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Abstract

It is shown that if M and N are two von Neumann algebras, one of which has no central
abelian projection with ¢ : M — N satisfying mixed Jordan triple 1-#-product, i.e.,

Y(AoBeC)=1(A)oy(B)ey(C)
for all A, B,C € M, then there exists a bijective map ¥ : M — N such that U(A) =
Y(I)(A) with (I)? = I, whenever ¢(I) is central, and there exist a central projection
P € M such that the restriction of ¢ to M*B is a linear #-isomorphism, and to M (I —P)
is a conjugate linear *-isomorphism.
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1. Notations and introduction

Let M be a von Neumann algebra and A, B € M. We express Aey B = AB + A\BA*,
the Jordan A-x-product. For A = =£1, we say Jordan l-x-product and Jordan (—1)-
x-product, respectively. Traditionally, numerous algebraists were already committed to
analyse those mappings that aren’t necessarily additive preserved Jordan s-products on
various algebras. The study of non-linear preserving problems is one of the premier areas
in matrix theory as well as operator theory. A variety of research objectives on certain
algebras such as von Neumann algebras, operator algebras, prime x-algebras, etc were
discussed in depth [2,3,7-11, 14-16] and references therein. The first implementation
of this theory was presented by Semrl [17]. In addition, with the relation to quadratic
functionals, the Jordan (—1)-#-product was introduced and studied by him. In [1], Bai
and Du revealed that the sum of linear and conjugate linear x-isomorphisms would be
any bijective map on von Neumann algebras without central abelian projections, which
preserved the Jordan (—1)-#-product. Quite few generalizations throughout the last result
can be found [4,6,7,11] done by plenty of authors.
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Throughout this line of questioning, recently Huo et al. [5] extended the above-
mentioned interpellation for Jordan triple n—product. Specifically, he stated that: “As-
sume that 9 is a bijection between two von Neumann algebras that is not necessarily
linear, of which one has abelian projections which is not central with (/) = I and having
the Jordan triple n-x-product. If n is not real, then ¢ is a linear *-isomorphism, and if 7 is
real, then ¢ is the sum of a linear *-isomorphism and a conjugate linear *-isomorphism”.
Additionally, they also addressed a conjecture that whether this result is relevant without
Y(I) = 1. In 2017, Li and Lu [8] provided the affirmative response to this problem and
developed the consequence on von Neumann algebras for Jordan’s triple 1-x-product, of
which one has abelian projections which is not central. In this article, we also provide a
constructive response to the above problem but not only dismantle the presumption of
¥(I) = I, we demonstrate the result in a somewhat broader sense by considering mixed
Jordan 1-x-product which is defined as for any A, B,C € M,

AoBe(C =(AB+ BA)e(C = ABC + BAC + CB*A* + CA*B*.

Within this manuscript, we are primarily interested in exploring how non-linear maps
are formed on von Neumann algebras satisfying mixed Jordan triple 1-x-product i.e.,
PY(AoBe(C)=1y(A)oy)y(B)ep(C) for all A,B,C € M. Over few years some significant
work drawn an attention of researchers has been consecrated to the evaluation of mixed
Lie and Jordan triple products and derivations ([12,18-20]). Such studies reported above
encourage us to prove the following:

Theorem 1.1. Let M and N be two von Neumann algebras, one of which has no central
abelian projection. Define a map ¢ : M — N such that

(Ao BeC)=1(A)op(B)ey(C)
for all A,B,C € M. If )(I) is central, then there exists a bijective map ¥ : M — N
such that W(A) = (1) p(A) with (I1)* = I and there exsits a central projection B € M
such that the restriction of 1 to MR is a linear x-isomorphism and the restriction of v
to M (I —*P) is a conjugate linear x-isomorphism.

We systematize the proof of aforementioned result in two sections. Section 2 presents
some preliminary notions and useful lemmas that are essential to show v is additive. In
Section 3, we shall provide numerous constructive remarks and lemmas to elaborate the
essertion of Theorem 1.1.

2. Additivity of ¥
Theorem 2.1. Let M and N be two von Neumann algebras and define a bijective map
v : M — N such that

V(Ao BeC)=y(A)op(B)ey(C)
forall A, B,C € M. Then v is additive.
Proof. Take into account that ; € M and Po = I — Py are projections, whereas [
is an unit element of M. We write M;, = B;MP;, for j,k = 1,2. Then by Peire’s

decomposition of M, we have M = M1 @ Mz @ Moy @ May. It should be noted that any
operator A € M can be written as A = Ay + Ao + Aoy + Asgo.

In view of the approximately facts, the verification of the theorem is given within the
presentation of the following lemmas:

Lemma 2.2. (0) = 0.
Proof. Due to 1 being surjective, there is A € M such that ¢¥(A) = 0. Thus
¥(0) =1(000 e A) =1(0) o 1)(0) e 1p(A) = 0.
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Lemma 2.3. Let Ao € Mo and Aoy € Msy. Then ¢(A12 + A21) = TZJ(Alz) -+ ’(ZJ(AQl)

Proof. Let ® = (A1s + Ag1) — 1 (¥(A12) + ¥(A21)). Then, we have

Y(A12 + A21) o P(P2) @ v(P1) = ((Ar2 + A21) o Pa e P1)

P(Ar2 0 Po @ Py1) + (Az1 0 Po e Py)

= P(Ai2) o P(P2) @ Y(P1) + 1 (A21) 0 Y(B2) @ ¥(Pr)
= (Y(A12) +¥(A21)) o Y(B2) @ Y(P1).

Apply /=1 on both sides of above expression. This gives ® o 5 @ P = 0, which yields
®9; = 0. Similarly, we can show that ®15 = 0 by replacing B> by P1 and B; by Po,
respectively. Next, we have

V() o p(P1 — Po) e Y(A12 + A21) = YL o (P1 —Pa) @ (A12 + A21))

= (I o(P1—P2)e A1) + (o (P1 — Pa) e An)
() o p(P1 — P2) @ 1(Ai2)

V(1) o p(P1 — P2) @ Y(A21)

= () oP(P1 — Pa) o (Y(A12) + ¥(A21)).

_l’_

Again, impose ¢! in last relation, we get I o (B1 — PB2) @ & = 0. This further implies
(I)ll = @22 =0. Thus ® =0 i.e.,

P(Aiz + A21) = Y(A12) + ¥(An).

Lemma 2.4. For any A1 € My1, A1s € Mys and As1 € Moy,

(i) P(A1r + A1z + A1) = Y(A11) + Y(Ar2) + (A1),
(1) Y(A1g + A9y + Ago) = Y(Ar2) + Y(A21) + (As2).

Proof. Let © = (A1 + A1a + A1) — ¥~ H((A11) + ¥(A12) + ¥(Az1)). Then by Lemma
2.3, we have

Y(Ar1 + A1z + Az1) o P(P1) e Y(P2) = Y((Arr + A1z + Azp) 0Py e Py)
= (A1 oP1 e Pa) + Y(Ar2 0 P e P2)
+1p(Ag1 0 By @ Po)
= (A1) o P(P1) @ Y(P2) + Y (A12) 0 ¥(F1)
*)(P2) + ¥(A21) o ¥(B1) @ Y(P2)
= (¥(An) +¥(Ai2) + ¢¥(A2)) o P (P1) @ Y(Pa).

The last exression yields © o P31 @ Py = 0, and hence O12 = 0. Similarly, we can get
©91 = 0. Now, we only need to show ©1; = O = 0. It follows from the hypothesis and
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Lemma 2.3 that

(G (g) o P(P1—Pa) e V(A1 + A2 + A1)
= @ (; o (P1 —Pa) e (A11 + A1z + A21)>
= @D(go(ml—iﬁz)'/hl)+¢(£O(’»T31—‘432)°A12>

+1 (; o (P1 — PB2) °A21>

= 0 (5) o v —Ba) 0w () + ¥(G) 0 VP — Ba) ¢ ¥(Ara)
40 (5 ) o 0B = Fa) o v(An)
— 0 (5) o U~ Ba) 0 (9A0) + V(M) + 0 An).

Reasoning as above, we obtain ©17 = G99 = 0, and hence

(A + A + A1) = (An) + ¥(Ar2) + ¢(Aa).

Similarly, we can show

Y(A12 + A21 + Az) = ¢¥(A12) + ¢(A21) + ¢(A22).
This completes the proof. O

Lemma 2.5. For any A;; € M;;, 1 <14,j <2, we have

(Y Ay) =D U(Aij).

ij=1 ij=1

2 2
Proof. Assume that V.= > A;; — 71 Y ¥(4;)). In view of Lemma 2.4(i) and
ij=1 ij=1
P1ol e Ay =0, we have

2 2
Y(PBr) (D) ep( Y Aiy) = v(Prole Y Ay)

i,j=1 4j=1
= Y(ProleAy)+yY(ProleAp)
+(ProleAy) +1p(Prole Ay)
= P(P1) o(I) e (A1) + ¢(P1) o (1) @ Y(Ai2)
+1(PB1) o (1) @ P(A21) + ¢Y(P1) o (1) @ Y(Az2)

2
= Y(P1)oy(l)e Y v(Ay).

1,j=1

Apply ="' on both sides of above expression which yields ®B; o I ¢ V = 0, and hence
Vi1 = Vi3 = Vo1 = 0. We can show in similar manner that Voo = 0. Thus V =0 i.e.,

2 2
WY Ayg) = > (Ay).

ij=1 ij=1

Lemma 2.6. For any A;j, Bij € M;; with i # j, v(Ai; + Bij) = ¥(Aij) + ¢ (Bij).
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Proof. Since L o (B; + A;;) o (B, + Byj) = Aij + Bij + Aj; + BijAj;, so it follows from

Z]7
Lemma 2.4 that

U4y + Biy) + V(A) + 0By AL) = (G0 (Bi+ Ay)e (B + By
)

o h(Pi + Aij) e V(B; + Bij)

(
o ((Pi) + ¥ (Aij)) o (V(F;) + ¢ (Bij))
1/}(%)°¢(‘J3j)+¢( ) o Y(Bi) e ¥ (Bij)

o
o
_ ¢<
v (5
4o (5) v (A) 0 vl
FO(5) 0 U (Ay) 0 (By)
= u(Gemen) <o (5 omieny)

'Hl}< oAz] .Y‘BJ) +¢< OAZ_] .Bz])
= Y(By) + ¥(Aij + 47;) + (B Aj)
= P(Ay) +(Bij) + P(A};) +(BijAj;).
Thus
V(A + Bij) = (Aij) + ¥ (Bij).

Lemma 2.7. For any A, Bii € Mii, ¥(Aii + Bii) = ¥(Aii) + ¥ (Bii).
Proof. Suppose I = (Ay; + By;) — ¥~ (¢¥(Ay) +9(Bi;)). Tt is easy to find
Y(Bj) o (I) @ P(Ais + Bii) = (PBjole(A;+ Big))
= Y(PjoleAy)+Y(PjoleDBy)
= P(PB;) op(I) @ ¥(Aii) + P (B;) o (1) @ Y(Bii)
= P(PBy) o (V(Au) +(Bii)) @ U (PB;).
From above, we have 33; o I Il = 0. This yields II;; = II;; = II;; = 0. Next, according to
Lemma 2.5 and Lemma 2.6, for any C;; € M;; with i # j, we have
Y(Pio (Ais + Bii) @ Cij) = Y(AuCij + AuCij + BiiCij + BiiCij)
A;iCij + AiiCij) + 0 (BiCij + BiiCij)
Pio Aji e Cij) + Y(Pi o By e Cjy)
i) 0 Y(Aii) @ Y(Cij) + 1 (FBi) 0 Y(Bii) @ (Cij)
i) o (V(Aii) +1(Bii)) e ¥(Cyj)

=
= P
= P(P
= P(P
On the other hand,

Y(Pio (Aii + Bii) @ Cij) = ¥(Bi) o (Ais + Bii) @ (Cj).
Hence B; o Il  C;; = 0. This gives 1I;; = 0. Thus IT =0 i.e.,

V(A + Bii) = Y(Ay) +(Bis).

Lemma 2.8. v is an additive map.

Proof. 1t follows from Lemmas 2.2-2.7 that v is additive. g
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3. Proof of Theorem 1.1

While we proceed upon our scientific findings, we could present some information,
including some few conceptual details. The unital von Neumann algebra M is indeed
a weakly closed, self-adjoint operator algebra in the Hilbert space H. The collection
Z(M)={SeM:ST =TS for all T € M} is referred as the center of M. If P € Z(M)
or BPMP abelian, then the projection P is called the central abelian projection. Aware
that perhaps the central carrier of A, denoted by A, seems to be the smallest B central
projection that meets 8A = A. The central carrier of A can be viewed as the projection
onto the closed subspace spanned by {BA(x) : B € M,x € H}. The core of A, denoted
by A, issup{S € Z(M): S =5*5 < A}, if A is self-adjoint. If B is a projection, then it
is obvious that P is the largest central @) projection that satisfies Q@ <B. If ‘B = 0, then
the projection P is said to be core-free. It is straightforward to see it now ‘B = 0 if and

only if (I —%B) = I. Following remarks are critical for the proof of our main result:

Remark 3.1. [13, Lemma 4] “If M is a von Neumann algebra with no central abelian
projection B € M, then there exists a projection B € M such that f =0 and P =1

Remark 3.2. [8, Lemma 2.2] “Let M be a von Neumann algebra on a Hilbert space H.
Let A be an operator in M and 8 € M is a projection with B = I. If ABP = 0 for all
B € M, then A =0. Consequently, if Z € Z(M), then Z = 0 implies Z = 0.”

Remark 3.3. [8, Lemma 2.3] “Let M be a von Neumann algebra and A € M. Then
AB + BA* =0 for all B € M implies that A = —-A* € Z(M).

We can see from Theorem 2.1, ) would be an additive map. Throughout the succeeding
arguments, the unit elements of the algebra M and N weren’t differentiated and we’ll see
within next proof that this does not impact our argument. We’ll demonstrate that theorem
progressively through implementing:
Lemma 3.4. 21 = ¢(I)? + (¢(1)*)2.
Proof. Let A € M such that )(A) = I. Then it follows from the additivity of ¢ that

A =4p(A) = (I oTe A) = p(I) ou(l) o I =2((D)* + (¥(1))?).  (3.1)
This implies 21 = 1 (I)? + (¥(1)*)?. O
Lemma 3.5. Let O = 3(¢(1)y(B) + ¢ (I)*(P)*), where P € M is a projection. Then
Ox is a projection such that (PB) = (I)Ox.
Proof. From the hypothesis, we have
W(P) = YIoPel)

P(I) oY (P) e (1)
20(1)Y(B) e (1)

(

(

D(DP(P) + (1) *P(R))
Y(I)Op

Also
4p(P) =

I
s =

I) o yp(P) e (P)
I) (‘3)' (B)
2Y(I) + 24 (P)y
Y(I)Y(B) + ¢(
p = 40(1)0%

Il
I

(B) ()"
) P(B)Y)

|
[\
@/\
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It follows from the last two relations that

V(P) = v(1)0F. (3.2)
Since Oy is self-adjoint, so we have
D(B)* = (1) O (3.3)
Multiply (3.2) by #(I) and (3.3) by ¥(I)*, and add the so obtained relations, we get
DY) + () P(B)* = ((1)* + (¥(1)*)?) 0. (3.4)
Observe from Lemma 3.4 that 20 = 2@%. Therefore Oy is a projection. U

Lemma 3.6. For any Aip € Mj and a projection B € M, (A12) = Opp(Ai2) +
@/}(Alg)@sp

Proof. 1t follows from Lemma 3.5 that

2¢(A12) = Y(LoPeAp)
= (1) o p(P) e 1(Ar2)
= 20(1)Y(P)Y(A12) + 2¢(Ar2)p (1) (B)"
= 20(I1)*Opp(Ar12) + 2((1)?) (A12)"Ogp.
Multiply both sides of above equation by O, we get Opt)(A12)Oqp = 0. Similarly, if we

multply above expression from left and right by I — ©g, we obtain (I — Ogp)y(A12)( —
©g) = 0. Therefore,

P(A12) = Opp(Ar2) + 1P(A12)Og
Hence the proof. O

Lemma 3.7. ¢(I)? =1I.

Proof. By the hypothesis, we can choose a projection B’ € N, where N has no central
abelian projection, such that P’ = 0 and P’ = I. Let N € N such that N = P'N(I — ).
Assume that P = S~ 1Dy L (P) + ¢ H(I)*p "1 (P')*). It is clear from Lemma 3.5 and
3.6 that P is a projection and =1 (N) = Ly~ (N) + 1 (N)P. Now, it follows that

1

Y(P) = e DY) ) TR

= Lyt Do o) e 1)

4
LT oW o u(1) = w(DF.

Also, we have
N = (P N+ {(N)P)
= P oPeyI(N)
P(I) o 1/1(‘43) *N)

(

(DY PN + (1) "N (B)*
(1)*P'N + ( (1)")*Ng’
(1)

|
ESSEE SEN G I NCR

2

N.

This gives (I —(1)?)N = 0. Thus, (I —(I1)*)P'N(I —P') = 0 and since (I — ') = I,
in view of Remark 3.1, we obtain (I —(I)?)%’ = 0. Note that (I —(I)?) € Z(N) and

P’ = I, then again by Remark 3.1, we have I —¢(I)? = 0 i.e., 1(I)? = I. This completes
the proof. O

|
<
~
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Now, for any A € M, define a map ¥ : M — N by V(A) = ¢(I)(A). Then ¥ has the
following characteristics:
Lemma 3.8. (a) VU is an additive bijective map satisfying
V(AoBe(C)=V(A)oU(B)eV(C) forall A B,C¢€ M;
ORTURSE
(c) W(A*) =V (A)* forall A€ M;
(d) B is a projection in M iff W(B) is a projection in N.
Proof. For any A, B € M, we have
U(A+ B) = p(D)(A + B) = w(I)b(A) + $(I)Y(B) = U(4) + U(B).
On the other hand, for any A, B,C € M, we have
V(AoBe(C) = ¢(I)Yp(AoBe()
— B)((A) 0 B(B) 0 H(C))
= D)(((AW(B) +(B)
(WDP(A)P(B) + H(I)(B)
(W(C) (I (B) H(A)* + (I}
An application of Lemma 3.7 gives
V(Ao BeC) (W()Y(A)p(I)(B) + 4
(DY(C)(P(I) P (B)
(DY(A)pI)y
(DY (C)(((I)y(B))"
(A)¥(B) + ¥(B)¥(A
= U(A)oU(B)e ¥ (C)
This completes the proof.

“E
=
Y
=
8

+

\/\_/\/\_/

=+ 4+

(¥

(¥
(¥
(v

(b) It follows directly from hypothesis and Lemma 3.7.

(c¢) By the hypothesis, we have
2(W(A)+ VU (A") =20(A+A")=V([{oAel)=10VU(A) el =2(V(A)+ V(A)").
Above relation yields W(A*) = W(A)* for all A € M.

(d) Since U(A) = ¢(I)y(A) for all A € M, so for A =B and from Lemma 3.5, we have
U(PR) = (D(P) = ¥(1)*Og = Ogp. As we know Oy is a projection. Thus V() is also,
as we asserted. O

As N has no central abelian projections, it follows from Lemma 3.4 that there exists a
projection Q1 € N such that Q; = 0 and Q1 = I. Then by Lemma 3.8 (d), L1 = ¥1(Q1)
is a projection in M. We denote Aij = BiMPB; and B;; = P, NP, respectively. Keep it
into mind, we now prove the following:

Lemma 3.9. For any A;j € M;j and B;j € Nyj, 1 <i,5 <2, we have V(A;j) = Bjj.
Proof. First we prove for : = 1,j = 2. It follows from hypothesis that

20 (A1) = W(IoPyeAp)
= ToQ,eV(Ap)
= 21V (A12) +2V(A12)Q;.
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Multiply above relation, first by ¢)1 on both sides and then by ()2 = I — @1, we obtain
W (Aj2) = Big + B for some Bis € Nig and By € Noj. Next, we prove that By = 0.
Observe that

0 = \I/(IO A12 .Spl)
= JToW(App)eQ:
2(Ba1 + B3).

This gives Ba; = 0, and hence ¥(Bj2) € Mjpy. Since V¥ is a bijection, so we can easily
obtain \I’(Blg) = Mlg. Similarly, we can show ‘11(321) == M21. ]

Lemma 3.10. For any Ay € M;; and B;; € Ny, we have W(Ay;) C By;.
Proof. For j # i, we have

0 = V([ oP,eA)
= ToQ;eV(A;)
= 2(Q;V(Ay) + U(Ai)Qy)-

This yields Q;W(Ay;)Q; = V(Ay) C Bi;. a

Lemma 3.11. For any A;j, Bij € M;;, i < 1,5 < 2, we have

a) \I/(AHBlQ) = \IJ(AH)‘I/(Blz) and \I/(AQQBgl) = \I/(AQQ) (321);
b) \I/(Alngl) = \I/(Alg)\lf(B21) and \I/(Anglz) = \I/(Agl) ( 2),
C) \IJ(AHBH) = \IJ(AH)\IJ(BH) and \I/(AQQBQQ) = \I’(AQQ)\IJ( 2),
d) \IJ(A12B22) = \P(Alg)\P(BQQ) and \I/(Angn) = \I’( 21 \IJ(BH)

)
Proof. (a) It follows from Lemma 3.9 and 3.10 that ¥(B12A47,) = ¥(Bi2)V(A11)* = 0.
Thus

\I’(AllBlz) + 2‘1’(312/1’{1) = \IJ(I e} A11 [ ] Blg)
== I o \IJ(AH) [ ] \P(Blg)
= Q\IJ(All)\II(Blz) + 2\11(312)\11(1411)*.
This implies W(A11B12) = V(A11)¥(Bi2). Similarly, we can show

U (Ag9Bo1) = W(Ag2)¥(B21). Next, to show (b), see from Lemma 3.9 that W(Bg; )W (A2)* =
0. Therefore,

\I’(Alngl) = ‘1’(1412 @] I [ Bgl) = 2‘1’(/112)\1}(321)

Hence, W(A12B21) = W(A12)¥(B21). Equivalently, one can easily show W(AgBia) =
U(As1)¥(Bi2). Now, we establish (c). Let X15 € Ny3 such that Cio = V=1 X12) € Mo
from Lemma 3.9. It follows from (a) that

V(A1 B11)X12 = V(A1 B11Ch2) = Y(A11)¥(B11C12) = V(A1) V(B11) X2

for all X152 € Mys. Since Q2 = I, it follows from Remark 3.1 and 3.2 that W(Ay1By1) =
W(A11)¥(B11). Similarly, we can show W(AggBag) = W(Ag2)W¥(Bs2). Finally, to prove (d),
we see from Lemma 3.9 that Ey; = W1 (Ys;) € Mo for any Ya; € Noj. So

U(A12B22)Y21 = V(A12B22Eg) = V(A12)V(BEo) = V(A12)V(Ba2)Yoa:.

Reasoning as above, we obtain W(Aj2B2) = W(A12)¥(Baz). Similarly, we can have
U(A91Bi1) = (A01)¥(Br1). O

Lemma 3.12. VU is a R-linear x-ismomorphism.
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Proof. Since we know from Lemma 3.8 that ¥ is additive, so it follows from Lemma 3.11
that

V(AB) = Y(AnBii+ AnbBia + A12B12 + A12Ba
+A21 By + Ag1 Big + A By + Az Bao)
= V(A11B11) + V(A1 Bi2) + ¥(A12B12) + Y (A12B92)
+W(A21B11) + V(A2 B12) + W(A22Bo1) + W( A2 B22)
= U(A11)V(B11) + V(A1) ¥ (Bi2) + ¥(A12)¥(B12) + U(A12)V(Ba2)
+VU(A21)V(B11) + W(A21)¥(B12) + W (A2)W(B21) + W(A22)¥(B22)
= Y(A)¥(B)
for all A, B € M. Therefore, ¥ is an isomorphism, and hence *-ismomorphism by Lemma
3.8(c). Now we show W is R—linear. Thus, for every n € R, there exist two rational
sequences {r,}, {sp} such that r, <n < s, and limr, = lims, = n when n — oco. It is
clear that W preserves positive elements, then ® preserves order. So, by the additivity of
U, we have
rod = U (r,I) < U(nl) < U(s,I) = s,l.
Hence,
Y(nl) =nl
for n € R. It means that ¥ is R-linear. Thereby the proof is completed. ]

Lemma 3.13. The restriction of U to MP is linear and restriction to M (I — B) is
conjugate linear.

Proof. By Lemma 3.12, U(il)? = U((il)?) = —¥(I) = —I. Also by Lemma 3.8(c),
VGEI)* = ¥((il)*) = —W(il). Let F = %(”) Then it is easy to verify that F' is
a central projection in M. Let B = U=1(F). Then by Lemma 3.8(d), B is a central
projection in N. Moreover, for A € N, there hold

V(AP) = W(A)U(P) () = 10 (A)V(P)(2F — 1),
and
VAL —P)) = VAV —P)V(l) = —iV(A)(I - F) = =¥ (A —P)).

That is, the restriction of ¥ to M*P is linear and restriction to M (I — B) is conjugate
linear. This together with Lemmas 3.8, 3.11 and 3.12 completes the proof of Theorem
1.1. ]
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