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Beta regresyon modelinde regresyon parametrelerini elde etmek için birincil yaklaşım, maksimum olabilirlik 
tahmin tekniğinin kullanılmasıdır. Bununla birlikte, beta regresyon modelinde çoklu bağlantının maksimum 
olabilirlik tahmin edicisinin varyansı üzerinde negatif bir etkiye sahip olduğu, yani maksimum olabilirlik 
tahmin edicisinin varyansının şişirildiği kabul edilmektedir. Bu konuyu ele almak için, çoklu bağlantı 
sorununu çözmek için yeni bir yanı düzeltilmiş tahmin edici tanıtılmıştır. Bu yeni tahmin edicinin etkinliği, 
bir Monte Carlo simülasyon deneyi kullanılarak sayısal bir araştırma yoluyla değerlendirilmiştir. Sonuçlar, 
önerilen tahmin edicinin diğer rakip tahmin edicilere kıyasla hem hata kareler ortalaması hem de karesel yan 
değerleri bakımından önemli iyileştirmeler sağladığını göstermektedir. 
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The primary approach for obtaining regression parameters in the beta regression model is the utilization of the 
maximum likelihood estimation technique. However, it is acknowledged that multicollinearity has a detrimental 
effect on the variance of the maximum likelihood estimator in the beta regression model, namely, the variance 
of the maximum likelihood estimator is inflated. To address this issue, a novel bias-adjusted estimator is 
introduced to tackle the problem of multicollinearity. The effectiveness of these new estimator is assessed 
through a numerical investigation using a Monte Carlo simulation experiment. The results indicate that the 
proposed estimators yield substantial improvements compared to other competing estimators in terms of both 
the mean squared error and squared bias values. 
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 INTRODUCTION 

Regression analysis is used to model data such that the explanatory variables are used to explain the 
dependent or response variable. The type of regression model depends on the distribution of the response 
variable. The beta regression model was firstly proposed in [1] to model the proportions data in other words the 
response variable is restricted to the interval (0,1) and its distribution is beta. As it is the case in generalized 
linear models, the mean of the response variable is related to several explanatory variables linearly via a link 
function. 

The parameters of the beta regression model are generally obtained by the maximum likelihood estimation 
technique. Although, it is well known that the explanatory variables are assumed not to be linearly correlated, 
this is not the case in many real-life situations. This problem is known as the multicollinearity in the literature 
[2]. Multicollinear settings affect the performance of the maximum likelihood estimator (MLE) negatively. For 
example, the variance of MLE becomes inflated and therefore the inference may not be reliable. 

To overcome this problem, many methods have been proposed in the linear regression model and most of 
these methods have been generalized to beta regression model. The well-known ridge estimator [3] was proposed 
for the beta regression model in [4] using a penalized likelihood approach and obtained in [2]. Another method 
is called Liu estimator [5] which is extended to the beta regression by [6]. Moreover, the Liu-type estimator [7] 
has been generalized to beta regression model by [8]. These methods are called biased estimators. 

On the other hand, Ospina et al. [9] introduced the second order biases of maximum likelihood estimator 
and proposed bias-adjusted estimators based on them in beta regression. Simas et al. [10] proposed three bias 
corrected estimators such that one is based on an analytical method and the other two of them are based on 
bootstrap methods where they let the regression structure to be nonlinear and they also allow a regression model 
for the dispersion parameter. Ospina and Ferrari [11] proposed asymptotically unbiased estimators based on the 
second order bias of maximum likelihood estimators in the zero-or-one inflated beta regression models. 

Moreover, Kadiyala [12] and Ohtani [13] proposed almost unbiased versions of ridge estimator using 
different methods. Although almost unbiased estimators are also biased estimators, they are expected to have 
less bias than their biased versions. Almost unbiased estimators are well studied in generalized linear models. 
We refer to the following papers: [14–17]. 

Although the Liu-type estimator [7] is a biased estimator, the bias or squared bias of this estimator has 
not been investigated in the literature. Therefore, the purpose of this study is to define a bias corrected or almost 
unbiased version of the Liu-type estimator in beta regression models and study its mean squared error (MSE) 
and squared bias (SB) properties and compare the performance of the new estimator to the ridge estimator and 
the Liu-type estimator by designing an extensive Monte Carlo simulation study. The advantage of using the new 
estimator is that it does not only overcome the collinearity problem but also reduces the bias of the Liu-type 
estimator in beta regression. 

Thus, the organization of this paper is as follows: beta regression fundamentals are given briefly in the 
next section. The new proposed method which is called bias corrected beta Liu-type estimator or almost unbiased 
beta Liu-type estimator is introduced and its theoretical properties are derived afterwards. In Monte Carlo 
simulation section, a Monte Carlo simulation experiment is provided to compare the performances of the existing 
estimators to the new bias corrected beta Liu-type estimator. Finally, some conclusive remarks are stated in 
conclusion section. 

BETA REGRESSION MODEL 

To introduce the beta regression model, we assume that the dependent variable is beta distributed. Thus, 
the observations of the dependent variable 𝑦', 𝑦(, … , 𝑦* are assumed to follow a beta distribution which has the 
following beta density function 
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 𝑓(𝑦; 𝜇, 𝜙) =
Γ(𝜙)

Γ(𝜇𝜙)Γ+(1 − 𝜇)𝜙.
𝑦!"#$(1 − 𝑦)($#!)"#$ (1) 

where 0 < 𝑦 < 1, 𝐸(𝑦) = 𝜇 and var(𝑦) = 2(3)
'45

  where 𝑉(𝜇) = 𝜇(1 − 𝜇) and Γ(. ) is the gamma function. 

Here 𝜇 is the mean of the response and 𝜙 is called the precision parameter which directly affects the 
variance of 𝑦. Using this representation of beta distribution Ferrari and Cribari-Neto [1] proposed the 
following beta regression model by relating the mean of 𝑦; with the linear predictors as 

 𝑔(𝜇') =0𝑥'(𝛽(

)

'*$

= 𝒙'+𝜷 = 𝜂'  (2) 

where 𝜷 = =𝛽', 𝛽(, … , 𝛽?@
A is the vector of regression coefficients and 𝑋 = [𝒙'A,… , 𝒙*A] is an 𝑛 × 𝑝 data matrix 

with 𝑝 explanatory variables. The function 𝑔(. ) is called the link function similar to the generalized linear 
models. There are several possible candidates for the link function, however, we use the logit link function 
given as  𝑔(𝜇) = log(𝜇/(1 − 𝜇)). Using the logit link function, one can define  

 𝜇' =
𝑒𝒙-.𝜷

1 + 𝑒𝒙-.𝜷
. (3) 

Thus, the corresponding log-likelihood function of the beta regression model can be written as follows 

 ℒ(𝜷) =0log+Γ(𝜙). − log+Γ(𝜙𝜇'). − log =Γ+𝜙(1 − 𝜇').>
)

'*$

+𝜙(1 − 𝜇')log(𝑦')

+ {𝜙(1 − 𝜇') − 1}log(1 − 𝑦'). 

(4) 

Since the log-likelihood function given above is nonlinear in 𝜷, one should use an iterative algorithm 
to obtain the maximum likelihood estimator (MLE). One possible option is to use Fisher’s scoring method. 
In order to do so, we need to obtain the score function and the Fisher’s information matrix. The theoretical 
derivations of these functions are given in [1] in details. Therefore, we just provide the maximum likelihood 
estimator in matrix notation as follows 

 𝜷A012 = +𝐗𝐓𝐖D𝐗.#$𝐗𝐓𝐖D𝒛F (5) 

where 𝐖O is the weight matrix whose diagonal elements are given by 

 𝑤' = 𝜙H𝜓4(𝜙𝜇') + 𝜓′+𝜙(1 − 𝜇').K
1

+𝑔′(𝜇').
5  

and 𝒛Q = 𝜼S +𝐖OU𝟏𝐓X(𝒚∗ − 𝝁S) is called the working response such that 𝑦;∗ = log(𝑦;/(1 − 𝑦;)) and 𝐓X is a 
diagonal matrix such that 𝐓X = diag=1/𝑔′(𝜇'), … ,1/𝑔′(𝜇*)@ and 𝜂Q; = 𝒙;A𝜷X`ab which is called the linear 
predictor.  

The theoretical properties of the estimators can be investigated using variance-covariance matrices and 
MSE functions. The asymptotic variance-covariance matrix of MLE is given by [18] 

 Cov+𝜷A012. =
1
𝜙 +𝐗

𝐓𝐖D𝐗.#$. (6) 

Thus, the MSE function of MLE is obtained by taking the trace of Cov=𝜷X`ab@ as  
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  MSE+𝜷A012. =
1
𝜙0

1
𝜆(

6

(*$

 (7) 

where 𝜆', 𝜆(, … , 𝜆? are the eigenvalues of 𝐗𝐓𝐖O𝐗. It is obvious from Equation (7) that if the matrix 𝐗𝐓𝐖O𝐗 is 
ill conditioned then the variances of the estimators become inflated since the inverses of the eigenvalues 
of the matrix 𝐗𝐓𝐖O𝐗 becomes close to zero and this situation results in a very large MSE values.  

Due to the high variance of MLE, many biased estimators are defined to be used in the presence of ill-
conditioned matrix of cross-products 𝐗𝐓𝐖O𝐗. One of them is the beta-ridge estimator (RE) proposed and 
studied by [2,4,19]. RE is defined as 

 𝜷A72 = +𝐗𝐓𝐖D𝐗+ 𝑘𝐈.#$𝐗𝐓𝐖D𝒛F (8) 

where 𝑘 > 0 is the biasing ridge parameter. The MSE function of RE is a complicated function of the 
parameter 𝑘. One other estimator is the beta-Liu estimator (LE) introduced by [6] as follows 

 𝜷A12 = +𝐗𝐓𝐖D𝐗+ 𝐈.#$+𝐗𝐓𝐖D𝐗+ 𝑑𝐈.𝜷A012 (9) 

where 0 < 𝑑 < 1 is the biasing Liu parameter. The advantage of using LE is that its MSE function is just a 
second-degree function of the parameter 𝑑.  

Although RE and LE have both their unique advantages and disadvantages, Algamal and Abonazel 
[8] proposed the following beta-Liu-type estimator (LT) combining the advantages of both RE and LE 

 𝜷A18 = +𝐗𝐓𝐖D𝐗+ 𝑘𝐈.#$+𝐗𝐓𝐖D𝐗− 𝑑𝐈.𝜷A012 (10) 

where 𝑘 > 0 and −∞ < 𝑑 < ∞. The bias vector, variance-covariance matrix and the MSE function or LT 
are given respectively by 

 bias+𝜷A18. = −(𝑘 + 𝑑)+𝐗𝐓𝐖D𝐗+ 𝑘𝐈.#$𝜷, (11) 

 
Cov+𝜷A18. =

1
𝜙𝐂9

#$𝐂:𝐂#$𝐂:𝐂9#$, 
(12) 

 
MSE+𝜷A18. =

1
𝜙0Z

+𝜆( − 𝑑.
5

𝜆(+𝜆( + 𝑘.
5 +

(𝑑 + 𝑘)5

+𝜆( + 𝑘.
5 𝛼(

5\
6

(*$

 
(13) 

where 𝐂k = 𝐗𝐓𝐖O𝐗+ 𝑘𝐈, 𝐂m = 𝐗𝐓𝐖O𝐗− 𝑑𝐈, 𝐂 = 𝐗𝐓𝐖O𝐗, 𝛼o is the jth element of 𝜶 = 𝐐𝜷 where the matrix 
𝐐 is composed of the normalized eigenvectors of 𝐂 as its columns. Moreover, we have 𝐐𝐓𝐗𝐓𝐖O𝐗𝐐 = 𝚲 =
diag=𝜆', 𝜆(, … , 𝜆?@. 

It is clear from Equations (12-13) that LT is a biased estimator, and the aim of this study is to reduce this 
bias by applying the bias correction procedure introduced by Kadiyala [12] and Ohtani [13]. 

A NEW BIAS ADJUSTED LT ESTIMATOR 

The estimator LT was proposed to have the advantages of both RE and LE. However, the squared bias 
properties of LT have not been studied so far. In this section, we propose an almost unbiased or bias corrected 
version of LT (AULT) so that it has even less squared bias than that of LT under certain scenarios. The following 
definition will be used to define AULT. 

Definition 1: [20] Suppose 𝜷s is a biased estimator of parameter vector 𝜷, and if the bias vector of 𝜷s is 
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given by bias(𝜷s) = E(𝜷s) − 𝜷 = 𝐑𝜷, which shows that E=𝜷s − 𝐑𝜷@ = 𝜷, then the estimator 𝜷xs = 𝜷s − 𝐑𝜷s is 
called the almost unbiased estimator based on the biased estimator 𝜷s. 

Now, using Definition 1, the almost unbiased beta LT estimator (AULT) can be defined as 

 𝜷A;<18 = 𝜷A18 + (𝑘 + 𝑑)+𝐗𝐓𝐖D𝐗+ 𝑘𝐈.
#$𝜷A18  

 																	= =𝐈 − (𝑘 + 𝑑)𝟐+𝐗𝐓𝐖D𝐗+ 𝑘𝐈.
#5
>𝜷A012 (14) 

where 𝑘 > 0 and −∞ < 𝑑 < ∞. To study further the properties of AULT, we provide the bias vector, 
variance-covariance matrix and MSE function of AULT respectively as follows 

 bias+𝜷A;<18. = −(𝑘 + 𝑑)+𝐗𝐓𝐖D𝐗+ 𝑘𝐈.#$𝜷, (15) 

 
Cov+𝜷A;<18. =

1
𝜙𝚿𝐂

#$𝚿𝐓, (16) 

 
MSE+𝜷A;<18. =

1
𝜙0Z

+𝜆( − 𝑑.
5+𝜆( + 𝑑 + 2𝑘.

5

𝜆(+𝜆( + 𝑘.
> +𝜙

(𝑑 + 𝑘)>

+𝜆( + 𝑘.
> 𝛼(

5\
6

(*$

 (17) 

where 𝚿 = 𝐈 − (𝑘 + 𝑑)𝟐𝐂kU(. 

Estimation of the parameter 𝒅 in AULT 

Our aim in this subsection is to find an estimator of the parameter 𝑑 for a given estimator of 𝑘. Thus, 
we start by minimizing the MSE of AULT with respect to 𝑑. The derivative of MSE=𝜷X~�a�@ is computed 
as 

 
𝜕MSE+𝜷A;<18.

𝜕𝑑 =0
(𝑑 + 𝑘)

𝜆(+𝜆( + 𝑘.
> +−𝜑+𝜆( − 𝑑.+𝜆( + 𝑑 + 2𝑘. + (𝑑 + 𝑘)5𝜆(𝛼(

5.
6

(*$

 (18) 

where 𝜑 = 1/𝜙. Now, we want to equate Equation (18) to zero and solve for the parameter 𝑑. If we let 
	𝑓(𝑑) = −𝜑=𝜆o − 𝑑@=𝜆o + 𝑑 + 2𝑘@ + (𝑑 + 𝑘)(𝜆o𝛼o( and find the roots of 𝑓(𝑑) which is a squared function 
𝑑. Thus, we can rewrite 𝑓(𝑑) as 

 𝑓(𝑑) = 𝑑5+𝜑 + 𝜆(𝛼(5. + 𝑑+2𝑘𝜑 + 2𝑘𝜆(𝛼(5. + +−𝜑𝜆(5 − 2𝑘𝜑𝜆( + 𝑘5𝜆(𝛼(5.. (19) 

The discriminant of 𝑓(𝑑) given in Equation (19) is obtained as ∆o= 4𝜑=𝜑 + 𝜆o𝛼o(@=𝜆o + 𝑘@
( > 0. Thus 

∆o has two roots for each 𝑗 = 1,2, … , 𝑝. One can obtain the roots as follows 

 𝑑$(,5( = −𝑘 ∓
+𝜆( + 𝑘.c𝜑+𝜑 + 𝜆(𝛼(5.

𝜑 + 𝜆(𝛼(5
 (20) 

Although it is possible to propose many estimators of the parameter 𝑑 using 𝑑'o,(o’s, we only propose 
the following estimator and use it in the Monte Carlo simulation study 
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 𝑑@6A = median

⎝

⎛−𝑘 +
+𝜆( + 𝑘.c𝜑+𝜑 + 𝜆(𝛼(5.

𝜑 + 𝜆(𝛼(5
⎠

⎞. (21) 

MONTE CARLO SIMULATION STUDY 

In this section, we present the details of the Monte Carlo simulation experiment, which is designed to 
compare the performances of MLE, RE, LT, and AULT. The dependent variable 𝒚 is generated using the 
probability density function given in Equation (1) which is the beta density function such that 
𝑦;~Beta=𝜙𝜇;, 𝜙(1 − 𝜇;)@ where 𝜇; = 𝑒𝒙l

m𝜷/ �1 + 𝑒𝒙l
m𝜷�	 such that the regression parameters are chosen to 

be the corresponding eigenvector of the maximum eigen value of the matrix 𝐗𝐓𝐗, so that ∑ 𝛽o(
?
o�' = 1 

which is a very common restriction,  see [8,17,18] and [21]. Moreover, following [8] the data matrix 𝐗 is 
generated via 

 𝑥'( = (1 − 𝜌5)$/5𝑚'( + 𝜌𝑚'(6C$) (22) 

where 𝑚;o’s are independent random number standard normal distribution such that 𝑖 = 1,… , 𝑛 and 𝑗 =
1,… , 𝑝. In Equation (19),  𝜌 controls the correlation between the predictors. The sample size 𝑛 is taken to 
be 50, 100 and 200. 𝜌 changes as 0.90, 0.95 and 0.99. The number of predictors 𝑝 are selected as 4, 8, 12. 
Also, the precision parameter 𝜙 is chosen as 5 and 10.  

To compare the simulation performances of the estimators, the following equations are respectively used 
to obtain the simulated MSE and square bias (SB) values for each estimator 

 SMSE+𝜷p. =
1

1000 0+𝜷p𝒍 − 𝜷.
8+𝜷p𝒍 − 𝜷.

$EEE

F*$

 (23) 

 
SB+𝜷p. = =𝜷p − 𝜷>

8
=𝜷p − 𝜷> ,𝜷p = 	

1
1000 0 𝜷p𝒍

$EEE

F*$

 
(24) 

where 𝜷s𝒍 represents each estimator at the rth repetition of the simulation in the study. The number of 
replications in the simulation is taken as 1000 and only the dependent variable is generated for each repetition 
while the data matrix 𝐗 is fixed.  

We estimate the biasing parameters of each method using the best estimators of that method proposed by 
the related paper as follows: 

• For RE, the parameter 𝑘 is estimated by 𝑘��� =
�stu
5X�Sstu

v  [19] 

• For LT, 𝑘�a� =
'

5X ∑ �Sw
vx

wyz
 and 𝑑�a� =

∑ �z
{A
Uk�Sw

v�x
wyz /=�w4k@

v

∑ �z{A4�w�Sw
v�x

wyz /�w=�w4k@
v [8] 

• For AULT,	𝑘�~�a� =
'

5X ∑ �Sw
vx

wyz
	and	𝑑�~�a� = median −𝑘�~�a� +

=�w4k�|}~�@¡¢S�¢S4�w�Sw
v�

¢S4�w�Sw
v £ 

  The results of the Monte Carlo simulation experiment are summarized in Tables 1-2 and Figures 1-4. In 
Tables 1-2, the squared biases of the estimators are provided. According to the tables, it is observed that the SB 
of AULT is the least in most of the situations considered. However, when the sample size is 50 and the number 
of variables is 12, SB of AULT becomes greater than SB of LT. An increase in the sample size affects the SBs  
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Table 1. Squared bias values of the estimators when 𝜙 = 5  for different values of 𝑝 and 𝜌 

 𝜌 0.90 0.95 0.99 
𝑝 𝑛 50 100 200 50 100 200 50 100 200 

4 

RE 0.0084 0.1257 0.1702 0.0318 0.0625 0.0769 0.0174 0.0426 0.0479 
LT 0.0075 0.0123 0.0184 0.0051 0.0117 0.0186 0.0072 0.0192 0.0264 
AULT 0.0025 0.0058 0.0113 0.0027 0.0078 0.0125 0.0052 0.0125 0.0161 

8 

RE 0.0404 0.0706 0.0833 0.0668 0.0760 0.0623 0.3170 0.3801 0.1453 
LT 0.0376 0.0469 0.0445 0.0515 0.0609 0.0526 0.1409 0.1801 0.0894 
AULT 0.0310 0.0556 0.0390 0.0399 0.0803 0.0480 0.0858 0.2219 0.0738 

12 

RE 0.1320 0.0666 0.0857 0.3023 0.0888 0.0909 5.3136 0.3680 0.3142 
LT 0.0961 0.0585 0.0667 0.1890 0.0750 0.0865 2.2530 0.1640 0.1719 
AULT 0.1533 0.0624 0.0590 0.3691 0.0858 0.0747 32.1480 0.2885 0.1120 

Table 2. Squared bias values of the estimators when 𝜙 = 10  for different values of 𝑝 and 𝜌 

 𝜌 0.90 0.95 0.99 
𝑝 𝑛 50 100 200 50 100 200 50 100 200 

4 
RE 0.0038 0.1140 0.1599 0.0173 0.0422 0.0589 0.0173 0.0121 0.0264 
LT 0.0039 0.0051 0.0068 0.0014 0.0032 0.0055 0.0015 0.0031 0.0099 
AULT 0.0005 0.0009 0.0024 0.0003 0.0012 0.0027 0.0006 0.0020 0.0041 

8 
RE 0.0128 0.0366 0.0435 0.0208 0.0306 0.0252 0.1149 0.1589 0.0675 
LT 0.0121 0.0143 0.0149 0.0156 0.0209 0.0176 0.0587 0.0722 0.0353 
AULT 0.0095 0.0115 0.0111 0.0160 0.0266 0.0147 0.0503 0.1013 0.0261 

12 
RE 0.0500 0.0239 0.0365 0.1525 0.0343 0.0344 0.9578 0.1491 0.1360 
LT 0.0339 0.0195 0.0227 0.0865 0.0264 0.0307 0.4486 0.0648 0.0779 
AULT 0.1224 0.0223 0.0179 0.4596 0.0369 0.0238 2.3292 0.1094 0.0462 

of the estimators negatively. Similarly, an increase in the degree of correlation 𝜌 results in an increase in the SB 
values. Moreover, an increase in the number of explanatory variables causes an increase in the SB values as 
well. 

According to the tables, one can conclude the followings: 
• It is observed from figures that AULT has a best performance in almost all of the situations. 
• The MLE becomes the worst estimator, in other words, it produces the highest MSE 

values in most of the cases, except for some of the cases when 𝑝 = 4, in these cases RE becomes the worst. 
• Increasing the sample size has a positive effect on the estimators generally meaning that the MSEs 

decrease. 
• The MSE values increase if the number of explanatory variables increase. 
• In general, if the degree of correlation is increased, the MSEs of the estimators are affected negatively. 
• There is no monotonic behavior in the distributions of the performances of the estimators, i.e., in some 

situations RE has more variability than the others. However, AULT has more variability especially when the 

sample size is low, and the number of explanatory variables is high. 

• It is observed that LT is more stable generally. 
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Figure 1. Boxplots of the simulated MSE values of the estimators when 𝜙 = 5 and 𝜌 = 0.90 

 

 

Figure 2. Boxplots of the simulated MSE values of the estimators when 𝜙 = 5 and 𝜌 = 0.95 
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Figure 3. Boxplots of the simulated MSE values of the estimators when 𝜙 = 5 and 𝜌 = 0.99 

 

 

Figure 4. Boxplots of the simulated MSE values of the estimators when 𝜙 = 10 and 𝜌 = 0.90 
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Figure 5. Boxplots of the simulated MSE values of the estimators when 𝜙 = 10 and 𝜌 = 0.95 

 

 

Figure 6. Boxplots of the simulated MSE values of the estimators when 𝜙 = 10 and 𝜌 = 0.99 
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CONCLUSIONS 

In this paper, a new almost unbiased estimator based on the beta Liu-type estimator in the beta regression 
models is proposed. The MSE function, bias vector and variance-covariance matrix of the new estimator are 
derived. Since the new almost unbiased estimator has two parameters 𝑘 and 𝑑, we also propose an estimator to 
estimate 𝑑 to be used in the numerical studies. The squared bias performance of the beta Liu-type estimator is 
also studied. The new estimator AULT is compared to LT, RE and MLE by conducting an extensive Monte 
Carlo simulation using the mean squared error and squared bias criteria. According to the results of the 
simulation, AULT can be an alternative method to the existing estimators in the presence of ill-conditioned data 
metrices when beta regression is used by the researchers. For future work, it is possible to introduce a generalized 
version of AULT in terms of the generalized Liu-type estimator and study its performance numerically. 
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