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Abstract
It is shown that if M and N are two von Neumann algebras, one of which has no central
abelian projection with ψ : M → N satisfying mixed Jordan triple 1-∗-product, i.e.,

ψ(A ◦B • C) = ψ(A) ◦ ψ(B) • ψ(C)
for all A,B,C ∈ M , then there exists a bijective map Ψ : M → N such that Ψ(A) =
ψ(I)ψ(A) with ψ(I)2 = I, whenever ψ(I) is central, and there exist a central projection
P ∈ M such that the restriction of ψ to MP is a linear ∗-isomorphism, and to M(I − P)
is a conjugate linear ∗-isomorphism.
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1. Notations and introduction
Let M be a von Neumann algebra and A,B ∈ M . We express A •λ B = AB + λBA∗,

the Jordan λ-∗-product. For λ = ±1, we say Jordan 1-∗-product and Jordan (−1)-
∗-product, respectively. Traditionally, numerous algebraists were already committed to
analyse those mappings that aren’t necessarily additive preserved Jordan ∗-products on
various algebras. The study of non-linear preserving problems is one of the premier areas
in matrix theory as well as operator theory. A variety of research objectives on certain
algebras such as von Neumann algebras, operator algebras, prime ∗-algebras, etc were
discussed in depth [2, 3, 7–11, 14–16] and references therein. The first implementation
of this theory was presented by Šemrl [17]. In addition, with the relation to quadratic
functionals, the Jordan (−1)-∗-product was introduced and studied by him. In [1], Bai
and Du revealed that the sum of linear and conjugate linear ∗-isomorphisms would be
any bijective map on von Neumann algebras without central abelian projections, which
preserved the Jordan (−1)-∗-product. Quite few generalizations throughout the last result
can be found [4, 6, 7, 11] done by plenty of authors.
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Throughout this line of questioning, recently Huo et al. [5] extended the above-
mentioned interpellation for Jordan triple η−product. Specifically, he stated that: “As-
sume that ψ is a bijection between two von Neumann algebras that is not necessarily
linear, of which one has abelian projections which is not central with ψ(I) = I and having
the Jordan triple η-∗-product. If η is not real, then ψ is a linear ∗-isomorphism, and if η is
real, then ψ is the sum of a linear ∗-isomorphism and a conjugate linear ∗-isomorphism”.
Additionally, they also addressed a conjecture that whether this result is relevant without
ψ(I) = I. In 2017, Li and Lu [8] provided the affirmative response to this problem and
developed the consequence on von Neumann algebras for Jordan’s triple 1-∗-product, of
which one has abelian projections which is not central. In this article, we also provide a
constructive response to the above problem but not only dismantle the presumption of
ψ(I) = I, we demonstrate the result in a somewhat broader sense by considering mixed
Jordan 1-∗-product which is defined as for any A,B,C ∈ M ,

A ◦B • C = (AB +BA) • C = ABC +BAC + CB∗A∗ + CA∗B∗.

Within this manuscript, we are primarily interested in exploring how non-linear maps
are formed on von Neumann algebras satisfying mixed Jordan triple 1-∗-product i.e.,
ψ(A ◦B • C) = ψ(A) ◦ ψ(B) • ψ(C) for all A,B,C ∈ M . Over few years some significant
work drawn an attention of researchers has been consecrated to the evaluation of mixed
Lie and Jordan triple products and derivations ([12,18–20]). Such studies reported above
encourage us to prove the following:
Theorem 1.1. Let M and N be two von Neumann algebras, one of which has no central
abelian projection. Define a map ψ : M → N such that

ψ(A ◦B • C) = ψ(A) ◦ ψ(B) • ψ(C)
for all A,B,C ∈ M . If ψ(I) is central, then there exists a bijective map Ψ : M → N
such that Ψ(A) = ψ(I)ψ(A) with ψ(I)2 = I and there exsits a central projection P ∈ M
such that the restriction of ψ to MP is a linear ∗-isomorphism and the restriction of ψ
to M(I − P) is a conjugate linear ∗-isomorphism.

We systematize the proof of aforementioned result in two sections. Section 2 presents
some preliminary notions and useful lemmas that are essential to show ψ is additive. In
Section 3, we shall provide numerous constructive remarks and lemmas to elaborate the
essertion of Theorem 1.1.

2. Additivity of ψ
Theorem 2.1. Let M and N be two von Neumann algebras and define a bijective map
ψ : M → N such that

ψ(A ◦B • C) = ψ(A) ◦ ψ(B) • ψ(C)
for all A,B,C ∈ M . Then ψ is additive.
Proof. Take into account that P1 ∈ M and P2 = I − P1 are projections, whereas I
is an unit element of M . We write Mjk = PjMPk for j, k = 1, 2. Then by Peire’s
decomposition of M , we have M = M11 ⊕M12 ⊕M21 ⊕M22. It should be noted that any
operator A ∈ M can be written as A = A11 +A12 +A21 +A22.

In view of the approximately facts, the verification of the theorem is given within the
presentation of the following lemmas:
Lemma 2.2. ψ(0) = 0.
Proof. Due to ψ being surjective, there is A ∈ M such that ψ(A) = 0. Thus

ψ(0) = ψ(0 ◦ 0 •A) = ψ(0) ◦ ψ(0) • ψ(A) = 0.
□
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Lemma 2.3. Let A12 ∈ M12 and A21 ∈ M21. Then ψ(A12 +A21) = ψ(A12) + ψ(A21).

Proof. Let Φ = (A12 +A21) − ψ−1(ψ(A12) + ψ(A21)). Then, we have

ψ(A12 +A21) ◦ ψ(P2) • ψ(P1) = ψ((A12 +A21) ◦ P2 • P1)
= ψ(A12 ◦ P2 • P1) + ψ(A21 ◦ P2 • P1)
= ψ(A12) ◦ ψ(P2) • ψ(P1) + ψ(A21) ◦ ψ(P2) • ψ(P1)
= (ψ(A12) + ψ(A21)) ◦ ψ(P2) • ψ(P1).

Apply ψ−1 on both sides of above expression. This gives Φ ◦ P2 • P1 = 0, which yields
Φ21 = 0. Similarly, we can show that Φ12 = 0 by replacing P2 by P1 and P1 by P2,
respectively. Next, we have

ψ(I) ◦ ψ(P1 − P2) • ψ(A12 +A21) = ψ(I ◦ (P1 − P2) • (A12 +A21))
= ψ(I ◦ (P1 − P2) •A12) + ψ(I ◦ (P1 − P2) •A21)
= ψ(I) ◦ ψ(P1 − P2) • ψ(A12)

+ψ(I) ◦ ψ(P1 − P2) • ψ(A21)
= ψ(I) ◦ ψ(P1 − P2) • (ψ(A12) + ψ(A21)).

Again, impose ψ−1 in last relation, we get I ◦ (P1 − P2) • Φ = 0. This further implies
Φ11 = Φ22 = 0. Thus Φ = 0 i.e.,

ψ(A12 +A21) = ψ(A12) + ψ(A21).

□

Lemma 2.4. For any A11 ∈ M11, A12 ∈ M12 and A21 ∈ M21,

(i) ψ(A11 +A12 +A21) = ψ(A11) + ψ(A12) + ψ(A21);
(ii) ψ(A12 +A21 +A22) = ψ(A12) + ψ(A21) + ψ(A22).

Proof. Let Θ = (A11 + A12 + A21) − ψ−1(ψ(A11) + ψ(A12) + ψ(A21)). Then by Lemma
2.3, we have

ψ(A11 +A12 +A21) ◦ ψ(P1) • ψ(P2) = ψ((A11 +A12 +A21) ◦ P1 • P2)
= ψ(A11 ◦ P1 • P2) + ψ(A12 ◦ P1 • P2)

+ψ(A21 ◦ P1 • P2)
= ψ(A11) ◦ ψ(P1) • ψ(P2) + ψ(A12) ◦ ψ(P1)

•ψ(P2) + ψ(A21) ◦ ψ(P1) • ψ(P2)
= (ψ(A11) + ψ(A12) + ψ(A21)) ◦ ψ(P1) • ψ(P2).

The last exression yields Θ ◦ P1 • P2 = 0, and hence Θ12 = 0. Similarly, we can get
Θ21 = 0. Now, we only need to show Θ11 = Θ22 = 0. It follows from the hypothesis and



Non-linear mixed Jordan triple 1-∗-product 381

Lemma 2.3 that

ψ

(
I

2

)
◦ ψ(P1 − P2) • ψ(A11 +A12 +A21)

= ψ

(
I

2
◦ (P1 − P2) • (A11 +A12 +A21)

)
= ψ

(
I

2
◦ (P1 − P2) •A11

)
+ ψ

(
I

2
◦ (P1 − P2) •A12

)
+ψ

(
I

2
◦ (P1 − P2) •A21

)
= ψ

(
I

2

)
◦ ψ (P1 − P2) • ψ (A11) + ψ(I

2
) ◦ ψ(P1 − P2) • ψ(A12)

+ψ
(
I

2

)
◦ ψ(P1 − P2) • ψ(A21)

= ψ

(
I

2

)
◦ ψ(P1 − P2) • (ψ(A11) + ψ(A12) + ψ(A21)).

Reasoning as above, we obtain Θ11 = Θ22 = 0, and hence

ψ(A11 +A12 +A21) = ψ(A11) + ψ(A12) + ψ(A21).

Similarly, we can show

ψ(A12 +A21 +A22) = ψ(A12) + ψ(A21) + ψ(A22).

This completes the proof. □

Lemma 2.5. For any Aij ∈ Mij, 1 ≤ i, j ≤ 2, we have

ψ
( 2∑

i,j=1
Aij

)
=

2∑
i,j=1

ψ(Aij).

Proof. Assume that ∇ =
2∑

i,j=1
Aij − ψ−1(

2∑
i,j=1

ψ(Aij)). In view of Lemma 2.4(i) and

P1 ◦ I •A22 = 0, we have

ψ(P1) ◦ ψ(I) • ψ(
2∑

i,j=1
Aij) = ψ(P1 ◦ I •

2∑
i,j=1

Aij)

= ψ(P1 ◦ I •A11) + ψ(P1 ◦ I •A12)
+ψ(P1 ◦ I •A21) + ψ(P1 ◦ I •A22)

= ψ(P1) ◦ ψ(I) • ψ(A11) + ψ(P1) ◦ ψ(I) • ψ(A12)
+ψ(P1) ◦ ψ(I) • ψ(A21) + ψ(P1) ◦ ψ(I) • ψ(A22)

= ψ(P1) ◦ ψ(I) •
2∑

i,j=1
ψ(Aij).

Apply ψ−1 on both sides of above expression which yields P1 ◦ I • ∇ = 0, and hence
∇11 = ∇12 = ∇21 = 0. We can show in similar manner that ∇22 = 0. Thus ∇ = 0 i.e.,

ψ(
2∑

i,j=1
Aij) =

2∑
i,j=1

ψ(Aij).

□

Lemma 2.6. For any Aij , Bij ∈ Mij with i ̸= j, ψ(Aij +Bij) = ψ(Aij) + ψ(Bij).
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Proof. Since I
2 ◦ (Pi + Aij) • (Pj + Bij) = Aij + Bij + A∗

ij + BijA
∗
ij , so it follows from

Lemma 2.4 that

ψ(Aij +Bij) + ψ(A∗
ij) + ψ(BijA

∗
ij) = ψ

(
I

2
◦ (Pi +Aij) • (Pj +Bij)

)
= ψ

(
I

2

)
◦ ψ(Pi +Aij) • ψ(Pj +Bij)

= ψ

(
I

2

)
◦ (ψ(Pi) + ψ(Aij)) • (ψ(Pj) + ψ(Bij))

= ψ

(
I

2

)
◦ ψ(Pi) • ψ(Pj) + ψ(I

2
) ◦ ψ(Pi) • ψ(Bij)

+ψ
(
I

2

)
◦ ψ(Aij) • ψ(Pj)

+ψ(I
2

) ◦ ψ(Aij) • ψ(Bij)

= ψ

(
I

2
◦ Pi • Pj

)
+ ψ

(
I

2
) ◦ Pi •Bij

)
+ψ

(
I

2
◦Aij • Pj

)
+ ψ

(
I

2
◦Aij •Bij

)
= ψ(Bij) + ψ(Aij +A∗

ij) + ψ(BijA
∗
ij)

= ψ(Aij) + ψ(Bij) + .ψ(A∗
ij) + ψ(BijA

∗
ij).

Thus
ψ(Aij +Bij) = ψ(Aij) + ψ(Bij).

□
Lemma 2.7. For any Aii, Bii ∈ Mii, ψ(Aii +Bii) = ψ(Aii) + ψ(Bii).

Proof. Suppose Π = (Aii +Bii) − ψ−1(ψ(Aii) + ψ(Bii)). It is easy to find
ψ(Pj) ◦ ψ(I) • ψ(Aii +Bii) = ψ(Pj ◦ I • (Aii +Bii))

= ψ(Pj ◦ I •Aii) + ψ(Pj ◦ I •Bii)
= ψ(Pj) ◦ ψ(I) • ψ(Aii) + ψ(Pj) ◦ ψ(I) • ψ(Bii)
= ψ(Pj) ◦ (ψ(Aii) + ψ(Bii)) • ψ(Pj).

From above, we have Pj ◦ I • Π = 0. This yields Πij = Πji = Πjj = 0. Next, according to
Lemma 2.5 and Lemma 2.6, for any Cij ∈ Mij with i ̸= j, we have

ψ(Pi ◦ (Aii +Bii) • Cij) = ψ(AiiCij +AiiCij +BiiCij +BiiCij)
= ψ(AiiCij +AiiCij) + ψ(BiiCij +BiiCij)
= ψ(Pi ◦Aii • Cij) + ψ(Pi ◦Bii • Cij)
= ψ(Pi) ◦ ψ(Aii) • ψ(Cij) + ψ(Pi) ◦ ψ(Bii) • ψ(Cij)
= ψ(Pi) ◦ (ψ(Aii) + ψ(Bii)) • ψ(Cij)

On the other hand,
ψ(Pi ◦ (Aii +Bii) • Cij) = ψ(Pi) ◦ ψ(Aii +Bii) • ψ(Cij).

Hence Pi ◦ Π • Cij = 0. This gives Πii = 0. Thus Π = 0 i.e.,
ψ(Aii +Bii) = ψ(Aii) + ψ(Bii).

□
Lemma 2.8. ψ is an additive map.

Proof. It follows from Lemmas 2.2-2.7 that ψ is additive. □
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3. Proof of Theorem 1.1
While we proceed upon our scientific findings, we could present some information,

including some few conceptual details. The unital von Neumann algebra M is indeed
a weakly closed, self-adjoint operator algebra in the Hilbert space H. The collection
Z(M) = {S ∈ M : ST = TS for all T ∈ M} is referred as the center of M . If P ∈ Z(M)
or PMP abelian, then the projection P is called the central abelian projection. Aware
that perhaps the central carrier of A, denoted by A, seems to be the smallest P central
projection that meets PA = A. The central carrier of A can be viewed as the projection
onto the closed subspace spanned by {BA(x) : B ∈ M,x ∈ H}. The core of A, denoted
by A, is sup{S ∈ Z(M) : S = S∗, S ≤ A}, if A is self-adjoint. If P is a projection, then it
is obvious that P is the largest central Q projection that satisfies Q ≤ P. If P = 0, then
the projection P is said to be core-free. It is straightforward to see it now P = 0 if and
only if (I − P) = I. Following remarks are critical for the proof of our main result:

Remark 3.1. [13, Lemma 4] “If M is a von Neumann algebra with no central abelian
projection P ∈ M , then there exists a projection P ∈ M such that P = 0 and P = I.”

Remark 3.2. [8, Lemma 2.2] “Let M be a von Neumann algebra on a Hilbert space H.
Let A be an operator in M and P ∈ M is a projection with P = I. If ABP = 0 for all
B ∈ M , then A = 0. Consequently, if Z ∈ Z(M), then ZP = 0 implies Z = 0.”

Remark 3.3. [8, Lemma 2.3] “Let M be a von Neumann algebra and A ∈ M . Then
AB +BA∗ = 0 for all B ∈ M implies that A = −A∗ ∈ Z(M).”

We can see from Theorem 2.1, ψ would be an additive map. Throughout the succeeding
arguments, the unit elements of the algebra M and N weren’t differentiated and we’ll see
within next proof that this does not impact our argument. We’ll demonstrate that theorem
progressively through implementing:

Lemma 3.4. 2I = ψ(I)2 + (ψ(I)∗)2.

Proof. Let A ∈ M such that ψ(A) = I. Then it follows from the additivity of ψ that
4I = 4ψ(A) = ψ(I ◦ I •A) = ψ(I) ◦ ψ(I) • I = 2(ψ(I)2 + (ψ(I)∗)2). (3.1)

This implies 2I = ψ(I)2 + (ψ(I)∗)2. □
Lemma 3.5. Let ΘP = 1

2(ψ(I)ψ(P) + ψ(I)∗ψ(P)∗), where P ∈ M is a projection. Then
ΘP is a projection such that ψ(P) = ψ(I)ΘP.

Proof. From the hypothesis, we have
4ψ(P) = ψ(I ◦ P • I)

= ψ(I) ◦ ψ(P) • ψ(I)
= 2ψ(I)ψ(P) • ψ(I)
= 2ψ(I)(ψ(I)ψ(P) + ψ(I)∗ψ(P)∗)
= 4ψ(I)ΘP.

Also
4ψ(P) = ψ(I ◦ P • P)

= ψ(I) ◦ ψ(P) • ψ(P)
= 2ψ(I)ψ(P) • ψ(P)
= 2ψ(P)2ψ(I) + 2ψ(P)ψ(P)∗ψ(I)∗

= 2ψ(P)(ψ(I)ψ(P) + ψ(I)∗ψ(P)∗)
= 4ψ(P)ΘP = 4ψ(I)Θ2

P.
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It follows from the last two relations that
ψ(P) = ψ(I)Θ2

P. (3.2)
Since ΘP is self-adjoint, so we have

ψ(P)∗ = ψ(I)∗Θ2
P. (3.3)

Multiply (3.2) by ψ(I) and (3.3) by ψ(I)∗, and add the so obtained relations, we get
ψ(I)ψ(P) + ψ(I)∗ψ(P)∗ = (ψ(I)2 + (ψ(I)∗)2)Θ2

P. (3.4)

Observe from Lemma 3.4 that 2ΘP = 2Θ2
P. Therefore ΘP is a projection. □

Lemma 3.6. For any A12 ∈ M12 and a projection P ∈ M , ψ(A12) = ΘPψ(A12) +
ψ(A12)ΘP.

Proof. It follows from Lemma 3.5 that
2ψ(A12) = ψ(I ◦ P •A12)

= ψ(I) ◦ ψ(P) • ψ(A12)
= 2ψ(I)ψ(P)ψ(A12) + 2ψ(A12)ψ(I)∗ψ(P)∗

= 2ψ(I)2ΘPψ(A12) + 2(ψ(I)2)∗ψ(A12)∗ΘP.

Multiply both sides of above equation by ΘP, we get ΘPψ(A12)ΘP = 0. Similarly, if we
multply above expression from left and right by I − ΘP, we obtain (I − ΘP)ψ(A12)(I −
ΘP) = 0. Therefore,

ψ(A12) = ΘPψ(A12) + ψ(A12)ΘP.

Hence the proof. □
Lemma 3.7. ψ(I)2 = I.

Proof. By the hypothesis, we can choose a projection P′ ∈ N, where N has no central
abelian projection, such that P′ = 0 and P′ = I. Let N ∈ N such that N = P′N(I − P′).
Assume that P = 1

2(ψ−1(I)ψ−1(P′) + ψ−1(I)∗ψ−1(P′)∗). It is clear from Lemma 3.5 and
3.6 that P is a projection and ψ−1(N) = Pψ−1(N) + ψ−1(N)P. Now, it follows that

ψ(P) = 1
2
ψ(ψ−1(I)ψ−1(P′) + ψ−1(I)∗ψ−1(P′)∗)

= 1
4
ψ(ψ−1(I) ◦ ψ−1(P′) • I)

= 1
4

(I ◦ P′ • ψ(I)) = ψ(I)P′.

Also, we have
N = ψ(Pψ−1(N) + ψ−1(N)P)

= 1
2
ψ(I ◦ P • ψ−1(N))

= 1
2

(ψ(I) ◦ ψ(P) • N)

= ψ(I)ψ(P)N + ψ(I)∗Nψ(P)∗

= ψ(I)2P′N + (ψ(I)∗)2NP′

= ψ(I)2N.

This gives (I − ψ(I)2)N = 0. Thus, (I − ψ(I)2)P′N(I − P′) = 0 and since (I − P′) = I,
in view of Remark 3.1, we obtain (I − ψ(I)2)P′ = 0. Note that (I − ψ(I)2) ∈ Z(N) and
P′ = I, then again by Remark 3.1, we have I − ψ(I)2 = 0 i.e., ψ(I)2 = I. This completes
the proof. □
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Now, for any A ∈ M , define a map Ψ : M → N by Ψ(A) = ψ(I)ψ(A). Then Ψ has the
following characteristics:

Lemma 3.8. (a) Ψ is an additive bijective map satisfying
Ψ(A ◦B • C) = Ψ(A) ◦ Ψ(B) • Ψ(C) for all A,B,C ∈ M ;

(b) Ψ(I) = I;
(c) Ψ(A∗) = Ψ(A)∗ for all A ∈ M ;
(d) P is a projection in M iff Ψ(P) is a projection in N .

Proof. For any A,B ∈ M , we have
Ψ(A+B) = ψ(I)ψ(A+B) = ψ(I)ψ(A) + ψ(I)ψ(B) = Ψ(A) + Ψ(B).

On the other hand, for any A,B,C ∈ M , we have
Ψ(A ◦B • C) = ψ(I)ψ(A ◦B • C)

= ψ(I)(ψ(A) ◦ ψ(B) • ψ(C))
= ψ(I)((ψ(A)ψ(B) + ψ(B)ψ(A)) • ψ(C))
= (ψ(I)ψ(A)ψ(B) + ψ(I)ψ(B)ψ(A))ψ(C))
+ (ψ(C)(ψ(I)ψ(B)∗ψ(A)∗ + ψ(I)ψ(A)∗ψ(B)∗).

An application of Lemma 3.7 gives
Ψ(A ◦B • C) = (ψ(I)ψ(A)ψ(I)ψ(B) + ψ(I)ψ(B)ψ(I)ψ(A))ψ(I)ψ(C))

+ (ψ(I)ψ(C)(ψ(I)∗ψ(B)∗ψ(I)∗ψ(A)∗ + ψ(I)∗ψ(A)∗ψ(I)∗ψ(B)∗)
= (ψ(I)ψ(A)ψ(I)ψ(B) + ψ(I)ψ(B)ψ(I)ψ(A)ψ(I)ψ(C))
+ (ψ(I)ψ(C)((ψ(I)ψ(B))∗(ψ(I)ψ(A))∗ + (ψ(I)ψ(A))∗(ψ(I)ψ(B))∗

= (Ψ(A)Ψ(B) + Ψ(B)Ψ(A))Ψ(C) + Ψ(C)(Ψ(B)∗Ψ(A)∗ + Ψ(A)∗Ψ(B)∗)
= Ψ(A) ◦ Ψ(B) • Ψ(C)

This completes the proof.

(b) It follows directly from hypothesis and Lemma 3.7.

(c) By the hypothesis, we have
2(Ψ(A) + Ψ(A∗)) = 2Ψ(A+A∗) = Ψ(I ◦A • I) = I ◦ Ψ(A) • I = 2(Ψ(A) + Ψ(A)∗).

Above relation yields Ψ(A∗) = Ψ(A)∗ for all A ∈ M .

(d) Since Ψ(A) = ψ(I)ψ(A) for all A ∈ M , so for A = P and from Lemma 3.5, we have
Ψ(P) = ψ(I)ψ(P) = ψ(I)2ΘP = ΘP. As we know ΘP is a projection. Thus Ψ(P) is also,
as we asserted. □

As N has no central abelian projections, it follows from Lemma 3.4 that there exists a
projection Q1 ∈ N such that Q1 = 0 and Q1 = I. Then by Lemma 3.8 (d), P1 = Ψ−1(Q1)
is a projection in M . We denote Aij = PiMPj and Bij = PiNPj , respectively. Keep it
into mind, we now prove the following:

Lemma 3.9. For any Aij ∈ Mij and Bij ∈ Nij, 1 ≤ i, j ≤ 2, we have Ψ(Aij) = Bij.

Proof. First we prove for i = 1, j = 2. It follows from hypothesis that
2Ψ(A12) = Ψ(I ◦ P1 •A12)

= I ◦Q1 • Ψ(A12)
= 2Q1Ψ(A12) + 2Ψ(A12)Q1.
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Multiply above relation, first by Q1 on both sides and then by Q2 = I − Q1, we obtain
Ψ(A12) = B12 + B21 for some B12 ∈ N12 and B21 ∈ N21. Next, we prove that B21 = 0.
Observe that

0 = Ψ(I ◦A12 • P1)
= I ◦ Ψ(A12) •Q1

= 2(B21 +B∗
21).

This gives B21 = 0, and hence Ψ(B12) ⊆ M12. Since Ψ is a bijection, so we can easily
obtain Ψ(B12) = M12. Similarly, we can show Ψ(B21) = M21. □

Lemma 3.10. For any Aii ∈ Mii and Bii ∈ Nii, we have Ψ(Aii) ⊆ Bii.

Proof. For j ̸= i, we have

0 = Ψ(I ◦ Pj •Aii)
= I ◦Qj • Ψ(Aii)
= 2(QjΨ(Aii) + Ψ(Aii)Qj).

This yields QiΨ(Aii)Qi = Ψ(Aii) ⊆ Bii. □

Lemma 3.11. For any Aij , Bij ∈ Mij, i ≤ i, j ≤ 2, we have
(a) Ψ(A11B12) = Ψ(A11)Ψ(B12) and Ψ(A22B21) = Ψ(A22)Ψ(B21);
(b) Ψ(A12B21) = Ψ(A12)Ψ(B21) and Ψ(A21B12) = Ψ(A21)Ψ(B12);
(c) Ψ(A11B11) = Ψ(A11)Ψ(B11) and Ψ(A22B22) = Ψ(A22)Ψ(B22);
(d) Ψ(A12B22) = Ψ(A12)Ψ(B22) and Ψ(A21B11) = Ψ(A21)Ψ(B11).

Proof. (a) It follows from Lemma 3.9 and 3.10 that Ψ(B12A
∗
11) = Ψ(B12)Ψ(A11)∗ = 0.

Thus

2Ψ(A11B12) + 2Ψ(B12A
∗
11) = Ψ(I ◦A11 •B12)

= I ◦ Ψ(A11) • Ψ(B12)
= 2Ψ(A11)Ψ(B12) + 2Ψ(B12)Ψ(A11)∗.

This implies Ψ(A11B12) = Ψ(A11)Ψ(B12). Similarly, we can show
Ψ(A22B21) = Ψ(A22)Ψ(B21). Next, to show (b), see from Lemma 3.9 that Ψ(B21)Ψ(A12)∗ =
0. Therefore,

2Ψ(A12B21) = Ψ(A12 ◦ I •B21) = 2Ψ(A12)Ψ(B21).

Hence, Ψ(A12B21) = Ψ(A12)Ψ(B21). Equivalently, one can easily show Ψ(A21B12) =
Ψ(A21)Ψ(B12). Now, we establish (c). Let X12 ∈ N12 such that C12 = Ψ−1(X12) ∈ M12
from Lemma 3.9. It follows from (a) that

Ψ(A11B11)X12 = Ψ(A11B11C12) = Ψ(A11)Ψ(B11C12) = Ψ(A11)Ψ(B11)X12

for all X12 ∈ M12. Since Q2 = I, it follows from Remark 3.1 and 3.2 that Ψ(A11B11) =
Ψ(A11)Ψ(B11). Similarly, we can show Ψ(A22B22) = Ψ(A22)Ψ(B22). Finally, to prove (d),
we see from Lemma 3.9 that E21 = Ψ−1(Y21) ∈ M21 for any Y21 ∈ N21. So

Ψ(A12B22)Y21 = Ψ(A12B22E21) = Ψ(A12)Ψ(B22E21) = Ψ(A12)Ψ(B22)Y21.

Reasoning as above, we obtain Ψ(A12B22) = Ψ(A12)Ψ(B22). Similarly, we can have
Ψ(A21B11) = Ψ(A21)Ψ(B11). □

Lemma 3.12. Ψ is a R-linear ∗-ismomorphism.
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Proof. Since we know from Lemma 3.8 that Ψ is additive, so it follows from Lemma 3.11
that

Ψ(AB) = Ψ(A11B11 +A11B12 +A12B12 +A12B22

+A21B11 +A21B12 +A22B21 +A22B22)
= Ψ(A11B11) + Ψ(A11B12) + Ψ(A12B12) + Ψ(A12B22)

+Ψ(A21B11) + Ψ(A21B12) + Ψ(A22B21) + Ψ(A22B22)
= Ψ(A11)Ψ(B11) + Ψ(A11)Ψ(B12) + Ψ(A12)Ψ(B12) + Ψ(A12)Ψ(B22)

+Ψ(A21)Ψ(B11) + Ψ(A21)Ψ(B12) + Ψ(A22)Ψ(B21) + Ψ(A22)Ψ(B22)
= Ψ(A)Ψ(B)

for all A,B ∈ M . Therefore, Ψ is an isomorphism, and hence ∗-ismomorphism by Lemma
3.8(c). Now we show Ψ is R−linear. Thus, for every η ∈ R, there exist two rational
sequences {rn}, {sn} such that rn ≤ η ≤ sn and lim rn = lim sn = η when n → ∞. It is
clear that Ψ preserves positive elements, then Φ preserves order. So, by the additivity of
Ψ, we have

rnI = Ψ(rnI) ≤ Ψ(ηI) ≤ Ψ(snI) = snI.

Hence,
Ψ(ηI) = ηI

for η ∈ R. It means that Ψ is R-linear. Thereby the proof is completed. □
Lemma 3.13. The restriction of Ψ to MP is linear and restriction to M(I − P) is
conjugate linear.

Proof. By Lemma 3.12, Ψ(iI)2 = Ψ((iI)2) = −Ψ(I) = −I. Also by Lemma 3.8(c),
Ψ(iI)∗ = Ψ((iI)∗) = −Ψ(iI). Let F = I−iΨ(iI)

2 . Then it is easy to verify that F is
a central projection in M . Let P = Ψ−1(F ). Then by Lemma 3.8(d), P is a central
projection in N . Moreover, for A ∈ N , there hold

Ψ(iAP) = Ψ(A)Ψ(P)Ψ(iI) = iΨ(A)Ψ(P)(2F − I),
and

Ψ(iA(I − P)) = Ψ(A)Ψ(I − P)Ψ(iI) = −iΨ(A)(I − F ) = −iΨ(A(I − P)).
That is, the restriction of Ψ to MP is linear and restriction to M(I − P) is conjugate
linear. This together with Lemmas 3.8, 3.11 and 3.12 completes the proof of Theorem
1.1. □
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