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Abstract

In this paper, some novel integral inequalities for
different kinds of convex functions have been proved
by using Caputo-Fabrizio fractional integral
operators. The findings includes several new integral
inequalities h —convex  functions, s —convex
functions in the second sense. We have used the
properties of Caputo-Fabrizio fractional operator,
definitions of different kinds of convex functions and
elemantery analysis methods.
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1. Introduction

Inequality theory is a field in which many
researchers work, with new findings that can be given
applications in many disciplines such as mathematical
analysis, statistics, approximation theory and
numerical analysis together with convex functions.
Although the concept of convex function is a concept
intertwined with inequalities by definition, it has also
formed the main motivation of many researches with
its aesthetic structure, features and different types.
Let’s start with the definition of this important class
of functions.
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2. Materials and Methods

Definition 2.1. Let I be on interval in R. Then
f:I - R is said to be convex, if

fex+ A -Oy) <tf)+A-)f )
holds for all x,y €1 and t € [0,1] (Pecari¢ et al.
1992).

Definition 2.2. A function f:R* —» R, where R =

[0, ), is said to be s —convex in the second sense if
flax + By) < a*f(x) + B ()

for all x,y €[0,00), a, >0 with a+8 =1 and

for some fixed s € (0,1]. We denote by K2 the class

of all s —convex functions (Breckner 1978).

Definition 2.3. (Varosanec 2007) Let h:J SR - R
be a non-negative function. We say that f:1 S R - R
is an h —convex function or that f belongs to the
class SX (h,I), if f is non-negative and for all x,y €
I and a € [0,1], we have

flax + (1 —a)y) < h(@)f(x) + h(1 - a)f ().

Definition 2.4. Let f € H'(0,b),b > a,a €[0,1]
then, the definition of the left and right side of
Caputo-Fabrizio fractional integral is:

1— t
CEIO =50 £ + 5oes [ FO),

and

1— b
("I)(O) = Gy FO + 55 | FOIy

where  B(a) >0 is normalization function
(Abdeljawad and Baleanu 2017).

In the sequel of the paper, we will denote
normalization function as B(«a) with B(0) = B(1) =
1.

In (Tarig et al. 2022), the authors provided an
integral inequality of Hermite-Hadamard type for
preinvex functions via Caputo-Fabrizio fractional
integral inequality as follows.

Theorem 2.1. Let f:I=[kyky +uky k)] —
(0,0) be a preinvex function on I and f €
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Llky, ky + uky, k)], If
following inequality holds
<2k1 + ,u(kz,kl)>
f 2

- B(a)
au(k,, ki)

X\ GT U U} + I ey U (O}

2(1 a)
-0 )

€[0,1], then the

_ fe) + £ (k)
- 2
where k € [k, kq + pu(ky, k)]
Atangana and Baleanu produced a new
derivative operators using Mittag-Leffler function in
Caputo-Fabrizio derivative operator as following.

Definition 2.5. (Atangana and Baleanu 2016). Let
f € H1(0,b),b > a,a € [0,1] then, the definition of
the new fractional derivative is given:

(11 (“BDOIF(B)] =

B(a) (t ., (t-x)*
2O [ f ()E.|-a

(1_a)] dx.

Definition 2.6. (Atangana and Baleanu 2016). Let
f € H1(0,b),b > a,a € [0,1] then, the definition of
the new fractional derivative is given:

12)  (DOD)] =
T S OB [~a G5 ax

Equations (1.1) and (1.2) have a non-local kernel.
Also in equation (1.1) when the function is constant
we get zero.

The related fractional integral operator has been
defined by Atangana-Baleanu as follows.

Definition 2.7. The fractional integral associate to the
new fractional derivative with non-local kernel of a
function f € Hl(a b) as defined:

W) = g O
+ Wf fE—y)*tdy
where, b >a, @ €[0,1] (Atangana and Baleanu

2016).
Abdeljawad and Baleanu introduced right hand
side of integral operator as following; The right

fractional new integral with ML kernel of order a €
[0,1] is defined by

IO} = @ —2F®

b
+ m[t fO)y —t)*tdy.

where ,b >a, a € [0,1] (Abdeljawad and Baleanu
2017).

For more information related to different kinds of
fractional operators, we recommend to the readers the
following papers (Abdeljawad 2015, Abdeljawad and
Baleanu 2016, Akdemir et al. 2021- Akdemir et al.
2017, Butt et al. 2020, Caputo and Fabrizio 2015-
Giirbiiz et al. 2020, Rashid et al 2020-Samko et al.
1993, Set 2012, Set et al. 2017).

3. Results

Theorem 3.1. Let I € R. Suppose that f:[a,b] S
I — R is a h —convex function on [a, b] such that
f € Ly[a,b]. Then, we have following inequality for
Caputo-Fabrizio fractional integrals:

CEI*HU) + (12 ) ()

2(1 —a) a(b—a)f(a) (*

<SS W+ —( B(a))()folh(t)dt
ab—a)f(
+Wf0 h(1—t)dt

where B(a) > 0 is normalization function and a €
[0,1].

Proof. By usining the definition of h —convex
function, we can write

fta+ @ —-t)b) < h(t)f(a) + h(1 —t)f(b).
By integrating both sides of the inequality over [0,1]
with respect to t, we get

1

f f(ta+ (1 —t)b)dt
0 1
< h(t)d
< f(@) f (t)dt

1
+ f(b)f h(1 —t)dt.
0

By changing of the variable as x = ta + (1 — t)b,
we obtain

1 b 1
mf f(x)dx Sf(a)f h(t) dt

+f(b)f h(1 —t)dt.
By multiplying both sides of the above inequality
with “(b a) and adding 2(1 “)f(k) we have
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[29

2(1 — ) a [P
S5 S0+ s | F@ax

<2(1—a) "
) f(k)
+a(b—a)f(a)
B(a)
+a(b—a)f(b)

1
h(1—t)dt.
By,
By simplfying the inequality, we get the result

1—a K d
(—B(a) F) + 5 f o) x)

1—«a K d
+(—B(a)f( )5 )f F) x)
2(1—a)f(k)

<

- B(a)

N ab —a)f(a)
B(a)

N a(b —a)f(b)
B(a)

f 1h(t) dt
0

f 1h(t) dt
0

1

f h(1l—t)dt
0

Namely,

CEI U + (FIE£) (k)

2(1 - a) a(b —a)f(a) (*
@ O 5w J%h@ a
a(b —a)f(b)
+WJO h(1 —t)dt.

This completes the proof.

Theorem 3.2. Let I € R. Suppose that f:[a,b] S
I — R is a s —convex function in the second sense
on [a,b] such taht f € L,[a, b]. Then, we have the
following inequality for Caputo-Fabrizio fractional
integrals:
(CE1* ) + (FIE ) ()

L20-0f0G6+D +ab - (@ + ()

B(a)(s +1)

where B(a) > 0 is normalization function s € (0,1]
and a € [0,1].

Proof. By usining the definition of s —convex
function in the second sense, we can write

fa+ @A —-0)b) <t5f(a) + (1 —t)*f(D).
By integrating both sides of the inequality over [0,1]
with respect to t, we get
1

ff(ta+(1—t)b)dt
0
< s d
<f01t f(a)dt
+f (1 —-0t)5f(b)dt.
0

By changing of the variable as x = ta + (1 — t)b,
and by calculating the right hand side, we obtain

1 (? f(a) + f(b)
mLﬂxWSH—l-

By multiplying both sides of the above inequality
with “(b a) and adding 2= £(k), we have

B(a)
2(1 a)
121045 [ e

21-a)
< B Q)

N a(b—a)f(a) + f(b)
B(a) s+1
By simplfying the inequality, we get the result.

1—a a [k
(B(a) fe+ %I 1t d")

+<—1_“f(k) L f ' dx)
5@ B(@)
(1 ‘”f( k)

N a(b - a)f(a) +f(b)
B(a) s+1

Then, it is easy to see

CEI U + (FI¢£) ()
L20-af G+ D) +alb - a)(f(a) + f(b))
B(a)(s +1)

This completes the proof

Theorem 3.3. Let I € R. Suppose that f:[a,b] S
I — R is a s —convex function in the second sense
on [a,b] such that f € L,[a, b]. Then, we have the
following inequality for Caputo-Fabrizio fractional
integrals:

Cal* o) + (”Gi‘f)(k)
2(1 —a)f (k)(ps + 1)1’ +a(b —a)(f(@) + f(B)
B(a)(ps + 1)1’
where B(a) > 0 is normalization functions € (0,1],
q> 1,§+$= 1and a € [0,1].

Proof : By usining the definition of s —convex
function in the second sense, we can write

f(ta+ @A —t)b) <t5f(a) + (1 —t)°f(b).
By integrating both sides of the inequality over [0,1]
with respect to t, we get
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f fta+ (1—t)b)dt
< Sd
(@ f £ dt

+f(b) f (1-1t)°dt.
0

If we apply the Holder's inequality to the right-hand
side of the inequality, we get
1

f |f(ta+ (1 —t)b)|dt
0

1

o (frof )

+ f(b)(( f (1—t)p5dt>p< f 1th>q)
0 0

=f@ ((psi— 1)% Oq)é)
+ £(b) ((p - 1)1 (mq)

By changing of the variable as x =ta+ (1 —t)b
and by calculating the right hand side, we obtain

1 [P + f(b
L oo dx <T@ B
AJa (ps+ 1)
By multiplying both sides of the above inequality
with &—=% a(b a) and adding 2(1 “)f(k) we have

2(1 a)

Bla )J flx)dx
2(1—a)f( 0

+a(b —a)f(a) + ()
B(a)

—.
(ps + 1p

By simplfying the inequality, we get the result
1—«a a [k
k) + f x) dx
(B(a)f() B(a) af() )

1—a . a [P p
+(B(a)f()+3( )ff(x) x)
2(1—a)

+06(b - a)f(a) + f(b)
B(a)

Then, we can concludethat

—.
(ps + 1)

CEI* (k) + (CFI{,"f)(k)
L 20 - f s + D7 + alb - a)(f(@) + f())
B(&)(ps + 1)?

Theorem 3.4. Let I € R. Suppose that f:[a,b] S
I — R is a s —convex function in the second sense
on [a,b] such taht f € L;[a,b]. Then ,we have
following inequality for Caputo-Fabrizio fractional
integrals:

CE £ + (FIg£) o)

21 —a)
< k
NIOBAL

N a(b— a)(f(a) + f(D))(q +p(ps + 1))
B(a)pq(ps + 1)

where B(a) > 0 is normalization functions € (0,1],
q> 1,§+%= 1anda € [0,1].

Proof : By usining the definition of s —convex
function in the second sense, we can write

fa+ @A —-0)b) <t5f(a) + (A —t)°f(b).
By integrating both sides of the inequality over [0,1]
with respect to t, we get
1

Jf(ta+(1—t)b)dt
0
1
< s d
<f0tf(a) t

1
+f (1 - t)5f(b) dt.
0

If we apply the Young's inequality to the right-hand
side of the inequality, we get
1

j |f(ta+ (1 —t)b)|dt
0

<f(a) (%(jloltps dt) +$<Ll1q dt1)>
+f(b)<l<f (1—t)p5dt) +%<f0 1th)>

—f()<p(p Dt >+f”(p(p D D

By changing of the variable as x =ta + (1 —¢t)b
and by calculating the right hand side, we obtain

L@ +f0) (g +p@s +1)
pq(ps + 1)

1 b
= Lo

By multiplying both sides of the above inequality
with === “(b a) and adding 2(1 “)f(k) we have
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21 —a)
S+ g )j'f(x)dx

21-a)
= B@ ®

N a(b = a) (f(@ + f(b) (g + p(ps + 1))

B(a) pq(ps +1)
By simplfying the inequality, we get the result
k

1—«a X a d
(ﬁaﬂ)+§5LKMX>

+<1_a k) + — fb d)
5 [0 + g5 | F@ax
2(1—a)

N a( - a)(f(a) +fO)(q+pps +1))
B(a)pq(ps + 1)

Namely,

(CFI(“f)(kg + (FIEf) (k)

2(l —a

N a(b - a)(f(a) +f)(q +plps + 1))
B(a)pq(ps + 1) '

Remark 1. If we set s = 1 in the main findings, we
obtain new estimations for convex functions via
Caputo-Fabrizio fractional integrals.
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