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Abstract. In this study, we consider Di-Darboux slant helices which are new surface curves on an oriented
surface. We give some characterizations for such curves according to the Darboux frame, OD-frame, ND-frame,
RD-frame, and obtain axes of the Di-Darboux slant helices. Moreover, the position vectors of the Di-Darboux slant
helices are obtained.
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1. Introduction

In differential geometry, the curves play an important role. The special curves that differ according to their structural
features offer an important studying area [3, 4]. One of the most intensively studied special curves are helices. The
helices are widely used not only in geometry, but also in nature and science. A curve in E3 is a general helix if and
only if τ

κ
is constant, where τ and κ , 0 are torsion and curvature of curve, respectively [5]. Izumiya and Takeuchi

defined the slant helix as the principal normal vector of the curve makes a constant angle with a constant straight line.
They characterized these curves with κ2

(κ2+τ2)
3
2

(
τ
κ

)′
(s) is a constant function [8]. The position vector of the slant helix

was given by Ali depending on the curvature of the curve [1]. Kula and Yaylı have introduced the spherical indicatrix
of a slant helix and they have shown that these spherical images are spherical helix [9]. Later, Zıplar et al. have defined
Darboux helices and they have characterized such curve as 1

κ2

(κ2+τ2)
3
2

( τ
κ )
′ (s) is constant. They have provided that a curve

is a Darboux helix if and only if it is a slant helix [13].
For curves on a surface, the Darboux frame {T,V,U} is defined, where T and U are unit tangent vector and unit

surface normal along curve, respectively, and V = U × T is a unit vector field along the curve on surface. A curve
on the surface is called a helix if the vector T makes a constant angle with a constant (fixed) direction. Puig-Pey et
al. have found a new method for obtaining a general helix on the surface [12]. Similarly, a surface curve is called
relatively normal-slant helix (resp. isophote curve) if the vector V (resp. vector U ) makes a constant angle with a
constant (fixed) direction. The relatively normal-slant helix have defined and characterized by Macit and Düldül. They
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have also given the position vector of the relatively normal-slant helix [10]. The characterizations of isophote curve
have been introduced by Doğan and Yaylı. They have also given the axis of this curve [6].

In a recent paper, Hananoi et al. have defined vector fields Do, Dn, and Dr which are called the osculating Darboux
vector field, the normal Darboux vector field and the rectifying Darboux vector field, respectively, along a curve on
the surface [7]. Considering this definition, Önder has defined three new curves on the surface and he has called these
curves as the Di -Darboux slant helices, where the indices i ∈ {o, n, r} represent the osculator, normal, and rectifying
planes of the curve on surface, respectively [11].

This paper aims to investigate the Di -Darboux slant helices that have been defined but not examined. We give
characterizations of the Di -Darboux slant helices according to curvatures of the Darboux frame, OD-frame, ND-
frame, and RD-frame. We give the relationships between the Di -Darboux slant helices and special surface curves
(helix, relatively normal-slant helix, and isophote curve). Finally, we give the methods for obtaining the Di-Darboux
slant helices on the surface.

2. Preliminaries

Let M is an oriented surface in E3 and α : I → M be a unit speed curve on the surface M. The Frenet frame {T,N, B}
is well-defined along the curve α and derivative formulas of the Frenet frame are given by;

T ′ = κN, N′ = −κT + τB, B′ = −τN,

where T is the unit tangent vector, N is the principal normal vector, B is the binormal vector; κ and τ are the curvature
and the torsion of α, respectively. If we denote the Darboux frame along the α by {T,V,U}, derivative formulas of the
Darboux frame are given by

T ′ = kgV + knU, V ′ = −kgT + τgU, U′ = −knT − τgV,

where T is the unit tangent of α, U is the unit normal of M along the α, and V = U × T. The functions kg, kn, and τg

are the geodesic curvature, normal curvature, geodesic torsion of the α, respectively. Let ω denotes the angle between
the surface normal vector U and binormal vector B. Then, we have

κ2 = k2
g + k2

n,

kg = κ cosω,
kn = κ sinω,

τg = τ − ω
′.

(2.1)

The relationships between Darboux frame and Frenet frame of α are

T = T,

N = cosωV + sinωU,

B = − sinωV + cosωU,

and {V = cosωN − sinωB,

U = sinωN + cosωB.
(2.2)

The vector fields Do(s),Dn(s),Dr(s) along α given by

Do = τgT − knV,

Dn = −knV + kgU,

Dr = τgT + kgU

are called the osculating Darboux vector field, the normal Darboux vector field, and the rectifying Darboux vector field
along α , respectively [7].

Recently, Alkan et al. have defined three new frames for a surface curve. They have called these frame as osculating
Darboux frame (OD-frame), normal Darboux frame (ND-frame) and rectifying Darboux Frame (RD-frame), respec-

tively [2]. If we denote the osculating Darboux frame (OD-frame) along the α by {
∼

Do,U,Yo}, derivative formulas of
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the OD-frame are given by; 
∼

D′o = −δoYo,

U′ = µoYo,

Y ′o = δo
∼

Do − µoU,

(2.3)

where
∼

Do =
Do
∥Do∥

, U is the unit normal of M along the α and Yo =
∼

Do × U. µo =
√

k2
n + τ

2
g and δo =

k2
n

k2
n+τ

2
g

(
τg

kn

)′
+ kg

are curvatures of α according to the OD-frame. If we denote the normal Darboux frame (ND-frame) along the α by

{
∼

Dn,T,Yn}, derivative formulas of the ND-frame are given by;
∼

D′n = −δnYn,

T ′ = µnYn,

Y ′n = δn
∼

Dn − µnT,

where
∼

Dn =
Dn
∥Dn∥

, T is the unit tangent vector of α and Yn =
∼

Dn × T . µn =
√

k2
n + k2

g and δn =
k2

g

k2
n+k2

g

(
kn
kg

)′
+ τg are

curvatures of α according to the ND-frame. The rectifying Darboux Frame (RD-frame) along the α is denoted by

{
∼

Dr,V,Yr} whose derivative formulas are given by;
∼

D′r = −δrYr,

V ′ = µrYr,

Y ′r = δr
∼

Dr − µrV,

where
∼

Dr =
Dr
∥Dr∥

, V = U × T and Yr =
∼

Dr × V . µr =
√

k2
g + τ

2
g and δr =

k2
g

k2
g+τ

2
g

(
τg

kg

)′
− kn are curvatures of α according

to the ND-frame [2].

Theorem 2.1. Let α be a unit speed curve with κ , 0. Then, α is a general helix iff τ
κ
(s) is a constant function [5].

Theorem 2.2. Let α be a unit speed curve with κ , 0. Then, α is a slant helix iff κ2

(κ2+τ2)
3
2

(
τ
κ

)′
(s) is a constant

function [8].

Theorem 2.3. Let α be a unit speed curve with κ , 0,
i) Then, α is a Darboux helix iff 1

κ2

(κ2+τ2)
3
2

( τ
κ )
′ (s) is a constant function.

ii)Then, α is a Darboux helix iff α is a slant helix [13].

3. Do-Darboux Slant Helices

In this section, we introduce Do-Darboux slant helix which is a new kind of surface curve.
Let M is an oriented surface in E3, and α : I → M be a unit speed curve on surface M. Let {T,V,U} be Darboux

frame, kg, kn, τg be the curvatures and Do(s) = τg(s)T (s) − kn(s)V(s) be the osculating Darboux vector of α. The
concept of the Do-Darboux slant helix on the surface is defined as follows.

Definition 3.1. Let M is an oriented surface in E3 and α : I → M be a unit speed curve on surface M. Then, α is
called Do-Darboux slant helix if there exists a constant angle θ between the Darboux vector field Do (or equivalently,

unit Darboux vector field
∼

Do =
Do
∥Do∥

) and a fixed(constant) unit direction do , i.e., ⟨Do, do⟩ = cos θ is constant [11].

Theorem 3.2. Let M be an oriented surface in E3 and α : I → M be a unit speed curve with OD-frame {
∼

Do,U,Yo} on
surface M . Then, α is a Do-Darboux slant helix iff µo

δo
(s) is a constant function, where δo , 0.
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Proof. Let α is a Do-Darboux slant helix with OD-frame {
∼

Do,U,Yo}. From Definition 3.1,
〈
∼

Do, do

〉
= cos θ. Differen-

tiating last equation, we have
〈 ∼
D′o, do

〉
= 0 and using (2.3), −δo ⟨Yo, do⟩ = 0. Since δo , 0, we get ⟨Yo, do⟩ = 0, i.e.,

do ∈ sp{
∼

Do,U}. So, we can write

do = cos θ
∼

Do + sin θU. (3.1)

If we differentiate (3.1), since do is a constant vector, we obtain

Yo (µo sin θ − δo cos θ) = 0.

Hence,
µo

δo
=

cos θ
sin θ

= constant.

Conversely, let µo
δo
= cos θ

sin θ = constant. So we get µo sin θ = δo cos θ. We assume that

do = cos θ
∼

Do + sin θU.

Differentiating do, and using (2.3) we have d′o = 0 . Furthermore,
〈
∼

Do, do

〉
= cos θ . Therefore, α is a Do-Darboux slant

helix. □

Corollary 3.3. Let M be an oriented surface in E3, and α : I → M be a unit speed curve on surface M. Then, α is a
Do-Darboux slant helix iff

σo(s) =


√

k2
n + τ

2
g

k2
n

k2
n+τ

2
g

(
τg

kn

)′
+ kg

 (s) (3.2)

is a constant function.

Corollary 3.4. Axis of the Do-Darboux slant helix according to OD-frame is given by

do = cos θ
∼

Do + sin θU.

Corollary 3.5. Axis of the Do-Darboux slant helix according to Darboux frame is

do =
τg√

k2
n + τ

2
g

cos θT −
kn√

k2
n + τ

2
g

cos θV + sin θU. (3.3)

Corollary 3.6. α is a Do-Darboux slant helix if and only if α is a isophote curve.

Proof. By the inner product of both sides of (3.3) with U, we get ⟨U, do⟩ = sin θ = constant. So, α is an isophote
curve. □

Corollary 3.7. Let α be a unit speed Do-Darboux slant helix on surface M. Then,
i) α is a geodesic curve on M with kn , 0 iff α is a Darboux helix with the axis

do =
τ

√
τ2 + κ2

cos θT ∓ sin θN +
κ

√
τ2 + κ2

cos θB.

.
ii) α is an asymptotic curve on M with kg , 0 iff α is a general helix with the axis do = cos θT ∓ sin θB.
iii) Let α be a line of curvature on M. Then, α is a plane curve.

Proof. i) Since α is a geodesic, we have kg = 0 and so from (2.1) it follows kn = ±κ and τg = τ. From (3.2), we get

σo =

 1
κ2

(κ2+τ2)
3
2

(
τ
κ

)′

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is a constant function. Then, by Theorem 2.3, α is a Darboux helix and α is a slant helix. Using (2.2) in (3.3), we get

do =
τg√

k2
n + τ

2
g

cos θT +

− knkg

κ
√

k2
n + τ

2
g

cos θ + sin θ
kn

κ

 N +

cos θ
k2

n

κ
√

k2
n + τ

2
g

+ sin θ
kg

κ

 B. (3.4)

Since kg = 0, kn = ±κ, and τg = τ, the axis of the Darboux helix is obtained as do =
τ

√
τ2+κ2

cos θT ∓ sin θN +
κ

√
τ2+κ2

cos θB.
Conversely, let α be a Darboux helix with the axis

do =
τ

√
τ2 + κ2

cos θT ∓ sin θN +
κ

√
τ2 + κ2

cos θB.

From (3.3), we have kg = 0.
ii) Since α is an asymptotic curve, we have kn = 0 and from (2.1) it follows kg = ±κ and τg = τ. By substituting kg

and τg in (3.2), we obtain σo = ∓
τ
κ

is a constant function. So, α is a general helix. Using kn = 0, kg = ±κ and τg = τ in
(3.4), we obtain do = cos θT ∓ sin θB.

Conversely, let α be a helix with the axis do = cos θT ∓ sin θB. From (3.3), we have kn = 0.
iii) Since α is a line of curvature on M, we have τg = 0. From (3.2) we have σo =

kn
kg
= constant. Using (2.1), we

get

σo =
kn

kg
=
κ sin ξ
κ cos ξ

= tan ξ,

where ξ is the angle between binormal vector B and surface normal U. So ξ is constant. Since τg = τ − ξ
′, we obtain

τ = 0, i.e, the α is a plane curve. □

3.1. The Position Vector of the Do-Darboux Slant Helix on a Surface. In this section, we introduce the methods for
finding the Do-Darboux Slant helix on a given surface. We discuss the methods separately for parametric and implicit
surfaces.

3.1.1. The Do-Darboux Slant Helix on a Parametric Surface. Let M be a regular oriented surface in E3 with given

the parametrization X = X(u, v). Let α(s) = X(u(s), v(s)) be a unit speed Do-Darboux slant helix on M with axis do,
constant angle θ, and Darboux frame {T,V,U}. For obtaining α, we find u(s) and v(s). Since

γ′ = T = Xu
du
ds
+ Xv

dv
ds
, U =

Xu × Xv

∥Xu × Xv∥
, V = U × T,

we get

V =
1

∥Xu × Xv∥

[
(EXv − FXu)

du
ds
+ (FXv −GXu)

dv
ds

]
,

where E = ⟨Xu, Xu⟩, F = ⟨Xu, Xv⟩ and G = ⟨Xv, Xv⟩ are the first fundamental form coefficients of the surface along the
α [10]. Since α is a Do-Darboux slant helix, we have〈

τg√
k2

n + τ
2
g

T −
kn√

k2
n + τ

2
g

V, do

〉
= cos θ. (3.5)

From (3.5), we have [(
τg√
k2

n+τ
2
g
∥Xu × Xv∥ +

kn√
k2

n+τ
2
g
F
)
⟨Xu, do⟩ −

kn√
k2

n+τ
2
g
E ⟨Xv, do⟩

]
du
ds

+

[(
τg√
k2

n+τ
2
g
∥Xu × Xv∥ −

kn√
k2

n+τ
2
g
F
)
⟨Xv, do⟩ +

kn√
k2

n+τ
2
g
G ⟨Xu, do⟩

]
dv
ds = cos θ.

(3.6)

On the other hand, since ⟨T,T ⟩ = 1, we obtain

E
(

du
ds

)2

+ 2F
du
ds

dv
ds
+G

(
dv
ds

)2

= 1. (3.7)

If (3.6) and (3.7) are solved together, we get



A. Alkan, H. Kocayiğit, T. Ağırman Aydın, Turk. J. Math. Comput. Sci., 16(2)(2024), 386–399 391


du
ds =

−2∥Xu×Xv∥ cos θ[K(EG−F2)⟨Xv,do⟩+Γ∥Xu×Xv∥(F⟨Xv,do⟩−G⟨Xu,do⟩)]±
√
∆

2A(EG−F2) ,

dv
ds =

−2∥Xu×Xv∥ cos θ[−K(EG−F2)⟨Xu,do⟩+Γ∥Xu×Xv∥(F⟨Xu,do⟩−E⟨Xv,do⟩)]±
√
∆∗

2A(EG−F2) ,
(3.8)

where

K =
kn√

k2
n + τ

2
g

, Γ =
τg√

k2
n + τ

2
g

,

A = E ⟨Xv, do⟩
2 − 2F ⟨Xu, do⟩ ⟨Xv, do⟩ +G ⟨Xu, do⟩

2 ,

∆ = 4 ∥Xu × Xv∥
2 cos2 θ


[
K

(
EG − F2

)
⟨Xv, do⟩ + Γ ∥Xu × Xv∥ (F ⟨Xv, do⟩ −G ⟨Xu, do⟩)

]2

−AG
(
EG − F2

) 
+ 4A

(
EG − F2

)
[(Γ ∥Xu × Xv∥ − KF) ⟨Xv, do⟩ + KG ⟨Xu, do⟩]2 ,

∆∗ = 4 ∥Xu × Xv∥
2 cos2 θ


[
Γ ∥Xu × Xv∥ (F ⟨Xu, do⟩ − E ⟨Xv, do⟩) − K

(
EG − F2

)
⟨Xu, do⟩

]2

−AE
(
EG − F2

) 
+ 4A

(
EG − F2

)
[(Γ ∥Xu × Xv∥ + KF) ⟨Xu, do⟩ − KE ⟨Xv, do⟩]2 .

If we solve the system (3.8) together with the initial point{
u(0) = u0
v(0) = v0,

we obtain the desired Do-Darboux slant helix on M by substituting u(s), v(s) into X(u, v).

3.1.2. The Do-Darboux Slant Helix on an Implicit Surface. Let M be a surface given in implicit form by f (x, y, z) = 0.

Let us now find the Do-Darboux slant helix α(s) which makes the given constant angle with the given axis do = (a, b, c)
and lying on M.

Let α(s) = (x(s), y(s), z(s)) and {T,V,U} be its Darboux frame. We need to find x(s), y(s), z(s) to obtain α(s). The
vectors of Darboux frame of α

T = α′ =
(

dx
ds
,

dy
ds
,

dz
ds

)
,

U =
∇ f
∥∇ f ∥

=
1
∥∇ f ∥

(
fx, fy, fz

)
,

V = U × T =
1
∥∇ f ∥

(
fy

dz
ds
− fz

dy
ds
, fz

dx
ds
− fx

dz
ds
, fx

dy
ds
− fy

dx
ds

)
,

[10]. If T and V vectors are written at
∼

Do vector, we get

∼

Do = Γ

(
dx
ds
,

dy
ds
,

dz
ds

)
− K

1
∥∇ f ∥

(
fy

dz
ds
− fz

dy
ds
, fz

dx
ds
− fx

dz
ds
, fx

dy
ds
− fy

dx
ds

)
,

where K = kn√
k2

n+τ
2
g
, Γ =

τg√
k2

n+τ
2
g
. Since

〈
∼

Do, do

〉
= cos θ

(
Γa ∥∇ f ∥ − K(b fz − c fy)

) dx
ds
+ (Γb ∥∇ f ∥ − K(c fx − a fz))

dy
ds
+

(
Γc ∥∇ f ∥ − K(a fy − b fx)

) dz
ds
= ∥∇ f ∥ cos θ. (3.9)

On the other hand, since ⟨T,U⟩ = 0

fx
dx
ds
+ fy

dy
ds
+ fz

dz
ds
= 0. (3.10)
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If the value of dy
ds in (3.10) is written in (3.9), we get

dx
ds
=

1
Ω

{
∥∇ f ∥ fy cos θ −

(
Γ ∥∇ f ∥

(
c fy − b fz

)
− K

[
fy

(
a fy − b fx

)
− fz (c fx − a fz)

]) dz
ds

}
, (3.11)

and if the value of dx
ds in (3.10) is written in (3.9), we obtain

dy
ds
=

1
Ω

{(
Γ ∥∇ f ∥ (c fx − a fz) − K

[
fx

(
a fy − b fx

)
− fz

(
b fz − c fy

)]) dz
ds
− ∥∇ f ∥ fx cos θ

}
, (3.12)

where Ω = Γ ∥∇ f ∥
(
a fy − b fx

)
− K

[
fy

(
b fz − c fy

)
− fx (c fx − a fz)

]
, 0. Since ⟨T,T ⟩ = 1,(

dx
ds

)2

+

(
dy
ds

)2

+

(
dz
ds

)2

= 1. (3.13)

By substituting (3.11) and (3.12) in (3.13), we obtain

q1

(
dz
ds

)2

+ q2

(
dz
ds

)
+ q3 = 0,

where

q1 =
1
Ω2


K2

((
a fy − b fx

)2 (
f 2
x + f 2

y + 2 f 2
z

)
+ f 2

z

(
(c fx − a fz)2 + (b fz − c fy)2

))
−2ΓK ∥∇ f ∥

((
b2 − a2

)
fx fy fz + c

(
f 2
x + f 2

y

) (
a fy − b fx

)
+ ab fz

(
f 2
x − f 2

y

))
+ (Γ ∥∇ f ∥)2

(
c2

(
f 2
x + f 2

y

)
+

(
a2 + b2

)
f 2
z − 2c fz

(
b fy + a fx

))
 + 1,

q2 = −2 ∥∇ f ∥ cos θ
1
Ω2

[
Γ ∥∇ f ∥

(
c
(

f 2
x + f 2

y

)
− fz

(
a fx + b fy

))
− K

[(
a fy − b fx

) (
f 2
x + f 2

y + f 2
z

)]]
,

q3 =
1
Ω2 ∥∇ f ∥2 cos2 θ

(
f 2
x + f 2

y

)
− 1.

From this equation, we have

dz
ds
=
−q2 ±

√
q2

2 − 4q1q3

2q1
. (3.14)

If (3.14) is written in (3.11) and (3.12), the first-order differential equation system is obtained. Thus, together with the
initial point

x(0) = x0,

y(0) = y0,

z(0) = z0 ,

we have an initial value problem. The solution of this problem gives us the Do-Darboux slant helix on M.

Example 3.8. Let us consider the surface M given by the parametrization X(u, v) = (u, u sin v, u cos v) and curve α
: I → M defined by the parametric form α(s) =

(
s
2 ,

s
2 sin

(√
2 ln s

2

)
, s

2 cos
(√

2 ln s
2

))
(Figure 1). The vectors of the

Darboux frame and curvatures of α are computed as follows,

T =
(

1
2
,

1
2

sin
(√

2 ln
s
2

)
+

1
√

2
cos

(√
2 ln

s
2

)
,

1
2

cos
(√

2 ln
s
2

)
−

1
√

2
sin

(√
2 ln

s
2

))
,

V =
(
−

1
2
,

1
√

2
cos

(√
2 ln

s
2

)
−

1
2

sin
(√

2 ln
s
2

)
,−

1
√

2
sin

(√
2 ln

s
2

)
−

1
2

cos
(√

2 ln
s
2

))
,

U =
(
−

1
√

2
,

1
√

2
sin

(√
2 ln

s
2

)
,

1
√

2
cos

(√
2 ln

s
2

))
,

kn = −
1
√

2s
, kg =

1
s
, τg = −

1
√

2s
.

Hence, from (3.2), we obtain σ(s) = 1 = constant . Therefore, α is a Do-Darboux slant helix on M.
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Figure 1. The curve α on the surface M

4. Dn-Darboux Slant Helix

In this section, we introduce the Dn-Darboux slant helices which a new kind of surface curve. Since theorems given
in this section are proven similar to theorems in section 3, they will be given without proof.

Let M is a oriented surface in E3 and β : I → M be a unit speed curve on the surface M. Let {T,V,U} be the
Darboux frame, kg, kn, τg be the curvatures and Dn(s) = -kn(s)V(s) + kg(s)U(s) the normal Darboux vector of β. The
concept of the Dn-Darboux slant helix on the surface is defined as follows.

Definition 4.1. Let M is an oriented surface in E3, and β : I → M be a unit speed curve with on the surface M. Then, β
is called Dn-Darboux slant helix if there exists a constant angle φ between the Darboux vector field Dn (or equivalently,

unit Darboux vector field
∼

Dn =
Dn
∥Dn∥

) and a fixed(constant) unit direction dn , i.e., ⟨Dn, dn⟩ = cosφ is constant [11].

Theorem 4.2. Let M be an oriented surface in E3, and β : I → M be a unit speed curve on surface M with the

ND-frame {
∼

Dn,T,Yn}. Then, β is a Dn-Darboux slant helix iff µn
δn

(s) is a contant function, where δn , 0 .

Corollary 4.3. Let M be an oriented surface in E3, and β : I → M be a unit speed curve on the surface M. Then, β is
a Dn-Darboux Slant helix iff

σn(s) =


√

k2
n + k2

g

k2
g

k2
n+k2

g

(
kn
kg

)′
+ τg

 (s) (4.1)

is a constant function.

Corollary 4.4. Axis of the Dn-Darboux slant helix is given by

dn = cosφ
∼

Dn + sinφT.

Corollary 4.5. Axis of the Dn-Darboux slant helix according to the Darboux frame {T,V,U} is

dn = sinφT −
kn√

k2
n + k2

g

cosφV +
kg√

k2
n + k2

g

cosφU.

Corollary 4.6. β is a Dn-Darboux slant helix if and only if β is a general helix.
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Corollary 4.7. Let β be a unit speed Dn-Darboux slant helix on surface M. Then,
i) β is a geodesic curve on the M with kn , 0 iff β is a general helix with the axis dn = sinφT + cosφB.
ii) β is an asymptotic curve on the M with kg , 0 iff β is a general helix with the axis dn = sinφT + cosφB.

iii) Let β be a line of curvature on the M. Then,
k2

g

(k2
n+k2

g)
3
2

(
kn
kg

)′
is constant.

4.1. The Position Vector of the Dn-Darboux Slant Helix on a Surface. In this section, we introduce the methods for
finding the Dn-Darboux slant helix on a given surface. We discuss the methods separately for parametric and implicit
surfaces.

4.1.1. The Dn-Darboux Slant Helix on a Parametric Surface. Let M be a regular oriented surface in E3 with given
the parametrization X = X(u, v). Let β(s) = X(u(s), v(s)) be a unit speed Dn-Darboux slant helix on M with axis dn,
constant angle φ, and Darboux frame {T,V,U}. For obtaining β, we find u(s) and v(s). In a way similar to those in
chapter 4, we obtain 

du
ds =

−2P⟨Xv,dn⟩(EG−F2)(∥Xu×Xv∥ cosφ−Q⟨Xu×Xv,dn⟩)±
√
∆n

2AnP2(EG−F2) ,

dv
ds =

2P⟨Xu,dn⟩(EG−F2)(∥Xu×Xv∥ cosφ−Q⟨Xu×Xv,dn⟩)±
√
∆∗n

2AnP2(EG−F2) ,
(4.2)

where

An = E ⟨Xv, dn⟩
2 − 2F ⟨Xu, dn⟩ ⟨Xv, dn⟩ +G ⟨Xu, dn⟩

2 ,

∆n = 4P2 (∥Xu × Xv∥ cosφ − Q ⟨Xu × Xv, dn⟩)2
(
EG − F2

) [
⟨Xv, dn⟩

2
(
EG − F2

)
− AnG

]
+ 4An

(
EG − F2

)
P4 [−F ⟨Xv, dn⟩ +G ⟨Xu, dn⟩]2 ,

∆∗n = 4P2
(
EG − F2

)
(∥Xu × Xv∥ cosφ − Q ⟨Xu × Xv, dn⟩)2

[
⟨Xu, dn⟩

2
(
EG − F2

)
− AnE

]
+ 4An

(
EG − F2

)
P4 [−E ⟨Xv, dn⟩ + F ⟨Xu, dn⟩]2 ,

P =
kn(s)√

k2
n(s) + k2

g(s)
, Q =

kg(s)√
k2

n(s) + k2
g(s)

.

If we solve the system (4.2) together with the initial point{
u(0) = u0
v(0) = v0,

we obtain the desired Dn-Darboux slant helix on M by substituting u(s), v(s) into X(u, v).

4.1.2. The Dn-Darboux Slant Helix on an Implicit Surface. Let M be a surface given in implicit form by f (x, y, z) = 0.

Let us now find the Dn-Darboux slant helix β(s) which makes the given constant angle with the given axis dn = (a, b, c)
and lying on M.

Let β(s) = (x(s), y(s), z(s)) and {T,V,U} be its Darboux frame field. We need to find x(s), y(s), z(s) to obtain β(s).
In a way similar to those in chapter 4, we obtain dx

ds =
1
Ωn

[
− 1

P fy
(
∥∇ f ∥ cosφ − Q

(
a fx + b fy + c fz

))
+

[
fy

(
−a fy + b fx

)
− fz (a fz − c fx)

]
dz
ds

]
,

dy
ds =

1
Ωn

[
1
P fx

(
∥∇ f ∥ cosφ − Q

(
a fx + b fy + c fz

))
−

[
fx

(
b fx − a fy

)
− fz

(
c fy − b fz

)]
dz
ds

]
,

(4.3)

where Ωn = fx (a fz − c fx) − fy
(
c fy − b fz

)
, 0. Substituting (4.3) into (3.13) gives us a quadratic equation with respect

to dz
ds as

q1

(
dz
ds

)2

+ q2

(
dz
ds

)
+ q3 = 0,
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where

q1 =
1
Ω2

n

[(
b fx − a fy

)2 (
f 2
x + f 2

y + 2 f 2
z

)
+ f 2

z

(
(a fz − c fx)2 + (c fy − b fz)2

)]
+ 1,

q2 = −2
(
∥∇ f ∥ cosφ − Q

(
a fx + b fy + c fz

)) 1
P

1
Ω2

n

[(
b fx − a fy

) (
f 2
x + f 2

y + f 2
z

)]
,

q3 =
1
Ω2

n

1
P2

(
∥∇ f ∥ cosφ − Q

(
a fx + b fy + c fz

))2 (
f 2
x + f 2

y

)
− 1,

P =
kn(s)√

k2
n(s) + k2

g(s)
, Q =

kg(s)√
k2

n(s) + k2
g(s)

.

From this equation, we get

q1

(
dz
ds

)2

+ q2

(
dz
ds

)
+ q3 = 0. (4.4)

If (4.4) written in (4.3), we obtain a first-order differential equation system.Thus, together with the initial point

x(0) = x0,

y(0) = y0,

z(0) = z0,

we have an initial value problem. The solution of this problem gives us the Dn-Darboux slant helix on M.

Example 4.8. Let us consider the surface M given by the parametrization

X(u, v) =


u

3
√

2
cos

(√
2 ln u

)
+ u

3 sin
(√

2 ln u
)
+ v
√

2
cos

(√
2 ln u

)
,

u
3
√

2
sin

(√
2 ln u

)
− u

3 cos
(√

2 ln u
)
+ v
√

2
sin

(√
2 ln u

)
,

u
√

2
+ v
√

2


and curve β : I → M defined by the parametric form

β(s) =
(

s

3
√

2
cos

(√
2 ln s

)
+

s
3

sin
(√

2 ln s
)
,

s

3
√

2
sin

(√
2 ln s

)
−

s
3

cos
(√

2 ln s
)
,

s
√

2

)
,

Figure 2. The curve β on the surface M
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where s > 0 (Figure 2). The vectors of the Darboux frame and curvatures of β are computed as follows,

T =
1
√

2

(
cos

(√
2 ln s

)
, sin

(√
2 ln s

)
, 1

)
,

V =
(
sin

(√
2 ln s

)
,− cos

(√
2 ln s

)
, 0

)
,

U =
1
√

2

(
cos

(√
2 ln s

)
, sin

(√
2 ln s

)
,−1

)
,

kn = 0, kg = −
1
s
, τg =

1
s
.

Hence from (4.1), we obtain σn(s) = 1 = constant. Therefore, β is a Dn-Darboux slant helix on M.

5. Dr-Darboux Slant Helix

In this section, we introduce Dr-Darboux slant helices which a new kind of surface curve . Since theorems given in
this section are proven similar to theorems in section 3, they will be given without proof.

Let M is an oriented surface in E3, and γ : I → M be a unit speed curve on surface M. Let be {T,V,U} Darboux
frame, kg, kn, τg are the curvatures and Dr(s) = τg(s)T (s) + kg(s)U(s) rectifying Darboux vector of γ. The concept of
Dr-Darboux slant helix on the surface is defined as follows.

Definition 5.1. Let M is an oriented surface in E3, and γ : I → R ⊂ M be a unit speed curve with on surface M.
Then, γ is called Dr-Darboux slant helix if there exists a constant angle ψ between the Darboux vector field Dr (or

equivalently, unit Darboux vector field
∼

Dr =
Dr
∥Dr∥

) and a fixed(constant) unit direction dr , i.e., ⟨Dr, dr⟩ = cosψ is
constant [11].

Theorem 5.2. Let M be an oriented surface in E3 and γ : I → M be a unit speed curve on surface M with RD-frame

{
∼

Dr,V,Yr}. Then, γ is a Dr-Darboux slant helix iff µr
δr

(s) is a constant function, where δr , 0.

Corollary 5.3. Let M be an oriented surface in E3, and γ : I → M be a unit speed curve on surface M. Then, γ is a
Dr-Darboux Slant helix iff

σr(s) =


√

k2
g + τ

2
g

k2
g

k2
g+τ

2
g

(
τg

kg

)′
− kn

 (s) (5.1)

is a constant function.

Corollary 5.4. Axis of Dr-Darboux slant helix is given by

dr = cosψ
∼

Dr + sinψV.

Corollary 5.5. Axis of Dr-Darboux slant helix according to {T,V,U} Darboux frame is

dr = cosψ
τg√
τ2

g + k2
g

T + sinψV + cosψ
kg√
τ2

g + k2
g

U.

Corollary 5.6. γ is a Dr-Darboux slant helix if and only if γ is a relatively normal-slant helix.

Corollary 5.7. Let γ be a unit speed Dr-Darboux slant helix on surface M. Then,

i) γ is a geodesic curve on M with kn , 0 iff γ is a general helix with the axis dr = cosψT ± sinψB.
ii) γ is an asymptotic curve on M with kg , 0 iff γ is a Darboux helix with the axis

dr = cosψ
τ

√
τ2 + κ2

T ∓ sinψN + cosψ
κ

√
τ2 + κ2

B.

.
iii) Let γ be a line of curvature on M . Then, γ is a planar curve.

5.1. The Position Vector of the Dr-Darboux Slant Helix on a Surface. In this section, we introduce the methods for
finding the Dr-Darboux Slant helix on a given surface. We discuss the methods separately for parametric and implicit
surfaces.
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5.1.1. The Dr-Darboux Slant Helix on a Parametric Surface. Let M be a regular oriented surface in E3 with given
the parametrization X = X(u, v). Let γ(s) = X(u(s), v(s)) be a unit speed Dr-Darboux slant helix on M with axis dr,
constant angle ψ, and Darboux frame {T,V,U}. For obtaining γ, we find u(s) and v(s). In a way similar to those in
chapter 4, we obtain 

du
ds =

−2S ∥Xu×Xv∥(∥Xu×Xv∥ cosψ−R⟨Xu×Xv,dr⟩)(F⟨Xv,dr⟩−G⟨Xu,dr⟩)±
√
∆r

2ArS 2∥Xu×Xv∥
2 ,

dv
ds =

−2S ∥Xu×Xv∥(∥Xu×Xv∥ cosψ−R⟨Xu×Xv,dr⟩)(F⟨Xu,dr⟩−E⟨Xv,dr⟩)±
√
∆∗r

2ArS 2∥Xu×Xv∥
2 ,

(5.2)

where

Ar = E ⟨Xv, dr⟩
2 − 2F ⟨Xu, dr⟩ ⟨Xv, dr⟩ +G ⟨Xu, dr⟩

2 ,

∆r = 4S 2 ∥Xu × Xv∥
2 (∥Xu × Xv∥ cosψ − R ⟨Xu × Xv, dr⟩)2

[
(F ⟨Xv, dr⟩ −G ⟨Xu, dr⟩)2 − ArG

]
+ 4S 4 ∥Xu × Xv∥

4 ⟨Xv, dr⟩
2 Ar

∆∗r = 4S 2 ∥Xu × Xv∥
2 (∥Xu × Xv∥ cosψ − R ⟨Xu × Xv, dr⟩)2

[
(F ⟨Xu, dr⟩ − E ⟨Xv, dr⟩)2 − ArE

]
+ 4S 4 ∥Xu × Xv∥

4 ⟨Xu, dr⟩
2 Ar,

S =
τg√

k2
g + τ

2
g

, R =
kg√

k2
g + τ

2
g

.

If we solve the system (5.2) together with the initial point{
u(0) = u0
v(0) = v0,

we obtain the desired Dr-Darboux slant helix on M by substituting u(s), v(s) into X(u, v).

5.1.2. The Dr-Darboux Slant Helix on an Implicit Surface. Let M be a surface given in implicit form by f (x, y, z) = 0.

Let us now find the Dr-Darboux slant helix γ(s) which makes the given constant angle with the given axis dr = (a, b, c)
and lying on M.

Let γ(s) = (x(s), y(s), z(s)) and {T,V,U} be its Darboux frame field. We need to find x(s), y(s), z(s) to obtain γ(s).
In a way similar to those in chapter 4, we obtain dx

ds =
1
Ωr

[
1

S ∥∇ f ∥ fy
(
∥∇ f ∥ cosψ − R

(
a fx + b fy + c fz

))
+

(
b fz − c fy

)
dz
ds

]
,

dy
ds =

1
Ωr

[
(c fx − a fz) dz

ds −
1

S ∥∇ f ∥ fx

(
∥∇ f ∥ cosψ − R

(
a fx + b fy + c fz

))]
,

(5.3)

where Ωr = a fy − b fx , 0. Substituting (5.3) into (3.13) give us a quadratic equation with respect to dz
ds as

q1

(
dz
ds

)2

+ q2

(
dz
ds

)
+ q3 = 0,

where

q1 =
1
Ω2

r

[
(a2 + b2) f 2

z + c2
(

f 2
x + f 2

y

)
− 2c fz(a fx + b fy)

]
+ 1,

q2 = 2
1

S ∥∇ f ∥

(
∥∇ f ∥ cosψ − Q

(
a fx + b fy + c fz

)) 1
Ω2

r

[
fz(a fx + b fy) − c

(
f 2
x + f 2

y

)]
,

q3 =
1
Ω2

r

1
S 2 ∥∇ f ∥2

(
∥∇ f ∥ cosψ − Q

(
a fx + b fy + c fz

))2 (
f 2
x + f 2

y

)
− 1.

From this equation, we get

q1

(
dz
ds

)2

+ q2

(
dz
ds

)
+ q3 = 0. (5.4)
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If (5.4) is written in (5.3) , we obtain a first-order differential equation system. Thus, together with the initial point

x(0) = x0,

y(0) = y0,

z(0) = z0

we have an initial value problem. The solution of this problem gives us the Dr-Darboux slant helix on the M.

Example 5.8. Let us consider the surface M given by the parametrization X(u, v) = (v, sin u, cos u) and curve γ :

I → M defined by the parametric form γ(s) =
(

s
√

2
, sin s

√
2
, cos s

√
2

)
(Figure 3). The vectors of the Darboux frame and

curvatures of γ are computed as follows,

T =
1
√

2

(
1, cos

s
√

2
,− sin

s
√

2

)
,

V =
1
√

2

(
1,− cos

s
√

2
, sin

s
√

2

)
,

U =
(
0,− sin

s
√

2
,− cos

s
√

2

)
,

kn =
1
2
, kg = 0, τg = −

1
2
.

Hence, from (5.1), we obtain σr(s) = −1 = constant . Therefore, γ is a Dr-Darboux slant helix on M.

Figure 3. The curve γ on the surface M

6. Conclusion

In this study, some new types of surface curves called Di- slant helices have been defined on a surface. The investi-
gation of these special curves has been carried out by considering newly defined orthonormal frames for curves lying
on a surface. The definitions made here and the characterizations obtained as a result can be applied to the surface
curves in other spaces such as Minkowski space. Additionally, this work is important in terms of defining and studying
different types of curves on a surface.
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