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Abstract

In this paper, we first construct a new generalization of n-polynomial convex function.
That is, this study is a generalization of the definition of "n-polynomial convexity" pre-
viously found in the literature. By making use of this construction, we derive certain
inequalities for this new generalization and show that the first derivative in absolute value
corresponds to a new class of n-polynomial convexity. Also, we see that the obtained re-
sults in the paper while comparing with Holder, Holder-Iscan and power-mean, improved-
power-mean integral inequalities show that the results give a better approach than the
others. Finally, we conclude our paper with applications containing some means.

Mathematics Subject Classification (2020). 26A51, 26D10
Keywords. convex function, n-polynomial convexity, generalized n-polynomial

convexity, Hermite-Hadamard inequality, Holder-Iscan integral inequality

1. Preliminaries and fundamentals

Let S : I — R be a convex function. Then the inequalities

é
S(A+5> Séi)\/,\ S(x)dz < SN £50) (1)

2 2

hold for all A\,0 € I with A < §. This double inequality is well known as the Hermite-
Hadamard (H-H) inequality [6]. Some refinements of the H-H inequality for convex func-
tions have been obtained [5, 16].

Additionally, readers can refer to [1,3,8,11,15] and the references in these papers to
learn about different convexity classes and how to find the Hermite-Hadamard integral
inequalities of these classes.

In [13], Tekin et al. gave the following definition and related H-H integral inequalities
as follow:
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Definition 1.1 ([13]). Let n € N. A non-negative function S : I C R — R is called
n-polynomial convex if for every A\, € I and ¢ € [0, 1],

n n

S (-1 S0+ % S #15(5). (1.2)

s=1 s=1

SN+ (1—1)8

Theorem 1.2 ([13]). Let S : [\, 6] — R be a n-polynomial convex function. If A < ¢ and
S € L[\, 6], then the following H-H type inequalities hold:

(o) (59 52 f s s (S

The following inequality is known as Holder-Iscan integral inequality:

Theorem 1.3 ([7]). Letp > 1 and ]% +% = 1. If K, L are real functions defined on [\, d]
and if |K|P, |L|* are integrable on interval [\, d] then

/|K 2| de
1 J v [ o L
< H{<A <6—z>|K<z>|pdz) (A (6—z>L<z>rqczz>

5 ar J
+<A (z—)\)\K(z)\pdz> (A (Z—A)|L(z)\qczz> } (1.4)

The following inequality is known as improved power-mean integral inequality:

Theorem 1.4 ([10]). Let ¢ > 1. If K, L are real functions defined on [\, 0] and if | K|,
|K||L|? are integrable on interval [\, 0] then

/ K (2)L(2)] d (15)

=5/
{ 5= 2) [K(: >dz> ( / <6—z>|K<z>||L<z>\qdz)
=2 7 1o 3
*(/ﬁ VK >rdz> (/A (= = VK ILE) dz) }

Motivated by [13], we construct Definition 2.1 which seems to be a new generalization
of n-polynomial convex function. By making use of this definition, we derive certain
inequalities for this new generalization and show that the first derivative in absolute value
corresponds to a new class of n-polynomial convexity. Also, we see that the obtained results
in the paper while comparing with Holder, Holder-Iscan and power-mean, improved-power-
mean integral inequalities show that the results give a better approach than the others.
Finally, we conclude our paper with applications containing some means.

Q=

2. The construction of generalized n-polynomial convex functions

In this section, we introduce a new concept, which is called generalized n-polynomial
convexity and then we give some algebraic properties for the generalized n-polynomial
convex functions.

Definition 2.1. Let ben € Nand a; > 0 (¢ = 1,n) such that >/ ; a; > 0. A non-negative
S : 1 CR — R is called generalized n-polynomial convex function (or we can also called
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as (a1, asg, ..., an)-polynomial convex) if for every A\, € I and ¢ € [0, 1],

noai (1= (1—=1t) noooo(1 i n
S{EX+(1—1))) < e (n cf' ‘) )5' N+ 2iz) CZ (10,' ! )S (0), Z a; > 0. (2.1)
i=1 @i i=1%i i=1

The class of all generalized n-polynomial convex functions on I is denoted by GPOLC ().
Every generalized n-polynomial convex function is a h-convex with

Siai(1-0-1))
2is1 G .

h(t) =

Therefore, if f,g € GPOLC (I), then

i.) f+9€ GPOLC (I) and for ce R (¢ >0) cf € GPOLC (I) (see [1}], Proposition
9).

ii.) if the functions f, g be a similarly ordered on interval I , then fg € GPOLC (I) .(see
[14], Proposition 10).

Also, if f: I — J is a convex and g € GPOLC (J) and nondecreasing, then go f €
GPOLC (I) (see [1}], Theorem 15).

Researchers can look at [2,9, 14] for studies about h-convexity.

Remark 2.2. If we take n = 1 in (2.1), then the generalized 1-polynomial convexity
reduces to the clasical convexity.

Remark 2.3. If we take a; = 1 (i =1,n) in (2.1), then the generalized n-polynomial
convexity reduces to the n-polynomial convexity.

More generally, we can give the following remark together with proof:

Remark 2.4. Every nonnegative convex function is also a generalized n-polynomial con-
vex.. Indeed, this case is clear from the following inequalities

n

Zai (1—1t) < Zai (1 —1t) and Zai (1—-1t)< Zai (1 —ti)
i=1 i=1 i=1

i=1
for all t € [0,1] and n € N.

Example 2.5. f : (0,00) — R, f(z) = 2™, m € (—00,0) U[l,00), is a generalized
n-polynomial convex function.

Theorem 2.6. Let § > X\ > 0 and K, : [\, 0] — R be an arbitrary family of general-
ized n-polynomial convexr and let K(x) = sup, Ko(x). If J = {u € [\, 0] : K(u) < oo} is
nonempty, then J is an interval and K is a generalized n-polynomial convex function on
J.

Proof. Let t € [0,1] and x,y € J be arbitrary. Then

K (A + (1 —1t)y)
= sup K, (tA + (1 —t)0)
(0%

Sia(1-1-1))

< sup - K,(\) + &=L K, (6
@ 2lim1 @i ) Dz @i @
S e (1—(1—1) noa (1 ¢
< 1 (n ) sup Kq (A) + izl sz (L=#) sup K, (9)
i=1 @i a i=1ai a
S a (1 —(1—t) na(]— ¢
= - (n )K A) Zmlﬂ‘j( t>K(5)<oo
i=1 i i=1 i
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3. H-H inequality for generalized n-polynomial convex functions

In this section, we will establish some inequalities of H-H type for the generalized n-
polynomial convex functions. We will denote by L [\, d] the space of (Lebesgue) integrable
functions on [\, d].

Theorem 3.1. Let S : [\, 0] — R be a generalized n-polynomial convex function. If X\ < §
and S € L[\, 4], then the following H-H type inequalities hold:

1 rag A+
5 s o)

i1 @i {1_ (;)Z}
< (SiA/js(z)dzg {W]i“(ziﬁ

i=1

Proof. Here, we will use the property of the generalized n-polynomial convex function of
S. So, we have

5(*3°)
_ s (; A+ (1= £)5] + % [(1— t))\+t<5])
>lis1 G [1 - (1 - é)z]

" S (tA+ (1 —1)5) + ks
"y (tA+ (1 —1)d) ST

Dot A {1 - (%)Z}
— S [S (A + (1 —1)8) + 5 ((1 — )\ +5)] .

By taking integral in the last inequality with respect to ¢ € [0, 1], we deduce that
n a1 — (LY
s (“ 5) 2 e {1 (2) } /5 S(2)dz

By using the property of the generalized n-polynomial convex function S, if the variable
is changed as z = t\ + (1 — t)J, then

5/\/5

_ / S (EX+ (1 — 1)8) dt

IN

S((1—t)A+16)

0
< /0 1 [Z"Zlazé;;;_t))suﬂ ?”ffila:ti)s(cs) dt
S(0) <& ! i
_ Zlaz;al/ 1—1—t dt+ ”1az;i/o {1—t}dt
S(N) + 5(6)] & :
- Per E“i@il)v

where

1 . 1 . i
/0 [1—(1—t)ﬂdt:/0 1 -] =7
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Remark 3.2. In case of n = 1, the inequality (3.1) coincides with the the inequality (1.1).

Remark 3.3. In case of a; = 1 (i =1,n) the inequality (3.1) coincides with the the
inequality (1.3)

4. New inequalities for generalized n-polynomial convex functions

In this section, we will establish new estimates that refine H-H inequality for functions
whose first derivative in absolute value is a generalized n-polynomial convex function.
Dragomir and Agarwal [4] used the following lemma:

Lemma 4.1 ([4]). Let S : I° — R be a differentiable mapping on 1°, X\,6 € I° with A < 4.
If S" € L[\, 4], then the following identity holds:

SM)—QFS - A/ S(2)dz = 222 * 0 ‘oS A (1) d. (A1)

Theorem 4.2. Let be S : I — R be a dzﬁer@ntzable function on I°, X\,6 € I° with A < §
and assume that S € L[\, 0]. If |S| is a generalized n-polynomial convex function on
interval [\, 8], then the following inequality holds for t € [0, 1].

S(A) + S(9) 1 J
: — A S(2)dz (4.2)
F— A « (2+i+2)2'—2 , ,
~—n (A . . 5 9 5 Y
o e e PYCIONERC)
where A(u,v) = (u+v)/2 is the arithmetic mean.
Proof. From Lemma 4.1 and
S a (1—(1—1t) (1
1S (A + (1 —1)d)| < ! (n ) |S'(/\)|+E_1C:f( ) |S"(8)],
=1 =1
we get
S(A) + S(9) 1 g
| 5 - (5—)\/)\ S(z)dz
d—X [t ,
< T/ 11— 2t |S" (tA + (1 —t)d)| dt
0
0= (IS OIS afy =2t (1 (1 - 0)) dt
T2y a F18 (0)| Sy i fy 11— 2] (1 —t7) dt
P (i4i+2)20 -2 , ,
- 1ai§1a (i+1)(i+2)2i+1] (15X 15"
where
! i ! ; (2 +i+2) 20 —2
/O 11— 2t [1—(1—t)}dt_/0 1= 2t] [1— ] dt = EREPrC
O
Corollary 4.3. Taking n =1 in (4.2), we have the following inequality:
S(A) +S(6
NSO L s < Rags s @D

This coincides with the inequality in [/, Theorem 2.2].
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Corollary 4.4. Taking a; =1 (i =1,n) in (4.2), we have the following inequality:

S(A) + S(0) 1 4
‘ 5 —5_/\//\Szd

This coincides with the inequality in [13, Theorem 5].

n

i2+i+2)20 -2
z—l—l (i +2)2i+1

] A(lS W] 15' @)

(4.4)

=1

Theorem 4.5. Let S : I — R be a differentiable function on I°, X\,d € I° with A < 6, ¢ >
1, % + % = 1 and assume that S’ € L[\, 8]. If |S'|? is a generalized n-polynomial convex
function on interval [\, 0], then the following inequality holds

S(A) + S(6) 1 5
‘ 5 — (5—)\/)\ S(z)dz

SN (LY (2 S N e s ()
2 (1) (st o) AHGsoor s o),

where A s the arithmetic mean.

(4.5)

Proof. Using Lemma 4.1, Holder’s integral inequality and the following inequality

Li1 @i (1 - (- t)l> ! ¢ Srqai (1=t o g
S a 5" O+ S5 1S O (49)

which is the generalized n-polynomial convex function of |S’|?,

S(A) + S(6) B 1 /5
5 5 )\Szdz

S (tA+ (1 - 19| <

we get

< 9-A /|1—2t|pdt> (/1’5’(t)\+(1—t)6)|th);
_ ) bt 1%( NP
- 1 gl ‘S o e (1=t dt

o
7 G
o

1
oA Ly 2 - IR q jar sy |e
- p+1> <2121+1> Az (IS" I 15" @)
where
/\1—2t\pdt = L,
p+1

/0[ (1—t)]dt = Al{l—ti]dtziil.

Corollary 4.6. If we take n =1 in (4.5), we get the following inequality:

‘SO\); S h— )\/

This coincides with the inequality in [/, Theorem 2.3].

<3 (;aL)A (18" W18 @)1 . @)
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Corollary 4.7. If we take a; =1 (i = 1,n) in (4.5), we get the following inequality:

S(A) + 5(5)
2 . )\/S

oA = % 25 ! / q ! q
2<p+1> <nz+1> A7 (IS ()], |8 (8)]%).

This coincides with the inequality in [13, Theorem 6].

Theorem 4.8. Let S : I C R — R be a differentiable function on interval I1°, \,0 € I°
with A < &, ¢ > 1 and assume that S" € L[\, 6]. If |S'|? is a generalized n-polynomial
convex function on [a,b], then the following inequality holds

S(N\) + S(9) 1 0
5 — 5—)\/>\ S(z)dz

(4.8)

(4.9)

1

F-A (N[ 1 K (@+i+2)2 -2\ 1 ,
= 2(2) (Z?ZlaiZaz(i+1)(i+2)2i+1> Aa ([S" W[, 87(9)]")

=1

where A s the arithmetic mean.

Proof. Firstly, let ¢ > 1. By using the Lemma 4.1, Holder inequality and the property of
the generalized n-polynomial convex function of |S’|?, we obtain

S(N\) + S(9) 1 0
5 — 5—)\/>\ S(z)dz

< (S_T/\ (/1\1—2tdt)1; (/lyl—zt]|S’(t/\+(1—t)6)|th>é

. 5;)\(2>1—§l|5’ 1azzn; /\1 2 [1— (1 - 1)) at

Z /|1 2t|1—t5]dt]
11&21’1

_ Ay 1 & (P+it2)2 -2 i 1 g 1o (R
o2 (2> (Z?1aizal(i+1)(i+2)2i+l> Av (|S" N7 15" @) -

=1

For ¢ = 1, the proof of the Theorem 4.2 is followed step by step. O

Corollary 4.9. Under the assumption of Theorem 4.8 with ¢ = 1, we have the conclusion
of Theorem 4.2.

Corollary 4.10. Taking n =1 in (4.9), we get the following inequality:

1
S()\);‘S(é)_di)\//\s( dz <57)\Aq (|S/ )|q,|S,(6)|q), (4'10)

The obtaining inequality for ¢ =1 coincides with in [12, Theorem 1].
Corollary 4.11. If we take a; =1 (i = 1,n) in the inequality (4.9), we get the following

inequality:
S(A) + S(6) 1 /5
‘ 5 A S(z)dz
1

0 — 1= n i i a7 l
< AG) T (L) A o s @,

=1

(4.11)
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This inequality coincides with the inequality in [13, Theorem 7].

Now, we will prove the Theorem 4.5 by using Holder-Iscan inequality. Then we will
show that the result we have obtained in this theorem gives a better approach than that
obtained in the Theorem 4.5.

Theorem 4.12. Let S : I — R be a differentiable function on I°, \,§ € I° with A <
0, q > 1,% + % = 1 and assume that S" € L[\, 0]. If |S'|? is a generalized n-polynomial
convex on interval [X, 6], then the following inequality holds

S(A) +5(0) 1 0
‘ 5 — 5_>\/A S(z)dz

oA/ 1 NE(ISON S e SO ii+3a T
s 3 (2(p+1)> ( ?:1ai22(z'+2)+ ;;1%;2(”1)(”2))

=1

5— A\ 1 \s ISV i(i+3)a 1S ()T In
T (2(p+l)) < :.L:lai;%i+l)(i+2) MZ z—|—2>

=1

(4.12)

1

Ql

Proof. If we use Lemma 4.1, Holder-Iscan inequality and the inequality

T (1-a-v)

. 5" (] + Z?:“ff A=) |5 g1,

/ _ q
1S (tA + (1 = £)0)] o o

which is the generalized n-polynomial convex function of the function |S’|?, we get

S(A) + S(9) 1 g
’ 5 — 5_)\/)\ S(z)dz

< 2 (/ 1—1t) |1—2t|pdt)(/01(1—t)\S’(t/\+(1—t)6)|th>é
5 A( t\lQt\pdt>1</01t|5’(t)\+(1t)6)|th)é

= 2 (2(p+1)>p<|;:/"1a” . / — (-0
\5’ la” 1 / 1—tﬂdt>q

§— A\ 1 1S (V)¢ &
Ty (2<p+1>) (zlzl / -
SI 5 q n 1
+E?i1)c‘w ;az/o t [1—#} dt)

Cbaf 1 (@ da PO i3\
- 2 <2(p+1)> (Z?lai;z(wzﬁz?laiizl2(i+1)(z'+2)>

1

b—a 1 1f' (@) & z+3az fO) < dai \°
L (2(p+1)> (z 1aZZ z+2)+2?21ai;2(i+2)> !

=1
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where

1

1 1
1—t)[1—2tPdt = /t1—2t”dt:7,
/0< )1 — 2t o= 5

/Ol(l—t)[l—(l—t)i]dt = /Olt[l—ti]dt:Q(Z,iQ),
1 . 1 , (243
/0(1—t)[1—tﬂdt = /Ot[l—(l—t)z]dt:m.

(]
Corollary 4.13. Taking n =1 in (4.12), we get the following:
S(A) + S(9) 1 0
| T 5—A/A S(2)dz (4.13)
1 1
5—A ( 1 )117 (S 4218”07\« (218" (W + ]S ()"}
< + :
= 74 \pta 3 3
This coincides with the inequality in [7, Theorem 3.2].
Corollary 4.14. Taking a; =1 (i =1,n) in (4.12), we get the following:
S(A) + S(9) 1 0
| . — A S(2)dz (4.14)

oA/ 1 NSO i SO i3 \7
= 3 (2(p+1)>( n ;2(¢+2)+ n ;2(¢+1)(¢+2)>

S—N/ 1 IS S i+ 3) ys'a noo N\
T <2(p—|—1)) < g 20+ 1)( 2—1—2) ; 1—1—2 ’

This coincides with the inequality in [13, Theorem 8.

Remark 4.15. (4.12) gives better results than the inequality (4.5). Let us show that

S—A/ 1 NE(SONE a5 O ii+3)a )
2 <2(p+1)) <Z?:1az’;2(i+2)+E?:1Gi;2(i+1)(i+2)>

oA/ 1 NSO ii+Da TG a7
T <z(p+1)> ( ?:1ai;2(i—l—1)(i+2)+ ?lai;2(z’+2)>

1 1

< 3 () () Ao son
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Using concavity of the function A : [0,00) — R, h(z) = 2*,0 < A < 1 by sample calculation
we get

6—>\< 1 )i |S'n(A)q§”: ia: +\S'n(5)q§”: i(i +3)a; d
oA/ 1 NE(ISONE ii+Da @) a7
T (2(p+1)> ( ?:1ai;2(7;+1)(¢+2)+ yzlai;mwz)
1
5— A 1T \s (1IN @ 150 i e
2 - + - -
2 <2(p+1)) [22 1@2@—}—1 2570 1a”z::12—|—1

1
oA Ly 2 N\ L g e [4
- G (k) Ao sen,

IN

which is the required.

Theorem 4.16. Let S : I C R — R be a differentiable function on interval I°, X\, € I°
with A\ < 6, > 1 and assume that S € L[\, 8]. If |S’|? is a generalized n-polynomial
convex on the interval [\, ], then the following holds

S(A) + S(6) 1 /5
‘ 5 A S(z)dz

(4.15)
6= 2 (1N (IS ) & NEIUIE i
< 5 <2> ( " g, g " a Z;%M2(Z)
5= (1\E (18 )T & REIOESNY
+ 9 <2> (Zn L i Zl Zn L4 §a2M1(1)> y
where
Mi() :/1(1—t)|1—2t|[1—(1—t)i]dt:/lt|l—2t|[l—ti]dt
0 0
(P +it2)20 -2
272+ 2)(i +3)]
and

Mo(i) :/Olt|1—2t| [1—(1—t)i]dtz/ol(l—t)|1—2t| (1] ar

(i+5)[(*+i+2)2 -2
220+ 1)(i +2)(i + 3)
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Proof. Firstly, let ¢ > 1. By using the Lemma 4.1, improved power-mean inequality and
the property of the generalized n-polynomial convexity of the function |f’|?, we obtain

S(A) + S(0) 1 5
5 — 5_)\/>\ S(z)dz

1

g2 (/01(1 — )12 dt)l_; (/01(1 )L 2] |8 (tA + (1—t)5)]th>q

IN

2

_ 1 -1 :
+5T)‘ (/ t]1—2t|dt) q(/ t|1—2t||S’(t)\~|—(1—t)5)|th)q
0 0

P )

2 1@

i=1 i=1
1
0—A 2-3 |S" (N)]? & “ a
* 2 (2> ( =1 Q4 Zl i= 1 Qg ;
For ¢ = 1, the proof of the Theorem 4.2 is followed step by step. ([l
Corollary 4.17. Taking n =1 in (4.15), we get the following inequality:
S(A) + S(6) 1 J
— 4.1
5 5 )\/)\ S(z)dz (4.16)

5 —
- 8

(\S’ )"+ 318 <6>|‘1>3 N <3|S' O+ 15" <6>|Q>§]
4 4 '

This coincides with the inequality in [13, Corollary 6].
Corollary 4.18. If we take a; = 1 (i = 1,n) in the inequality (4.15), we get the following

inequality:
S(A) + S(9) 1 J
5 — 5_)\//\ S(z)dz

) (S s T )

2

(4.17)

Q=

1

) (S R )

2

This coincides with the inequality in [13, Theorem 9].

Remark 4.19. (4.15) gives better result than (4.9). If we use the concavity of the function
h:[0,00) = R, h(z) = 2*,0 < A < 1, we get

5_7)\ 1 2—7 ’S/( n n %
2 (2) <Zn1azz; anaz; >
§—X(1NTq [|5( - " 3
+2<2> <Z” azzl Z"lalizl )
(
1 1 (

S—x /N 1 & (2+i+2)2 -2\ 1 7
< 2z . p q o (5|9
=2 (2) (zg: IO NEIDIDE

1
a;—- . —
a = (i+1)(i+2)2'F
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where ,
(4+i+2)2" -2
(i 4+ 1)(i + 2)20+1"

M (i) + Ma(i) =
which completes the proof of remark.

5. Applications for special means

Throughout this section, for shortness, the following notations will be used.
1. The arithmetic mean
A+9

A=A 8) = S5,

A0 >0.
2. The geometric mean
G :=G(\,0) =V, Aod=>0.

3. The harmonic mean

206
H:=H(\J))=—— XN\d>0.
( ’ ) )\_1_5? ) >
4. The logarithmic mean
6=\
A# O
— — Ind—In X\’ .
L:=L(\0) { X Neg A, 6> 0.

5. The p-logaritmic mean
1
sptl_ )+l \p
Ly=1,000) = | (Goim)’ A#6peRV-10} .y 5.0
A, A=90
6.The identric mean
1
1 0\ 3—x
I::I(A,é):e<f\)\> , A0 > 0.

It is known that L, is monotonically increasing over p € R, denoting Ly = I and
L =1L.

Proposition 5.1. Let \,d € [0,00) with A < § and m € (—00,0) U [1,00)\ {—1}. Then,
the following inequalities are obtained:

n

? i=1 Qi [1 - (%)Z} =1 i \t+1

1 =18 Am(),8) < LN 6) < A()‘m’(sm)izai ( : ) '

Proof. The assertion follows from the inequalities (3.1) for the function
flz)=2", z€]0,00).
U

Proposition 5.2. Let \,6 € (0,00) with A\ < §. Then, the following inequalities are
obtained:

1 i1 % A‘l(/\,(S)SL_l()\,5)SH_l(/\JS)nzZai(' : )

Proof. The assertion follows from the inequalities (3.1) for the function

flx)=2"1 2€(0,00).
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Conclusion 1. In this paper, we give the generalization of the definition of n-polynomial
convexity, which will appear for the first time in the literature and study some algebraic
properties of this definition. We proved some new Hermite-Hadamard type integral in-
equalities for the generalized n-polynomial convex functions using an identity together
with Holder’s integral inequality. Different types of integral inequalities can be obtained
using this new definition.

1]
2]
3]
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