)^{p}f(1 \otimes sdv). \quad (5.3)$$

Now, since deg(d) = -1, $\mathcal{A}_* = (Hom_{(TV,d)}((TV \otimes (\mathbb{K} \oplus sV), \delta), (TV, d)), D)$ is a dga_* in the sense of [11]. Using the standard convention $\mathcal{A}^{-q} = \mathcal{A}_q$, for all $q \in \mathbb{Z}$, we obtain a dga^* whose cohomology at -p is the \mathbb{K} -module:

$$\mathcal{E}xt_{(TV,d)}^{-p}(\mathbb{Q},(TV,d)) = H_p\left(Hom_{(TV,d)}((TV\otimes(\mathbb{K}\oplus sV),\delta),(TV,d)),D\right).$$

More explicitly, if $f \in Hom_{(TV,d)}(TV \otimes (\mathbb{K} \oplus sV), \Lambda V)$ is a cycle of (homological) degree p, it defines a cohomological class $[f] \in \mathcal{E}xt^{-p}_{(TV,d)}(\mathbb{Q}, (TV, d))$ of degree -p.

5.1. Case of a suspension

Assume that $\mathbb{K} = \mathbb{Q}$ and let X be a simply connected space, and $Y = \Sigma X$ its suspension. The morphism of graded modules $\sigma_* : H_*(X; \mathbb{Q}) \longrightarrow H_*(\Omega \Sigma X; \mathbb{Q})$ induced by the adjoint $\sigma : X \to \Omega \Sigma X$ of $id_{\Sigma X}$ extends to a morphism of graded algebras $T(\sigma_*) : TH_*(X; \mathbb{Q}) \longrightarrow H_*(\Omega \Sigma X; \mathbb{Q})$. In fact, this is an isomorphism of graded algebras since $H_*(X; \mathbb{Q})$ is a free graded \mathbb{Q} -module. Therefore ([3])

$$(TH_*(X;\mathbb{Q}),0) \xrightarrow{\simeq} C_*(\Omega\Sigma X;\mathbb{Q})$$

is an Adams-Hilton model of $Y = \Sigma X$. It results that

$$\mathcal{E}xt_{C_*(\Omega\Sigma X;\mathbb{Q})}(\mathbb{Q}, C_*(\Omega\Sigma X;\mathbb{Q})) \cong \operatorname{Ext}_{TV}(\mathbb{Q}, TV),$$

where $V = H_*(X; \mathbb{Q})$. Now if $(\Lambda W, d)$ is a Sullivan model of $Y = \Sigma X$, using (5.1) we obtain a commutative diagram

This permits the use of Adams-Hilton models to explicitly describe the algebra structure on \mathcal{A} , since it restricts to ordinary Ext which loosen the calculations. Notice that $\Omega(\Sigma X)$ is weakly equivalent to the James space J(X) and, referring to [12, Example 7], that there exists a minimal Sullivan model for ΣX of the form $(\Lambda Z, d)$ with quadratic differential, i.e. such that $d(Z) \subset \Lambda^2 Z$.

5.2. When X is a 2-cell CW complex

Let \mathbb{K} any field containing $\frac{1}{2}$.

In this subsection, we showcase another use of the Adams-Hiton models to help picture the algebra structure on \mathcal{A} . Let then $X = S^q \cup_{\varphi} e^{q+1}$, $q \ge 2$, be the space where the cell e^{q+1} is attached by a map φ of degree r. The Adams-Hilton model of X has the form (TV, d), where V is a \mathbb{K} -vector space generated by a and a' with deg(a) = q - 1, deg(a') = q, da = 0 and da' = -ra.

Let us go back to where we left off at the beginning of this section and apply, in this case, the obtained formulas (5.2) and (5.3).

$$g \in Im(D) \Leftrightarrow \begin{cases} g(1) = df(1), \\ g(1 \otimes sa) = df(1 \otimes sa) - (-1)^{pq} af(1), & (\text{ for some } f) \\ g(1 \otimes sa') = df(1 \otimes sa') - (-1)^{p} rf(1 \otimes sa) - (-1)^{p(q+1)} a'f(1), \end{cases}$$
(5.4)

and

$$f \in Ker(D) \Leftrightarrow \begin{cases} df(1) = 0, \\ df(1 \otimes sa) = (-1)^{pq} a f(1), \\ df(1 \otimes sa') = (-1)^{p} r f(1 \otimes sa) + (-1)^{p(q+1)} a' f(1). \end{cases}$$
(5.5)

Recall that to any pointed topological space X, it is associated in [11] an invariant called the *formal dimension* of X (with respect to a field \mathbb{K}) defined as follows:

$$fd(X,\mathbb{K}) = \sup\{r \in \mathbb{Z} \mid [\mathcal{E}xt^p_{C^*(X;\mathbb{K})}(\mathbb{K}, C^*(X;\mathbb{K}))]^r \neq 0\},\$$

or $fd(X, \mathbb{K}) = -\infty$ if such integer does not exist. In particular [11, Proposition 5.1], if $H^*(X; \mathbb{K})$ is finite dimensional,

$$fd(X,\mathbb{K}) = \sup\{r \in \mathbb{Z} \mid H^r(X;\mathbb{K}) \neq 0\}.$$

Notice that, using cellular homology, we see that $H_*(X,\mathbb{Z}) = H_0(X,\mathbb{Z}) \oplus H_q(X,\mathbb{Z}) \cong \mathbb{Z} \oplus \mathbb{Z}/r\mathbb{Z}$. We should then discuss two cases:

- (i) If $char(\mathbb{K}) = 0$ or co-prime with r, we have $H^*(X, \mathbb{K}) = H^0(X, \mathbb{K}) \cong \mathbb{K}$. In this case, $H^*(X, \mathbb{K})$ has formal dimension fd(X) = 0, thus, it is a Poincaré duality space. Moreover, since it has finite dimensional cohomology, it is also a Gorenstein space [11, Theorem 3.1].
- (ii) If $char(\mathbb{K})$ divides r then, $H^*(X, \mathbb{K}) = H^0(X, \mathbb{K}) \oplus H^q(X, \mathbb{K}) \oplus H^{q+1}(X, \mathbb{K}) \cong \mathbb{K} \oplus \mathbb{K} \oplus \mathbb{K}$. Thus, since $q \ge 2$, X is neither a Poincaré duality space nor a Gorenstein space [7, Theorem 1]. In this case, fd(X) = q + 1, so that $\mathcal{E}xt^k_{(TV,d)}(\mathbb{K}, (TV, d)) = 0, \forall k > q + 1$.

Example: In this example, we specify the case where q = 2, i.e. $X = S^2 \cup_{\varphi} e^3$. Thus $V = \mathbb{K}a \oplus \mathbb{K}a'$ with |a| = 1 and |a'| = 2. We give below an explicit computation of it to illustrate the use of Adams-Hilton models.

i. Assume that $char(\mathbb{K}) = 0$ or co-prime with r (we specialize in the case where $\mathbb{K} = \mathbb{Q}$). Let f be a cycle of degree 0, we have df(1) = 0, then f(1) is necessarily a scalar $f(1) = \gamma$. The second equation in (5.5) implies that $df(sa) = \gamma a$, therefore $f(sa) = -\frac{\gamma}{r}a' + \gamma'a^2$. The last equation in (5.5) gives, after a simple simplification, $df(sa') = r\gamma'a^2$, then $f(sa') = -\gamma'_1a' \cdot a + \gamma'_2a \cdot a' + \gamma''a^3$,

$$Ker(D) = \frac{\mathbb{Q} \oplus \mathbb{Q}a' \oplus \mathbb{Q}a^2 \oplus \mathbb{Q}a' \cdot a \oplus \mathbb{Q}a \cdot a' \oplus \mathbb{Q}a^3}{\langle x_1 = -rx_2; x_3 = -x_4 + x_5 \rangle}$$

Now let g be an arbitrary element of degree 1:

$$\begin{cases} g(1) = \alpha_1 a \\ g(sa) = \alpha_2 a' \cdot a + \alpha_3 a \cdot a' + \alpha_4 a^3 \\ g(sa') = \alpha_5 a'^2 + \alpha_6 a' \cdot a^2 + \alpha_7 a \cdot a' \cdot a + \alpha_8 a^2 \cdot a' + \alpha_9 a^4 \end{cases}$$

by (5.4) we have

$$\begin{cases} D(g)(1) = 0\\ D(g)(sa) = (-\alpha_1 - r\alpha_2 + r\alpha_3)a^2\\ D(g)(sa') = (\alpha_1 + r\alpha_2 - r\alpha_5)a' \cdot a + (r\alpha_3 - r\alpha_5)a \cdot a' + (r\alpha_4 - r\alpha_6 + r\alpha_7 - r\alpha_8)a^3, \end{cases}$$

therefore

$$Im(D) = \frac{\mathbb{Q}a^2 \oplus \mathbb{Q}a' \cdot a \oplus \mathbb{Q}a \cdot a' \oplus \mathbb{Q}a^3}{\langle x_1 = -x_2 + x_3 \rangle}$$

We consequently obtain $\mathcal{E}xt^0_{(TV,d)}(\mathbb{Q}, (TV, d)) = \mathbb{Q}.$

Applying the same process for $i \neq 0$, we recover the previously stated fact $\mathcal{E}xt^i_{(TV,d)}(\mathbb{Q}, (TV,d)) = 0.$

ii. Assume that $char(\mathbb{K})$ divides r, so that $r = 0 \pmod{char(\mathbb{K})}$ and da = da' = 0. Recall that in general, we have:

$$(D(f))(1 \otimes sa) = df(1 \otimes sa) - (-1)^{pq}af(1) = 0,$$

and

$$D(f))(1 \otimes sa') = df(1 \otimes sa') - (-1)^p rf(1 \otimes sa) - (-1)^{p(q+1)}a'f(1) = 0.$$

These become respectively in this case:

$$(D(f))(1 \otimes sa) = -(-1)^{pq}af(1) = 0$$
, and $(D(f))(1 \otimes sa') = -(-1)^{p(q+1)}a'f(1) = 0$.

Notice that in this case, for an element f to be in ker(D), it is necessarily that f(1) = 0.

Let f be a cycle of degree 0, then we have f(1) = 0, consequently df(sa) = df(sa') = 0, which implies that $f(sa) = \gamma_1 a' + \gamma_2 a^2$ and $f(sa') = \gamma_3 a' \cdot a + \gamma_4 a \cdot a' + \gamma_5 a^3$. Therefore

$$Ker(D) = \mathbb{K}a^2 \oplus \mathbb{K}a' \oplus \mathbb{K}a' \cdot a \oplus \mathbb{K}a \cdot a' \oplus \mathbb{K}a^3.$$

Now let g be an arbitrary element of degree 1:

$$\begin{cases} g(1) = \alpha_1 a \\ g(sa) = \alpha_2 a' \cdot a + \alpha_3 a \cdot a' + \alpha_4 a^3 \\ g(sa') = \alpha_5 a'^2 + \alpha_6 a' \cdot a^2 + \alpha_7 a \cdot a' \cdot a + \alpha_8 a^2 \cdot a' + \alpha_9 a^4 \end{cases}$$

hence

$$\left\{ \begin{array}{l} D(g)(1) = 0 \\ D(g)(sa) = -ag(1) = -\alpha_1 a^2 \\ D(g)(sa') = a'g(1) = \alpha_1 a' \cdot a, \end{array} \right.$$

therefore

$$Im(D) = \frac{\mathbb{K}a^2 \oplus \mathbb{K}a' \cdot a}{\langle x_1 = -x_2 \rangle} \cong \mathbb{K}(a' \cdot a - a^2).$$

we obtain $\mathcal{E}xt^0_{(TV,d)}(\mathbb{K}, (TV,d)) \cong \mathbb{K}a^2 \oplus \mathbb{K}a' \oplus \mathbb{K}a \cdot a' \oplus \mathbb{K}a^3 \cong \mathbb{K}^4$. An application of the same argument yields:

$$\mathcal{E}xt^{-1}_{(TV,d)}(\mathbb{K}, (TV,d)) \cong \mathbb{K}a^3 \oplus \mathbb{K}a \cdot a' \oplus \mathbb{K}a' \cdot a \oplus \mathbb{K}a \cdot a' \oplus \mathbb{K}a^2 \cdot a' \oplus \mathbb{K}a^4 \cong \mathbb{K}^6,$$

$$\begin{aligned} & \mathcal{E}xt_{(TV,d)}^{-2}(\mathbb{K},(TV,d)) &\cong & \mathbb{K}a^4 \oplus \mathbb{K}a^2 \cdot a' \oplus \mathbb{K}a \cdot a' \cdot a \oplus \mathbb{K}a' \cdot a^2 \oplus \mathbb{K}a'^2 \oplus \\ & & \mathbb{K}a \cdot a'^2 \oplus \mathbb{K}a^3 \cdot a' \oplus \mathbb{K}a^2 \cdot a' \cdot a \oplus \mathbb{K}a \cdot a' \cdot a^2 \oplus \mathbb{K}a^5 \\ &\cong & \mathbb{K}^{10}. \end{aligned}$$

From the previous cases, it is obvious that $\mathcal{E}xt^{-i}_{(TV,d)}(\mathbb{K}, (TV,d)) \neq 0, \forall i \geq 0$. Since $fd(X,\mathbb{K}) = 3$, we have $\mathcal{E}xt^{i}_{(TV,d)}(\mathbb{K}, (TV,d)) = 0, \forall i \geq 4$. It remains then to calculate the cases i = -1, -2, -3 which are given successively by applying the same process as follows: $\mathcal{E}xt^{1}_{(TV,d)}(\mathbb{K}, (TV,d)) \cong \mathbb{K}a' \oplus \mathbb{K}a^{2}, \mathcal{E}xt^{2}_{(TV,d)}(\mathbb{K}, (TV,d)) \cong \mathbb{K} \oplus \mathbb{K}a$ and $\mathcal{E}xt^{3}_{(TV,d)}(\mathbb{K}, (TV,d)) \cong \mathbb{K}$.

Now notice that for q > 2, Adams-Hilton model for $X = S^q \cup_{\varphi} e^{q+1}$ has two generators a and a' of degrees respectively q-1 and q, thus the degree of a' does not double that of a, so the previous example is somewhat a special case. However the computational process still holds, and we have, for the case \mathbf{i} , $\mathcal{E}xt^0_{(TV,d)}(\mathbb{K}, (TV, d)) = \mathbb{K}$ and $\mathcal{E}xt^i_{(TV,d)}(\mathbb{K}, (TV, d)) = 0$ for $i \neq 0$. Whereas for the case \mathbf{i} , computation process holds but the results differ, since we might have $\mathcal{E}xt^{-i}_{(TV,d)}(\mathbb{K}, (TV, d)) = 0$ for finitely many $i \geq -(q+1)$ (e.g. for q = 7 we have $\mathcal{E}xt^7_{(TV,d)}(\mathbb{K}, (TV, d)) = 0$), on the other hand, we always have $\mathcal{E}xt^{-i}_{(TV,d)}(\mathbb{K}, (TV, d)) = 0$, $\forall i < -(q+1)$ since fd(X) = q + 1.

Acknowledgment. We would like to express our sincere gratitude to the referee and the editor for their efforts in proofreading and valuable comments, which improved the quality of this paper.

References

- J. F. Adams and P. J. Hilton, On the chain algebra of a loop space, Comment. Math. Helv. 30, 305-330, 1955.
- [2] D. Anick, Hopf algebras up to homotopy, J. Amer. Math. Soc. 2, 417-453, 1989.
- [3] R. Bott and H. Samelson, On the Pontryagin product in spaces of paths, Comment. Math. Helv. 27 (1), 320-337, 1953.

366

- [4] J. G. Carrasquel-Vera, Computations in rational sectional category, Bull. Belg. Math. Soc. Simon Stevin 22 (3), 455-469, 2015.
- [5] J. G. Carrasquel, Rational methods applied to sectional category and topological complexity, Contemp. Math. 702, 2018.
- [6] M. Farber, Topological Complexity of Motion Planning, Discrete Comput. Geom. 29, 211-221, 2003.
- [7] Y. Félix and S. Halperin, A note on Gorenstein spaces, J. Pure Appl. Algebra 223, 4937-4953, 2019.
- [8] Y. Félix and S. Halperin, Rational LS-category and its applications, Trans. Am. Math. Soc. 273 (1), 1-37, 1982.
- [9] Y. Félix, S. Halperin, C. Jacobson, C. Löfwall and J. C. Thomas, The radical of the homotopy Lie algebra, Amer. J. Math. 110, 301-322, 1988.
- [10] Y. Félix, S Halperin and J. C. Thomas, LS-catégorie et suite spectrale de Milnor-Moore, Bull. Soc. Math. France 111, 89-96, 1983.
- [11] Y. Félix, S. Halperin and J. C. Thomas, Gorenstein spaces. Adv. Math. 71, 92-112, 1988.
- [12] Y. Félix, S. Halperin and J. C. Thomas, *Rational Homotopy Theory*, Graduate Texts in Mathematics **215**, Springer Verlag, 2000.
- [13] H. Gammelin, Gorenstein spaces with nonzero evaluation map, Trans. Amer. Math. Soc. 351 (8), 3433-3440, 1999.
- [14] S. Halperin, Universal enveloping algebras and loop space homology, J. Pure Appl. Algebra 83, 237-282, 1992.
- [15] S. Hamoun, Y. Rami and L. Vandembroucq, On the rational topological complexity of coformal elliptic spaces, J. Pure Appl. Algebra 227 (7), 107318, 2023.
- [16] L. Lechuga and A. Murillo, Complexity in rational homotopy, Topology 39, 89-94, 2000.
- [17] L. Lusternik and L. Shnirelmann, Méthodes Topologiques dans les problèmes variationnels, Hermann, Paris, 1934.
- [18] A. Murillo, The evaluation map of some Gorenstein algebras, J. Pure. Appl. Algebra 91, 209-218, 1994.
- [19] Y. B. Rudyak, On higher analogs of topological complexity, Topology Appl. 157, 916-920, 2010.
- [20] M. Spivak, Spaces satisfying Poincaré duality, Topology 6, 77-102, 1967.