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 In recent years, soundwave-based fire extinguishing systems have emerged as a 

promising avenue for fire safety measures. Despite this potential, the challenge is to 

determine the exact operating parameters for efficient performance. To address this gap, 

we present an artificial intelligence (AI)-enhanced decision support model that aims to 

improve the effectiveness of soundwave-based fire suppression systems. Our model uses 

advanced machine learning methods, including artificial neural networks, support vector 

machines (SVM) and logistic regression, to classify the extinguishing and non -

extinguishing states of a flame. The classification is influenced by several input 

parameters, including the type of fuel, the size of the flame, the decibel level, the 

frequency, the airflow, and the distance to the flame. Our AI model was developed and 

implemented in LabVIEW for practical use. 

The performance of these machine learning models was thoroughly  evaluated using key 

performance metrics: Accuracy, Precision, Recognition and F1 Score. The results show 

a superior classification accuracy of 90.893% for the artificial neural network model, 

closely followed by the logistic regression and SVM models with  86.836% and 86.728% 

accuracy, respectively. With this study, we highlight the potential of AI in optimizing 

acoustic fire suppression systems and offer valuable insights for future development and 

implementation. These insights could lead to a more efficient and effective use of 

acoustic fire extinguishing systems, potentially revolutionizing the practice of fire safety 

management.        
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1. Introduction 

Fire-related disasters, both natural and human-

induced, pose significant threats to life, property, and 
the environment. Thus, the development of effective 

preventive measures is crucial in mitigating these 

risks [1] [2]. Conventional firefighting methods, 

which often entail the use of chemicals or heavy 
equipment, might inadvertently inflict further harm 

on infrastructure, natural resources, or the residents 

of the affected area [3], [4]. Hence, understanding the 
specific characteristics of the fire and the burning 

materials is of paramount importance for identifying 

the most suitable extinguishing technique [5]–[7]. 
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In this context, the potential of sound waves as a 
means of fire suppression has garnered significant 

attention. This unique method could not only ensure 

the safety of people and the environment, but also 

present a cost-effective, environmentally friendly 
option [8], [9]. Sound wave-based fire extinguishing 

systems generate pressure waves that disrupt the 

combustion process and extinguish the fire, offering 
a safe, non-toxic, and non-caustic solution [10]. 

However, this technology is still in the research and 

development phase, necessitating further studies to 
optimize its effectiveness and efficiency. 

Prior research indicates that both low-frequency 

sound waves (30 Hz to 50 Hz) and high-frequency 
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sound waves (60 Hz to 90 Hz) can effectively disrupt 

combustion [11]–[17]. The efficacy of these acoustic 
waves depends on several factors including wave 

amplitude and source distance, both of which 

significantly influence flame dynamics. Moreover, 

other variables such as sound frequency, atmospheric 
conditions, and flame properties also play crucial 

roles [18], [19]. 

Considering the complexity of fire dynamics, there 
is a need for effective fire detection and suppression 

systems that can balance sensitivity, reliability, 

extinguishing efficiency, safety, and cost-
effectiveness [20]–[23]. In this vein, the application 

of machine learning techniques and statistical 

analysis to study the characteristics of sound waves 

produced by flames offers promising advancements 
[24]. Coupled with the use of various sensors, 

cameras, and thermal imagers, data-driven 

approaches can provide a comprehensive 
understanding of fire behavior [25]–[30]. Such 

understanding can, in turn, contribute to the 

improvement of acoustic fire extinguishing systems 

[31]–[33]. 
In this study, we utilize a dataset comprised of 

17,442 samples from experimental studies [34]–[37]. 

Our approach distinguishes itself from previous 
works through its innovative user interface and 

dynamic system. We propose a new model using 

LabVIEW, employing machine learning algorithms 

such as artificial neural networks, support vector 
machines, and logistic regression to predict flame 

extinguishing outcomes based on variables like fuel 

type, flame size, decibel level, frequency, airflow, 
and distance. The aim is to provide an decision-

support system for sound wave fire extinguishing 

[34]–[37]. 
The paper is organized as follows: Section 2 

elucidates the dataset, classification algorithms, and 

performance metrics used in our study. Section 3 

presents the experimental results. Finally, Section 4 

provides the conclusions drawn from this study. 

 

2. Material and methods 

In this section, we explain our systematic 

methodology, which covers the stages of data 

collection up to the culmination of the analysis. The 
process of data collection, the technical 

specifications of the collected dataset, and its 

dissemination are described in detail. 
For the task of distinguishing between the 

extinguishing and non-extinguishing states of a 

flame, we used classification methods including 

artificial neural networks, support vector machines 

(SVM), and logistic regression. The rationale for 

these selected techniques and their relevance to our 
study are presented. 

The efficiency of the classifiers was evaluated by 

applying performance metrics, namely accuracy, 

precision, recall, and F1-score. These metrics are 

briefly explained to allow an unbiased comparison of 

the performance of the classifiers used. 

 

2.1. Data Acquisition 

This research study utilized a dataset, derived from 

references [34]–[37], encompassing data aggregated 
from tests conducted on a fire extinguisher using four 

distinct fuel flames. The system framework is 

comprised of four subwoofers, two amplifiers, a 
control unit, and a computer employed as frequency 

sources. Ancillary instruments such as an 

anemometer, a decibel meter, a camera, and an 

infrared thermometer were engaged in measuring 
various parameters throughout the extinguishing 

process. 

An expansive total of 17,442 experimental trials 
were executed utilizing this specified experimental 

apparatus. These trials were conducted within a fire 

chamber, explicitly engineered to function in 
conjunction with a sound-wave fire extinguishing 

system. The aggregated data were subsequently 

utilized to construct models capable of predicting the 

output characteristic (extinguishing or not) 
predicated on six input characteristics. 

During model development, it is of paramount 

importance to critically review fundamental 
statistical properties of the data, as they can provide 

indispensable insights into the data distribution and 

variability. This allows for the identification of 

potential data anomalies such as outliers or missing 
values, which may have an impact on model 

performance. Furthermore, examining the statistical 

measures of individual variables aids in ensuring data 
accuracy and consistency with the expected values 

for that respective variable. 

Table 1 presents a succinct statistical summary for 

all variables encompassed in the dataset, including 
minimum, maximum, mean values, and standard 

deviations. It is important to note that certain 

variables, such as 'fuel', are categorical and hence do 
not possess a significant mean or standard deviation. 

The 'Minimum' and 'Maximum' columns for these 

variables signify the classes of least and most 
frequent categorical variables respectively. This 

information assists in understanding the distribution 

of the categorical variables within the dataset. 

Figure 1 illustrates the distribution of the variable 
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'fuel' among four categories: Petrol, Thinner, 

Kerosene, and LPG. The category demonstrating the 

highest frequency is 'Petrol' with a prevalence of 

29.418%. Conversely, the category 'LPG' exhibits the 

lowest frequency, standing at 11.7647%. 

 

 

 

 

Table 1 Data statistics table 

  Minimum Maximum Mean Deviation 

Size 1 7 3.41 1.75 

Fuel - - - - 

Distance 10 190 100 54.8 

Decibel 72 113 96.4 8.16 

Airflow 0 17 6.98 4.74 

Frequency 1 75 31.6 20.9 

Status 0 1 0.498 0.5 

 

 
Figure 1 FUEL distribution pie chart  

 

A correlation analysis serves as a robust empirical 

method for quantifying the dependencies that exist 

between constituent variables within a given data set. 
It is characterized by a numerical value, the 

correlation coefficient, which ranges from -1 to +1. 

A coefficient that tends towards the upper limit of +1 

indicates a strong positive correlation. This means 
that an increase in one variable is usually 

accompanied by a corresponding increase in another. 
A correlation coefficient that approaches the lower 

limit of -1, on the other hand, indicates a strong 

negative correlation and signals an inverse 
relationship in which an increase in one variable 

generally triggers a decrease in the other. A 

correlation coefficient approaching zero, on the other 

hand, indicates that there is no or negligible linear 
correlation between the two variables under study. 

In Table 2, each cell represents the calculated 

correlation coefficient, which makes a quantitative 

statement about the extent of the relationship 

between the corresponding pair of variables within 

the data set. This matrix highlights the inherent 

interdependence structure of the data set and 

promotes the formulation of insightful and rigorous 

inferential analyses. 

 

Table 2 Inputs correlations 

 Size Fuel Distance Decibel Airflow Frequency 

Size 1 0.431 -3.68e-11 6.8e-11 3.21e-11 6.49e-11 

Fuel 0.431 1 0.176 0.176 0.176 0.176 

Distance -3.68e-11 0.176 1 -0.239 -0.707 -2.08e-15 

Decibel 6.8e-11 0.176 -0.239 1 0.377 0.733 

Airflow 3.21e-11 0.176 -0.707 0.377 1 -0.212 

Frequency 6.49e-11 0.176 -2.08e-15 0.733 -0.212 1 

A "feature trend" describes the course of the 
development of a certain variable over time. This 

progression is visually represented in Figure 2. The 

analysis of temporal data and the recognition of 
patterns facilitate the identification of trends, a 

crucial facet of comprehensive data analysis. 
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Figure 2 Feature trend 

 

Numerous literary sources on the subject were 

consulted in the course of this study. These offer 

comprehensive insights into the processes of data 
collection and various other relevant scenarios. 

However, the focus of our work is on the 

development of a LabVIEW user interface and the 
evaluation of the effectiveness of  learning 

algorithms. 

Therefore, the specific machine learning 

classification techniques used in this study to analyze 
the above data are described in detail. 

 

2.2. LabVIEW based Machine Learning Classifier 

 

The software application called "LabVIEW-based 

Machine Learning Classifier" facilitates the creation 

of machine learning models in the LabVIEW 
programming environment. The graphically 

programmed interface allows users to quickly 

formulate and evaluate a variety of machine learning 

methods and algorithms. The program includes a 
number of pre-built machine learning classifiers that 

can be tailored to different scenarios, including 

classification, regression, and clustering. This section 
presents a model that uses the classification 

techniques of the developed LabVIEW-based 

machine learning classifier. 

 

2.2.1. Artificial Neural Network 

Artificial neural networks (ANNs), a sub-

discipline of machine learning, draw inspiration from 

the structural and functional aspects of the human 
brain. The theoretical foundations for ANNs were 

laid in 1943 by McCulloch and Pitts [38], who 

constructed a mathematical model describing the 
neuronal activities of the brain. Subsequently, Hebb 

[39] proposed a mechanism of reinforcement-based 

learning to explain the learning processes of the 
human brain. Subsequently, Rosenblatt [40], [41] 

presented a computational model for the processing 

elements of the brain, which he called 'perceptrons', 
and thus provided the impetus for a thorough 

investigation of ANNs. 

The aim of ANN's research is to develop machine 
learning systems based on a biological model of the 

brain, focusing in particular on the bioelectrical 

activity of the brain's neurons. This paves the way for 

the development of systems that are able to learn and 
adapt to new situations, much like the human brain. 

ANNs have applications in a variety of fields, 

including image recognition, natural language 
processing, speech recognition, and decision-making 

systems. For a graphical representation of the 

structure of an artificial neural network, see Figure 2. 
 

 

Figure 3 Basic structure of neural network. 

 

Figure 3 contains the following integral parts: 

Input layer: the first layer of the network that 

receives the input data and passes it on to the 
subsequent layer. The number of neurons in this layer 

corresponds to the number of features contained in 

the input data. 

Hidden layers: These layers house the 
computations of the network. They consist of a 
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collection of artificial neurons that process the input 

data and generate intermediate results. The number 
of neurons in each hidden layer, as well as the number 

of hidden layers themselves, can vary depending on 

the complexity of the problem under consideration. 

Output layer: This is the last layer that produces 
the output of the network. It uses the intermediate 

results from the hidden layers and processes them 

further to produce the final output. The number of 
neurons in this layer reflects the number of classes 

inherent in the problem or the number of output 

features. 
Weights: The connections between the layers, 

called 'weights', are critical to the learning process of 

the network. These weights are adjusted throughout 

the training phase of the network to optimize its 
performance and precision. 

Activation function: This is a mathematical 

function applied to the output of each neuron that 
influences the final output of the neuron and 

consequently the output of the network. 

Each layer hosts a large number of artificial 

neurons that process the input data to produce the 
final output. The architecture of the network, 

including the number of layers and neurons, as well 

as the activation function used, can be adjusted to 
achieve better results. 

 

2.2.2. Support Vector Machines (SVM)  

Support vector machines (SVMs) [42]–[44], a 

well-known category of machine learning 

algorithms, are mainly used for classification and 

regression tasks. SVMs can be roughly divided into 

three main categories: linear support vector 

machines, nonlinear SVMs, and multiclass SVMs. 

Linear SVMs are constructed in such a way that the 

instance groups of different classes separated by a 

hyperplane are equidistant, which allows for optimal 

delineation of the data. However, linear SVMs 

cannot handle datasets that are not linearly separable, 

necessitating the use of non-linear SVMs. Non-linear 

SVMs use kernel functions to classify non-linearly 

separable data. These kernel functions map the data 

to a higher-dimensional space and transform it into a 

linearly separable form. The resulting optimal 

hyperplane in this transformed space ensures a 

maximum span between the different classes. The 

data points, or 'vectors," closest to this hyperplane, 

called 'support vectors', determine the separation 

distance. Multiclass SVM, as the name suggests, is 

used to split data into multiple classes. This can be 

achieved by training multiple binary classifiers and 

merging their outputs, or by using a single classifier 

with multiple output values [45]–[48]. 

2.2.3. Logistic Regression  

Logistic regression [49]–[51] is a statistical 

method for analyzing and modeling the relationship 

between a binary dependent variable and one or more 

independent variables. In logistic regression, the 
logistic function is used to estimate the probability 

that the outcome is 1, given a set of independent 

variables. The function assigns a value between 0 and 
1 to each input value, which can be interpreted as the 

probability that the outcome is 1. The logistic 

regression model is trained on a set of labeled data, 

where each data point has a set of independent 
variables and a binary outcome. The model learns the 

relationship between the independent variables and 

the outcome by adjusting the parameters of the model 
so that the predicted probabilities match the actual 

outcomes as closely as possible. 

The logistic function is represented by an S-shaped 

curve, the so-called sigmoid curve, which is defined 

as follows: 

P(x) = 1 / (1 + e^ (-b0 - b1*x)) 

where P(x) is the probability that the outcome is 1 

given the argument x, b0 and b1 are the parameters 

of the model and e is the base of the natural 
logarithm. The following figure shows a logistic 

regression model based on a sigmoid function. 

 
Figure 4 Logistic regression model based on the sigmoid 

function. 

A logistic regression model is visually represented 
as an S-shaped curve with the probability of the 

dependent variable being '1' on the y-axis and the 

corresponding independent variable(s) on the x-axis. 
The curve starts at '0' on the left, moves through an 

inflexion point (the point of maximum slope), and 

ends at '1' on the right. 
As the independent variable(s) increase, the curve 

becomes steeper, and this curve is symmetrical about 

the inflexion point. Therefore, the visual 

representation of logistic regression forms an S-
shaped curve that illustrates the relationship between 
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the independent variable(s) and the probability that 

the dependent variable has the value '1'. 
This graphical interpretation helps to decipher the 

predictions of the model and understand the 

relationships between the variables, making it an 

indispensable tool for the insights gained from 
logistic regression. 

 
2.3. Performance Metrics 

 

There are several performance metrics that are 

used to evaluate the performance of a machine 
learning model [52]–[56]. In this study, the 

performance of the proposed system is evaluated 

using accuracy, precision, recall, and the F1-score. 
These metrics are commonly used to evaluate the 

performance of classification models. Accuracy is a 

measure of how well the system correctly predicts the 

class of instances. It is calculated as the ratio of 

correctly classified instances to the total number of 
instances. Precision is a measure of how well the 

system avoids false positives. It is calculated as the 

ratio of true positives to the total number of predicted 

positives. Recall, also known as "sensitivity", is a 
measure of how well the system finds all positive 

instances. It is calculated as the ratio of true positives 

to the total number of actual positive instances. The 
F1 score is a measure that combines both precision 

and recall. It is calculated as the harmonic mean of 

precision and recall. Using multiple metrics provides 
a better understanding of system performance. 

Understanding how well the system performs in 

terms of accuracy, precision, recall, and F1 score will 

help you identify the strengths and weaknesses of the 
proposed system. 

 

 

Table 3 Performance metrics [57]–[60]

Abbreviation Description Formula 

𝑨𝑪𝑪 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

𝑹𝑪𝑳 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑅𝑒𝑐𝑎𝑙𝑙) 𝑅𝐶𝐿 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑷𝑹𝑬 Precision  𝑃𝑅𝐸 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

FSC F-1 Score FSC = 2 ∗
𝑃𝑅𝐸. 𝑅𝐶𝐿

𝑃𝑅𝐸 + 𝑅𝐶𝐿
 

The equations in Table 3 [61], [62]  allow the 

calculation of the metrics for accuracy, precision, 

recall, and F1 score using the values of true positives 

(TP), false positives (FP), true negatives (TN) and 
false negatives (FN) from the confusion matrix (See 

table 4). 

The Confusion Matrix [63], [64] is a tabular 
analysis tool that explicitly gives the number of true 

positives, true negatives, false positives and false 

negatives, all critical metrics for evaluating the 
performance of a binary classification model. This 

matrix essentially facilitates the accurate 

quantification of true and false predictions, allowing 

for a more nuanced assessment of the classifier's 
performance than simply assessing accuracy. 

Table 4. Confusion matrix 

 

 

 

 

3. Experimental Results 

In this study, machine learning algorithms 
implemented in LabVIEW are used to develop a 

decision support system for a sound wave-based fire 

extinguishing system. The system is designed to 

model fires caused by burning fuels using input 
parameters such as fuel type, flame size, decibel 

level, frequency, airflow, and distance. The aim of 

the study is to develop a system that can accurately 
predict the extinguishing and non-extinguishing 

states of a flame based on these parameters to enable 

more efficient use of the sound wave-based fire 
extinguishing system. Figure 5 show the block 

diagram perspectives of the proposed LabVIEW-

based model. These images show the decision 

support system for the sound wave-based fire 
extinguishing system. The figures help to understand 

the planned design and operation of the system. 
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Figure 5 The block diagram of LabVIEW-based fire extinguisher model 

Table 5 provides a summary of the algorithms and 
parameters used in the proposed model, such as the 

type of machine learning algorithm (e.g., neural 

network, SVM, logistic regression). This information 
can provide insight into how the model was 

constructed and how the different parameters were 

selected and used in the analysis. It can also give you 

an idea of how the model was trained and what 
factors were considered in the classification. 

 

Table 5 Parameters setting LabVIEW-based fire 

extinguisher model. 

 

Algorithm Parameters Values/types 

SVM 

SVM type  C_SVM 

Kernel type  Linear 

c 1 

nu  0,5 

degree  3 

gamma  0,5 

Coef0   0 

Neural 

Network 

Number of hidden 

layers 
5 

Hidden layer type sigmoid 

Output layer type sigmoid 

Cost function type Quadratic 

Logistic 

Regression 

Tolerance 0,001 

Max iteration  1000 

 

Based on the values in Tables 4 and 5, various 

performance metrics such as accuracy, precision, 

detection, and F1 score were calculated. These 
performance metrics are a measure of the model's 

ability to correctly classify instances into positive and 

negative categories. Accuracy is the proportion of 
correctly classified instances out of the total number 

of instances. Precision is the proportion of correctly 

classified positive instances to the total number of 

predicted positive instances. Recall is the proportion 
of correctly classified positive instances out of the 

total number of actual positive instances. The F1 

score is a measure of the trade-off between precision 
and recall. These performance measures give an 

overview of the performance of the model and how 

well it is able to classify instances into positive and 
negative categories. The results of these performance 

measures are shown in Table 6, which allows a 

comparison of the performance of the different 

algorithms used in the study. 
 

Table 6 Performance metrics of learning algorithms 

  ACC RCL PRE FSC 

SVM 0.86728 0.86096 0.86709 0.86716 

ANN 0.90893 0.90874 0.90881 0.90885 

LR 0.86836 0.86831 0.86829 0.86801 

 

According to the developed models, the highest 
classification accuracy belongs to the model ANN 

with a value of 90.893%. The RLC, PRE, and FSC 

values of this model also seem to be higher than those 
of the other models listed in Table 6. According to 

this Table, the highest classification accuracy was 
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achieved with the model ANN, with a value of 

90.893%. The classification accuracy of the SVM 
and logistic regression models are 86.728% and 

86.836%, respectively. This shows that the ANN 

model performs better than the other models in 

classifying the data correctly. These values may 
indicate that the ANN model correctly classifies the 

data and minimizes false positives and false 

negatives. However, it is important to note that 
accuracy is not always the best metric to evaluate the 

performance of a model. Other metrics such as 

precision, recall, and F1 score should also be 
considered.  

4. Conclusion 

The study presents the development of a sound 

wave-based fire extinguishing model using AI 

methods such as artificial neural networks, support 

vector machines, and logistic regression, 
implemented in LabVIEW. The model was able to 

classify the extinguishing and non-extinguishing 

states of a flame based on input parameters such as 
fuel type, flame size, decibel, frequency, airflow, and 

distance. The performance of the developed machine 

learning methods was analyzed and compared using 

performance metrics such as accuracy, precision, 
recall, and F1 score. The results of this study show 

that the highest classification accuracy of 90.893% 

was achieved by the neural network model, while it 
was 86.728% and 86.836% for the SVM and logistic 

regression models, respectively. This indicates that 

the neural network model performed best in 
classifying the extinguishing and non-extinguishing 

states of a flame. Furthermore, the use of sound 

wave-based models can provide a cost-effective and 

non-invasive alternative to traditional fire 
extinguishing methods. In summary, this study 

provides valuable insight into the potential of AI-

based methods for solving fire extinguishing 
problems and can serve as a basis for future research 

in this area. The results show that the use of sound 

wave-based models can be an efficient and cost-

effective alternative to traditional firefighting 
methods. Furthermore, the effectiveness of the model 

can be evaluated using various performance metrics. 

Overall, this study highlights the potential of AI-
based methods in solving firefighting problems and 

shows how they can be a valuable tool for decision-

making in firefighting systems. 

 
 

 

 

Declarations  

Funding The author would also like to thank "The 

Scientific Projects Coordinator ship of Şırnak University" 

for institutional support (project number: 

2022.FNAP.06.01.01). 

Competing interests, The authors declare no 

competing interests. 

 

References 

[1] C. A. Matticks, J. J. Westwater, H. N. Himel, R. F. 

Morgan, and R. F. Edlich, ‘Health Risks to Fire 

Fighters’, J Burn Care Rehabil, vol. 13, no. 2, pp. 

223–235, Mar. 1992, doi: 10.1097/00004630-

199203000-00010. 

[2] A. B. Morgan and J. W. Gilman, ‘An overview of 

flame retardancy of polymeric materials: Application, 

technology, and future directions’, Fire Mater, vol. 

37, no. 4, pp. 259–279, Jun. 2013, doi: 

10.1002/FAM.2128. 

[3] M. Shokouhi, K. Nasiriani, H. Khankeh, H. 

Fallahzadeh, and D. Khorasani-Zavareh, ‘Exploring 

barriers and challenges in protecting residential fire-

related injuries: a  qualitative study’, J Inj Violence 

Res, vol. 11, no. 1, p. 81, 2019, doi: 

10.5249/JIVR.V11I1.1059. 

[4] R. Olawoyin, ‘Nanotechnology: The future of fire 

safety’, 2018, doi: 10.1016/j.ssci.2018.08.016. 

[5] Y. Awad, M. Kohail, M. A. Khalaf, and Y. A. Ali, 

‘Effect of fire extinguishing techniques on the 

strength of RC columns’, Asian Journal of Civil 

Engineering, vol. 23, no. 1, pp. 113–123, Jan. 2022, 

doi: 10.1007/S42107-021-00414-8/FIGURES/12. 

[6] F. Dubocq et al., ‘Organic contaminants formed 

during fire extinguishing using different firefighting 

methods assessed by nontarget analysis’, 

Environmental Pollution, vol. 265, p. 114834, Oct. 

2020, doi: 10.1016/J.ENVPOL.2020.114834. 

[7] Y. Zhou, R. Bu, J. Gong, X. Zhang, C. Fan, and X. 

Wang, ‘Assessment of a clean and efficient fire-

extinguishing technique: Continuous and cycling 

discharge water mist system’, J Clean Prod, vol. 182, 

pp. 682–693, May 2018, doi: 

10.1016/J.JCLEPRO.2018.02.046. 

[8] M. Rajczyk et al., ‘Application of acoustic 

oscillations in flame extinction in a presence of 

obstacle’, J Phys Conf Ser, vol. 1101, no. 1, p. 012023, 

Oct. 2018, doi: 10.1088/1742-6596/1101/1/012023. 

[9] A. B. Morgan and J. W. Gilman, ‘An overview of 

flame retardancy of polymeric materials: application, 

technology, and future directions’, Fire Mater, vol. 

37, no. 4, pp. 259–279, Jun. 2013, doi: 

10.1002/FAM.2128. 

[10] V. Sharifi, A. M. Kempf, and C. Beck, ‘Large-Eddy 

Simulation of Acoustic Flame Response to High-

Frequency Transverse Excitations’, 

https://doi.org/10.2514/1.J056818 , vol. 57, no. 1, pp. 

327–340, Nov. 2018, doi: 10.2514/1.J056818. 

[11] Y. S. Taspinar, M. Koklu, and M. Altin, ‘Acoustic-

Driven Airflow Flame Extinguishing System Design  

and Analysis of Capabilities of Low Frequency in 

Different Fuels’, Fire Technol, vol. 58, no. 3, pp. 



 Dirik, M., Journal of Soft Computing and Artificial Intelligence  04(01): 38-47, 2023  

 

46 
 

1579–1597, May 2022, doi: 10.1007/S10694-021-

01208-9/TABLES/4. 

[12] A. N. Friedman and S. I. Stoliarov, ‘Acoustic 

extinction of laminar line-flames’, Fire Saf J, vol. 93, 

pp. 102–113, Oct. 2017, doi: 

10.1016/J.FIRESAF.2017.09.002. 

[13] X. Shi, Y. Zhang, X. Chen, Y. Zhang, Q. Ma, and G. 

Lin, ‘The response of an ethanol pool fire to 

transverse acoustic waves’, Fire Saf J, vol. 125, p. 

103416, Oct. 2021, doi: 

10.1016/J.FIRESAF.2021.103416. 

[14] C. Xiong, Y. Liu, C. Xu, and X. Huang, ‘Acoustical 

Extinction of Flame on Moving Firebrand for the Fire 

Protection in Wildland–Urban Interface’, Fire 

Technol, vol. 57, no. 3, pp. 1365–1380, May 2021, 

doi: 10.1007/S10694-020-01059-W/FIGURES/11. 

[15] J. O’Connor, V. Acharya, and T. Lieuwen, 

‘Transverse combustion instabilities: acoustic, fluid 

mechanic, and flame processes’, Prog Energy 

Combust Sci, vol. 49, pp. 1–39, Aug. 2015, doi: 

10.1016/j.pecs.2015.01.001. 

[16] A. N. Friedman and S. I. Stoliarov, ‘Acoustic 

extinction of laminar line-flames’, Fire Saf J, vol. 93, 

pp. 102–113, Oct. 2017, doi: 

10.1016/j.firesaf.2017.09.002. 

[17] F. Baillot and F. Lespinasse, ‘Response of a laminar 

premixed V-flame to a high-frequency transverse 

acoustic field’, Combust Flame, vol. 161, no. 5, pp. 

1247–1267, May 2014, doi: 

10.1016/J.COMBUSTFLAME.2013.11.009. 

[18] E. Beisner et al., ‘Acoustic Flame Suppression 

Mechanics in a Microgravity Environment’, 

Microgravity Sci Technol, vol. 27, no. 3, pp. 141–144, 

Jun. 2015, doi: 10.1007/S12217-015-9422-

4/FIGURES/5. 

[19] T. Y. T. K. M Tunabe, ‘Numerical Simulation on the 

Flame Propagation in Acoustic Fields’, JASMA, vol. 

23, pp. 371–375, 2008. 

[20] M. Z. Abbasi, P. S. Wilson, and O. A. Ezekoye, 

‘Modeling acoustic propagation in a compartment 

fire’, J Acoust Soc Am, vol. 134, no. 5, pp. 4218–4218, 

Nov. 2013, doi: 10.1121/1.4831486. 

[21] M. Z. Abbasi, O. A. Ezekoye, and P. S. Wilson , 

‘Measuring the acoustic response of a compartment 

fire’, Proceedings of Meetings on Acoustics, vol. 19, 

2013, doi: 10.1121/1.4799626. 

[22] M. Z. Abbasi, P. S. Wilson, and O. A. Ezekoye, 

‘Change in acoustic impulse response of a room due 

to a fire’, J Acoust Soc Am, vol. 147, no. 6, p. EL546, 

Jun. 2020, doi: 10.1121/10.0001415. 

[23] M. J. Sousa, A. Moutinho, and M. Almeida, 

‘Classification of potential fire outbreaks’, Expert Syst 

Appl, vol. 129, pp. 216–232, Sep. 2019, doi: 

10.1016/J.ESWA.2019.03.030. 

[24] Y. Ye, X. Luo, C. Dong, Y. Xu, and Z. Zhang, 

‘Numerical and experimental investigation of soot 

suppression by acoustic oscillated combustion’, ACS 

Omega, vol. 5, no. 37, pp. 23866–23875, Sep. 2020, 

doi: 

10.1021/ACSOMEGA.0C03107/SUPPL_FILE/AO0

C03107_SI_006.AVI. 

[25] J. Lloret, M. Garcia, D. Bri, and S. Sendra, ‘A wireless 

sensor network deployment for rural and forest fire 

detection and verification’, Sensors, vol. 9, no. 11, pp. 

8722–8747, Nov. 2009, doi: 10.3390/S91108722. 

[26] B. L. Wenning, D. Pesch, A. Timm-Giel, and C. Görg, 

‘Environmental monitoring aware routing: Making 

environmental sensor networks more robust’, 

Telecommun Syst, vol. 43, no. 1–2, pp. 3–11, Feb. 

2010, doi: 10.1007/S11235-009-9191-8. 

[27] A. A. A. Alkhatib, ‘A Review on Forest Fire 

Detection Techniques’:, 

http://dx.doi.org/10.1155/2014/597368 , vol. 2014, 

Mar. 2014, doi: 10.1155/2014/597368. 

[28] P. Barmpoutis, P. Papaioannou, K. Dimitropoulos, 

and N. Grammalidis, ‘A Review on Early Forest Fire 

Detection Systems Using Optical Remote Sensing’, 

Sensors 2020, Vol. 20, Page 6442 , vol. 20, no. 22, p. 

6442, Nov. 2020, doi: 10.3390/S20226442. 

[29] K. Grover, D. Kahali, S. Verma, and B. Subramanian, 

‘WSN-Based System for Forest Fire Detection and 

Mitigation’, pp. 249–260, 2020, doi: 10.1007/978-

981-13-7968-0_19. 

[30] S. J. Chen, D. C. Hovde, K. A. Peterson, and A. W. 

Marshall, ‘Fire detection using smoke and gas 

sensors’, Fire Saf J, vol. 42, no. 8, pp. 507–515, Nov. 

2007, doi: 10.1016/J.FIRESAF.2007.01.006. 

[31] G. H. Mitri, I. Z. Gitas, G. H. Mitri, and I. Z. Gitas, 

‘Fire type mapping using object-based classification 

of Ikonos imagery’, Int J Wildland Fire, vol. 15, no. 

4, pp. 457–462, Dec. 2006, doi: 10.1071/WF05085. 

[32] I. Z. Gitas, G. H. Mitri, and G. Ventura, ‘Object-based 

image classification for burned area mapping of Creus 

Cape, Spain, using NOAA-AVHRR imagery’, 

Remote Sens Environ, vol. 92, no. 3, pp. 409–413, 

Aug. 2004, doi: 10.1016/J.RSE.2004.06.006. 

[33] M. G. Cruz, J. S. Gould, J. J. Hollis, and W. L. 

McCaw, ‘A Hierarchical Classification of Wildland  

Fire Fuels for Australian Vegetation Types’, Fire 

2018, Vol. 1, Page 13, vol. 1, no. 1, p. 13, Apr. 2018, 

doi: 10.3390/FIRE1010013. 

[34] ‘Acoustic Extinguisher Fire Dataset | Kaggle’. 

https://www.kaggle.com/datasets/muratkokludataset/

acoustic-extinguisher-fire-dataset (accessed May 27, 

2022). 

[35] Y. S. Taspinar, M. Koklu, and M. Altin , 

‘Classification of flame extinction based on acoustic 

oscillations using artificial intelligence methods’, 

Case Studies in Thermal Engineering , vol. 28, Dec. 

2021, doi: 10.1016/J.CSITE.2021.101561. 

[36] Y. S. Taspinar, M. Koklu, and M. Altin, ‘Acoustic-

Driven Airflow Flame Extinguishing System Design  

and Analysis of Capabilities of Low Frequency in 

Different Fuels’, Fire Technol, May 2022, doi: 

10.1007/S10694-021-01208-9. 

[37] M. Koklu and Y. S. Taspinar, ‘Determining the 

Extinguishing Status of Fuel Flames with Sound 

Wave by Machine Learning Methods’, IEEE Access, 

vol. 9, pp. 86207–86216, 2021, doi: 

10.1109/ACCESS.2021.3088612. 

[38] W. S. McCulloch and W. Pitts, ‘A logical calculus of 

the ideas immanent in nervous activity’, Bull Math 

Biophys, vol. 5, no. 4, pp. 115–133, Dec. 1943, doi: 

10.1007/BF02478259/METRICS. 



Dirik, M., Journal of Soft Computing and Artificial Intelligence  04(01): 38-47, 2023   

 

47 
 

[39] ‘Hebb, D. O. The organization of behavior: A 

neuropsychological theory. New York: John Wiley  

and Sons, Inc., 1949. 335 p. $4.00’, Sci Educ, vol. 34, 

no. 5, pp. 336–337, Dec. 1950, doi: 

10.1002/SCE.37303405110. 

[40] F. Rosenblatt, ‘The perceptron: A probabilistic model 

for information storage and organization in the brain’, 

Psychol Rev, vol. 65, no. 6, pp. 386–408, Nov. 1958, 

doi: 10.1037/H0042519. 

[41] C. A. Tudor, ‘Analysis of the Rosenblatt process’, 

ESAIM: Probability and Statistics, vol. 12, pp. 230–

257, Oct. 2008, doi: 10.1051/PS:2007037. 

[42] A. Shmilovici, ‘Support Vector Machines’, Data 

Mining and Knowledge Discovery Handbook , pp. 

231–247, 2009, doi: 10.1007/978-0-387-09823-4_12. 

[43] A. v. Joshi, ‘Support Vector Machines’, Machine 

Learning and Artificial Intelligence, pp. 89–99, 2023, 

doi: 10.1007/978-3-031-12282-8_8. 

[44] Ingo. Steinwart and Andreas. Christmann, ‘Support 

vector machines’, p. 601, 2008. 

[45] G. Teles, J. J. P. C. Rodrigues, R. A. L. Rabêlo, and 

S. A. Kozlov, ‘Comparative study of support vector 

machines and random forests machine learning 

algorithms on credit operation’, Softw Pract Exp, vol. 

51, no. 12, pp. 2492–2500, Dec. 2021, doi: 

10.1002/SPE.2842. 

[46] S. Kim, Z. Yu, R. M. Kil, and M. Lee, ‘Deep learning 

of support vector machines with class probability 

output networks’, Neural Networks, vol. 64, pp. 19–

28, Apr. 2015, doi: 10.1016/J.NEUNET.2014.09.007. 

[47] B. Schölkopf, ‘SVMs - A practical consequence of 

learning theory’, IEEE Intelligent Systems and Their 

Applications, vol. 13, no. 4, pp. 18–21, Jul. 1998, doi: 

10.1109/5254.708428. 

[48] ‘Support Vector Machines for Regression.’, Support 

Vector Machines, pp. 330–351, Aug. 2008, doi: 

10.1007/978-0-387-77242-4_9. 

[49] S. Nusinovici et al., ‘Logistic regression was as good 

as machine learning for predicting major chronic 

diseases’, J Clin Epidemiol, vol. 122, pp. 56–69, Jun. 

2020, doi: 10.1016/J.JCLINEPI.2020.03.002. 

[50] T. Rymarczyk, E. Kozłowski, G. Kłosowski, and K. 

Niderla, ‘Logistic Regression for Machine Learning 

in Process Tomography’, Sensors 2019, Vol. 19, Page 

3400, vol. 19, no. 15, p. 3400, Aug. 2019, doi: 

10.3390/S19153400. 

[51] E. Bisong, ‘Logistic Regression’, Building Machine 

Learning and Deep Learning Models on Google 

Cloud Platform, pp. 243–250, 2019, doi: 

10.1007/978-1-4842-4470-8_20. 

[52] S. Orozco-Arias, J. S. Piña, R. Tabares-Soto, L. F. 

Castillo-Ossa, R. Guyot, and G. Isaza, ‘Measuring 

Performance Metrics of Machine Learning 

Algorithms for Detecting and Classifying 

Transposable Elements’, doi: 10.3390/pr8060638. 

[53] S. Adhikari, S.-L. Normand, J. Bloom, D. Shahian, 

and S. Rose, ‘Revisiting performance metrics for 

prediction with rare outcomes’, doi: 

10.1177/09622802211038754. 

[54] M. Steurer, R. J. Hill, and N. Pfeifer, ‘Metrics for 

evaluating the performance of machine learning based 

automated valuation models’, Journal of Property 

Research, vol. 38, no. 2, pp. 99–129, 2021, doi: 

10.1080/09599916.2020.1858937. 

[55] A. Rácz, D. Bajusz, and K. Héberger, ‘molecules 

Multi-Level Comparison of Machine Learning 

Classifiers and Their Performance Metrics’, doi: 

10.3390/molecules24152811. 

[56] M. Dirik, ‘Optimized Anfis Model with Hybrid 

Metaheuristic Algorithms for Facial Emotion 

Recognition’, International Journal of Fuzzy Systems, 

pp. 1–12, Oct. 2022, doi: 10.1007/S40815-022-

01402-Z/FIGURES/5. 

[57] D. Chicco and G. Jurman, ‘The advantages of the 

Matthews correlation coefficient (MCC) over F1 

score and accuracy in binary classification 

evaluation’, BMC Genomics, vol. 21, no. 1, pp. 6-1-

6–13, Jan. 2020, doi: 10.1186/s12864-019-6413-7. 

[58] D. M. W. Powers, ‘Evaluation: From Precision , 

Recall and F-Measure to ROC, Informedness, 

Markedness & Correlation’, Journal of Machine 

Learning Technologies, vol. 2, no. 1, pp. 37–63, 2011, 

Accessed: Oct. 28, 2021. [Online]. Available: 

https://api.semanticscholar.org/CorpusID:55767944#

id-name=S2CID 

[59] T. Fawcett, ‘An Introduction to ROC Analysis’, 

Pattern Recognit Lett, vol. 27, no. 8, pp. 861–874, 

Jun. 2006, doi: 10.1016/j.patrec.2005.10.010. 

[60] D. Chicco and G. Jurman, ‘The advantages of the 

Matthews correlation coefficient (MCC) over F1 

score and accuracy in binary classification 

evaluation’, BMC Genomics, vol. 21, no. 1, pp. 6-1-

6–13, Jan. 2020, doi: 10.1186/s12864-019-6413-7. 

[61] S. Josephine Isabella, S. Srinivasan, and G. 

Suseendran, ‘An Efficient Study of Fraud Detection 

System Using Ml Techniques’, in Lecture Notes in 

Networks and Systems, Springer, 2020, pp. 59–67. 

doi: 10.1007/978-981-15-3284-9_8. 

[62] A. A. Taha and S. J. Malebary, ‘An Intelligent  

Approach to Credit Card Fraud Detection Using an 

Optimized Light Gradient Boosting Machine’, IEEE 

Access, vol. 8, pp. 25579–25587, 2020, doi: 

10.1109/ACCESS.2020.2971354. 

[63] ‘Confusion Matrix - an overview | ScienceDirect  

Topics’. 

https://www.sciencedirect.com/topics/engineering/co

nfusion-matrix (accessed Jan. 23, 2023). 

[64] M. Makhtar, D. C. Neagu, and M. J. Ridley, 

‘Comparing multi-class classifiers: On the similarity  

of confusion matrices for predictive toxicology 

applications’, Lecture Notes in Computer Science 

(including subseries Lecture Notes in Artificial 

Intelligence and Lecture Notes in Bioinformatics), 

vol. 6936 LNCS, pp. 252–261, 2011, doi: 

10.1007/978-3-642-23878-9_31. 

  


