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Highlights 

• This paper focuses on estimating WEP and determining wind characteristics.  

• The Weibull parameters are obtained using PSO, SCA, SGO, and BA. 

• Actual measurements in Foça are used to estimate the wind energy. 

• The performance of the algorithms used is evaluated using the RMSE and χ^2 criteria.  
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Abstract 

In this study, the scale and shape parameters of the Weibull probability distribution function 

(W.pdf) used in determining the profitability of wind energy projects are estimated using 

optimization algorithms and the moment method. These parameters are then used to estimate the 

wind energy potential (WEP) in Foça region of İzmir in Turkey. The values of Weibull parameters 

obtained using Particle Swarm Optimization (PSO), Sine Cosine Algorithm (SCA), Social Group 

Optimization (SGO), and Bat Algorithm (BA) were compared with the estimation results of the 

Moment Method (MM) as reference. Root mean square error (RMSE) and chi-square (χ^2) tests 

were used to compare the parameter estimation methods. The wind speed measurement values of 

the observation station in Foça were used. As a result of Foça speed data analysis, the annual 

average wind speed was determined as 6.15 m/s, and the dominant wind direction was found as 

northeast. Wind speed frequency distributions were compared with the measurement results and 

calculated with the estimated parameters. When RMSE and χ^2 criteria are evaluated together; it 

can be concluded that each used method behaves similarly for the given parameter estimation 

problem, with minor variations. As a result, it has been found that the optimization parameters 

produce very good results in wind speed distribution and potential calculations. 
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1. INTRODUCTION 

 

A significant part of the growing energy demand caused by population growth, technological progress and 

rising living standards is met by electrical energy. According to an estimate published in 2018, the increase 

in electrical energy consumption will be able to supply 70% of the required energy in the next 25 years [1]. 

Therefore, it is expected that future investments in the energy sector will be focused on electrical energy. 

With the economic and environmental concerns increasing day by day, the demand for sustainable, safe, 

reliable, and efficient energy sources is also increasing. For this reason, low-cost, environmentally friendly 

energy sources that have a positive impact on the environment are becoming more popular for electricity 

generation [2]. 

 

Energy sources can be categorized based on whether they are renewable or consumable. The classification 

depends on whether the resources will be depleted at the end of their use. Renewable energy sources do not 

degrade after use and remain the same throughout the natural cycle. On the other hand, nonrenewable 

energy sources are depleted and cannot be replenished. The two categories of nonrenewable energy sources 

can be divided into fossil (natural gas, petroleum, and coal) and nuclear (thorium and uranium). Renewable 

energy sources include wave, tidal, hydro, geothermal, solar, wind, and biomass-type sources [3]. 
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Using environmentally friendly and sustainable energy sources is vital to meet the world's growing energy 

needs. For this reason, renewable energy sources should be preferred over fossil fuels. Renewable energy 

sources are always available and their use does not pollute the environment. Consequently, humanity can 

meet its energy needs in a safe, durable, and affordable way [4]. 

 

Wind energy is becoming one of the most important forms of renewable energy for electricity generation. 

The economic potential of wind energy in Turkey is estimated at 66 GW. This is according to the study 

“Turkey Wind Energy Potential Atlas” conducted by Electricity Works Survey Administration and General 

Directorate of Meteorology in 2006 [5]. Exploiting this potential is crucial for improving energy reliability 

and diversity by reducing dependence on foreign energy supplies. 

 

A commonly used renewable energy source for generating electrical energy is wind energy. However, using 

wind as an energy source to generate electricity can present some challenges due to its unpredictable and 

fluctuating nature. In addition, modern technology may not be able to generate electricity at all wind speeds, 

which may affect the financial feasibility of wind energy projects. Therefore, to realize investments in wind 

energy, forecasts based on a statistical analysis of wind speed are required [6]. 

 

The proposed investment region's wind parameters and energy potential should be evaluated before 

investing in wind power plants. The policies introduced and the market trends support this. However, 

drawbacks such as the fluctuation of wind, its unpredictability, and its volatility in time and location lead 

to uncertainties in wind power generation. Studies on statistical modeling of probability distributions of 

wind speed random variables aim to reduce these uncertainties and avoid potential problems [7]. 

 

Studies on modeling and analyzing the frequency distribution of wind speed have been published in the 

literature. Several studies have been conducted to estimate the probability distributions of wind speeds. 

These studies use distribution functions such as Pearson type V and Burr [8], and probability density 

functions derived from Gamma, Rayleigh [9], Weibull [10, 11] , Lognormal [12], normal [13-15], half-

normal [16, 17], Nakagami [18], Inverse Gaussian [16], Logistic [17, 18], Log-Logistic [19], Generalized 

extreme value [20, 21], and Generalized Pareto [22]. In general, the relevant studies agree that the two-

parameter Weibull probability distribution is appropriate for the frequency distribution of wind speed. 

Heuristic techniques from artificial intelligence algorithms have also been used to estimate the Weibull 

parameters [23-27]. 

 

Wind energy assessment is significantly affected by the distribution of wind speed, and even modest 

modeling errors in wind speed data can lead to incorrect energy computations [28]. The Weibull 

distribution, one of the most popular and advantageous distribution functions, has various advantages and 

offers the greatest fit to wind data [29]. The key characteristics that make this distribution so popular are 

the ease with which its two parameters may be estimated, its flexibility, and its correctness at different 

places [30]. 

 

According to the literature, the W.pdf is best suited for statistical analysis and characterization of wind data 

for a region [31, 32]. It is possible to calculate the Weibull probability distribution variables using 

mathematical techniques and the appropriate data [33]. The defined probability distribution functions can 

be justified using the determined variables and the accuracy of these models can be evaluated. The Weibull 

probability distribution is a single-peaked probability distribution with two different variables, shape (k) 

and scale (c). There are also multivariate Weibull probability distributions [34]. 

 

Heuristic algorithms are those that draw their inspiration from natural processes to solve problems and 

complete tasks. In the solution space, heuristic algorithms converge to the best solution, but they do not 

ensure the absolute answer [35]. These algorithms are easier to understand for the decision maker. These 

algorithms are required since, unlike other types of issues, optimization problems lack a framework that 

would allow for the discovery of an absolute solution, which is used to teach us how to solve difficulties. 

 

In this work, the two-parameter W.pdf is utilized to simulate the frequency distribution of wind speed. To 

obtain the correct parameters of the probability distribution function, the MM, SCA, PSA, SGO and BA 
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are all utilized. To calculate the wind speed distribution model, an estimating approach was employed. The 

Weibull probability distribution model's fit efficiency was then assessed using the goodness of fitting. 

Figure 1 illustrates the steps of the approach taken in the study in further detail. 

 

 

Figure 1. Approach of the model 

 

2. MATERIAL METHOD 

 

2.1. Data 

 

The wind speed measurement results from the İzmir Foça meteorological observation station were utilized 

for computations in this study. The average wind speed at Foça town was discovered to be 6.15 m/s, with 

the prevalent wind directions being 0 degrees north, 45 degrees northeast (NE), and 330 degrees north 

northwest (NNW). In addition, Figure 2 shows a wind rose graph depicting the prevalent wind direction 

based on sixteen wind sectors. Table 1 depicts the blow intensities of wind speed observations. To calculate 

wind potential, hourly wind speed data over the course of a year was observed. A total of 8594 hours of 

wind speed data were analyzed from the required 8760 hours of wind speed data per year, which included 

166 hours that were missing.  

 

During wind potential computation and feasibility studies, wind data is analyzed to evaluate its suitability 

for investment reasons. Currently, the prevailing wind direction and wind properties hold significant 

importance. When estimating the prevailing wind direction in this context, it is important to further analyze 

wind characteristics using the Weibull distribution function. 

 

Table 1. Blow intensities of wind speed measurements 

Speed # of Blows 
Cumulative 

Frequency 

Blowing 

Frequency 
 Speed # of Blows 

Cumulative 

Frequency 

Blowing 

Frequency 
0 8 8 0.000931  12 215 8264 0.025017 
1 337 345 0.039213  13 143 8407 0.016640 



1239  Bayram KOSE, Ibrahim ISIKLI, Mehmet SAGBAS / GU J Sci, 37(3): 1236-1254 (2024) 

 
 

2 799 1144 0.092972  14 79 8486 0.009192 
3 939 2083 0.109262  15 58 8544 0.006749 
4 900 2983 0.104724  16 25 8569 0.002909 
5 947 3930 0.110193  17 10 8579 0.001164 
6 1032 4962 0.120084  18 8 8587 0.000931 
7 973 5935 0.113219  19 3 8590 0.000349 
8 871 6806 0.101350  20 2 8592 0.000233 
9 565 7371 0.065744  21 1 8593 0.000116 
10 401 7772 0.046660  22 1 8594 0.000116 
11 277 8049 0.032232      

 

One of the essential requirements for evaluating wind resources is to provide descriptive statistics of wind 

power plant measurement data. Descriptive statistics can be found in Table 2. As can be seen from the 

descriptive statistics data, the wind speed data are skewed toward the point where the values are less than 

the average wind speed, and they are slightly sharper than the normal distribution with a kurtosis coefficient 

of 0.27. The standard deviation is 3.18 m/s, and the greatest wind speed was measured at 21.9 m/s. 

 

Table 2. The descriptive statistics data 

 
 

 

Figure 2. Wind Rose Chart in Foça 

 
2.2. Weibull Probability Distribution Function 

 

The formula of the Weibull probability density, which is used in almost every study related to wind energy 

calculations, is very flexible and continuous, and its parameters can be easily estimated compared to most 

other probability distribution functions, is given in Equation (1), and the cumulative distribution formula is 
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given in Equation (2). Where, k and c are the shape parameter and the scale parameter, respectively. The 

wind speed bin is indicated by v [34-36] 

 

𝑓(𝑣) =
𝑘

𝑐
(

𝑣

𝑐
)

𝑘−1
∗ exp (− (

𝑣

𝑐
)

𝑘
) ,   0 < 𝑣 <  ∞        (1) 

 

𝐹(𝑣) = 1 − exp (− (
𝑣

𝑐
)

𝑘
).         (2) 

    

Given the suitability of the frequency variation of wind speed for the Weibull distribution, the shape and 

scale parameters must be estimated using appropriate techniques to construct the function given the 

measured speed data. 

 

2.3. Parameter Estimation Methods 

 

For modeling wind speed frequency, the parameters of the probability distribution function are estimated 

using numerical techniques and optimization algorithms. The optimization process usually starts with a 

random solution set in population-based optimization techniques. This random set is evaluated many times 

with the fitness function and the predictions are improved with the appropriate optimization technique. 

Stochastic optimization techniques do not guarantee a solution in a single iteration because they 

stochastically search for the optimum of the optimization problem. In this case, the probability of finding 

the global optimum increases with a sufficient number of random solutions and optimization steps. 

 

In this study, using the MM, PSO, SGO, SCA, and BA techniques, parameter estimates for probability 

distribution functions were obtained that are close to the real results.  

 

2.3.1. Moment method 

Moment Method (MM) is based on the determination of scale and shape parameters by solving the W.pdf 

given in Equation (1) using the mean values and standard deviations obtained from the measured data [37] 

 

�̅� =
1

𝑛
(∑ 𝑣𝑖

𝑛
𝑖=1 ).           (4) 

 

In Equation (4), n represents the number of data and 𝑣𝑖 is the ith measured wind speed data. The value of 

scale parameter c is found from Equation (5) 

 

  𝜎 = 𝑐 (Γ (
2

𝑘
+ 1) − Γ2 (

1

𝑘
+ 1))

0.5

.        (5) 

𝜎 is the value of the standard deviation of the measured wind speeds. Using this value, the value of k can 

be derived from Equation (6) 

 

𝜎 = [
1

𝑛−1
∑ (𝑣𝑖 − �̅�)2𝑛

𝑖=𝑖 ]
0.5

.          (6) 

 

Thus, the k-shape parameters can be derived from Equation (7) and the c-scale parameters from Equation 

(8) 

 

𝑘 = (
𝜎𝑣

�̅�
)

−1.086
           (7) 

 

𝑐 =
�̅�

Γ(
1

𝑘
+1)

 .           (8) 
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Figure 3 shows flowchart of the MM. The detailed pseudocode of the MM algorithm in Figure 3 is given 

below.  

 

Step 1: Start: Obtain sample data. 

Step 2: Calculation of mean and variance: The mean and variance of the sample data are calculated. The 

mean is calculated as the sum of the sample data divided by the number of data points. The 

variance is calculated as the sum of the squared differences between each data point and the mean 

divided by the number of data points minus 1. 

Step 3: Estimation of the parameters of the distribution: Using the calculated mean and variance, the 

parameters of the base distribution are estimated. The particular form of estimation depends on 

the distribution being modeled. For example, for a normal distribution, the parameters are 

estimated as the mean and standard deviation and calculated using the mean and variance. 

Step 4: Finish: The estimated parameters show the best fit for the base distribution on which the sample 

data is based and are output. 

 

 

Figure 3. Flowchart of the MM 

 

2.3.2. Particle swarm optimization 

The PSO is a population-based stochastic optimization approach inspired by birds and fish flocks [38]. The 

basis of the PSO algorithm is based on the fact that individual solutions called particles have a population 

called flocks. As each individual in the flock creates a solution path, it benefits from its previous experiences 

and the previous experiences of the flock. The individuals representing possible solutions to the problem 

are points that move in the space between the parameters to be optimized. The trajectories of the particles 

are based on the best-known position in the search space and the best-known position of the entire swarm. 

As a result, the best solution in the space is expected to be found [38]. 

 

The positions of M particles in the D-dimensional solution space are given in Equation (9), and their 

velocities are given in Equation (10) 
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𝑥𝑖 = (𝑥𝑖1 𝑥𝑖2 𝑥𝑖3 … 𝑥𝑖𝐷),          𝑖 = 1,2,3, … , 𝑀       (9) 

 

𝑣𝑖 = (𝑣𝑖1 𝑣𝑖2 𝑣𝑖3 … 𝑣𝑖𝐷),          𝑖 = 1,2,3, … , 𝑀.       (10) 

 

The best solution, i.e., the local best position obtained during the search in the D-dimensional solution space 

of M particles, is expressed in Equation (11) 

 

𝑝𝑖 = (𝑝𝑖1 𝑝𝑖2 𝑝𝑖3 … 𝑝𝑖𝐷),      𝑖 = 1,2,3, … , 𝑀.       (11) 

 

In Equation (12), it represents the best solution among the local best locations, i.e., the absolute best solution 

 

𝑔𝑖 = (𝑔1 𝑔2 𝑔3 … 𝑔𝐷).          (12) 

 

The K-factor used to guarantee the convergence of the optimization is given in Equation (13) 

 

𝐾 =
2

|2−𝜑−√𝜑2−4𝜑|
, 𝜑 = 𝑐1 + 𝑐2 > 4.        (13) 

 

Equation (14) determines the particle's current velocity, while Equation (15) defines its present location 

[38] 

 

𝑣𝑖𝐷
𝑡+1 = 𝐾[𝑣𝑖𝐷

𝑡 + 𝑐1𝑟1(𝑝𝑖𝐷
𝑡 − 𝑥𝑖𝐷

𝑡 ) + 𝑐2𝑟2(𝑔𝑖𝐷
𝑡 − 𝑥𝑖𝐷

𝑡 )]      (14) 

 

𝑥𝑖𝐷
𝑡+1 = 𝑥𝑖𝐷

𝑡 + 𝑣𝑖𝐷
𝑡+1.          (15) 

 

For the algorithm to converge to the right answer and for the particles to stay within the solution space, the 

locations and velocities must be constrained. Equations (16a) and (16b) provide the upper and lower 

constraints for the particle velocities, respectively. 

 

𝑣𝑚𝑎𝑥 = (𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)/(2)         (16a) 

 

𝑣𝑚𝑖𝑛 = (−𝑣𝑚𝑎𝑥)          (16b) 

 

where the lower and upper bounds of the particle positions in the solution space are given by 𝑥𝑚𝑖𝑛 and 

𝑥𝑚𝑎𝑥, respectively. Figures 4 depict the PSO flowchart. The PSO algorithm's pseudocode is give as follows. 

 

Step 1: Define parameters such as the number of iterations and particles  

Step 2: Define the velocities and positions of the particles 

Step 3: Define the velocity and position values of the particles randomly 

Step 4: for 𝑡 = 1: number of iterations 

Step 5: for 𝑖 = 1 : number of particles 

Step 6: if (𝐹𝑥𝑖
𝑡+1 < 𝐹𝑝𝑖

𝑡 ) 

𝑝𝑖
𝑡+1 = 𝑥𝑖

𝑡+1; 𝐹𝑝𝑖
𝑡+1 = 𝐹𝑥𝑖

𝑡+1 

Step 7: else 

𝑝𝑖
𝑡+1 = 𝑝𝑖

𝑡; 𝐹𝑝𝑖
𝑡+1 = 𝐹𝑝𝑖

𝑡 ; 

Step 8: endif 

Step 9: if (𝐹𝑝𝑖
𝑡+1(𝑒𝑛 iyi ) < 𝐹𝑔

𝑡) 
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𝑔𝑡+1 = 𝑝𝑖
𝑡+1( en iyi ); 𝐹𝑔

𝑡+1 = 𝐹𝑝𝑖
𝑡+1( en iyi ) 

Step 10: Else 

𝑔𝑡+1 = 𝑔𝑡; 𝐹𝑔
𝑡+1 = 𝐹𝑔

𝑡; 

Step 11: endif 

Step 12: Update velocity and position sequentially 

Step 13: end for(particles) 

Step 14: end for(iterations) 

Step 15: Optimized parameters = 𝑔𝑡+1 

 

The objective function in this study is to minimize the sum of square errors given by Equation (17). The 

error in the objective function is represented by the difference between the wind speed probability values 

observed in the histogram and the speed distribution probability produced by the Weibull distribution 

 

𝐸 = ∑ [𝑓𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑(𝑣𝑖) − 𝑓𝑝𝑟𝑒𝑑𝑖𝑡𝑒𝑑(𝑣𝑖)]
2𝑛

𝑣𝑖=1 .       (17) 

 

where n is the number of the histogram velocity intervals, 𝑓𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑(𝑣𝑖). 𝑓𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑(𝑣𝑖) represents the 

frequencies determined by the calculated parameters, and 𝑓𝑝𝑟𝑒𝑑𝑖𝑡𝑒𝑑(𝑣𝑖) represents the frequencies derived 

from the histogram observations. 

 

Figure 4. Flowchart of the PSO algorithm 

 

At the end of the iterations evaluated according to the objective function, the absolute best position value 

is determined, which contains the optimized position and shape parameters. 

 

In the pseudocode in Figure 4, 𝐹𝑥 denotes the fitness value of the particle positions, 𝐹𝑝 denotes the fitness 

value of the local best position of the particles, and 𝐹𝑔 denotes the fitness value of the absolute best position. 
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2.3.3. Sine cosine algorithm  

The SCA is a population-based heuristic algorithm. The SCA initially generates a number of random 

solutions, making sure that these solutions move either toward or away from the ideal solution. The program 

also includes several random and adaptive variables to enhance the exploration and use of the research 

space. Two frequent phases of the stochastic population-based optimization process are discovery and 

exploitation. The algorithm must strike a balance between exploration and exploitation to identify 

interesting regions of the search space and arrive at the global optimum [39]. 

 

The produced random solutions are modified gradually throughout the algorithm's exploitation phase when 

the random fluctuations are significantly less than during the exploration phase. In Equations (18) and (19), 

the position update equations for the SCA are given 

 

𝑋𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑟1 × sin(𝑟2) × |𝑟3𝑃𝑖
𝑡 − 𝑋𝑖

𝑡|       (18) 

 

𝑋𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑟1 × cos(𝑟2) × |𝑟3𝑃𝑖
𝑡 − 𝑋𝑖

𝑡|       (19) 

 

where  𝑥𝑖
𝑡 is the current position of the 𝑖𝑡ℎ  candidate solution, 𝑡𝑡ℎ  iteration.  𝑟1, 𝑟2 and 𝑟3 are random 

numbers. Here 𝑟4 is a random number in the range [0, 1]. 𝑃𝑖  is the location of the target point in the 𝑖𝑡ℎ 

dimension. Figure 5 illustrates the effect of sine and cosine functions in Equations (18) and (19) [39]. 

 

Figure 5.  Effects of sine and cosine on the next position 

Figure 5 demonstrates how to determine the region in the search space of Equations (18) and (19) that lies 

between two solutions. Equation (20) is also derived from these two equations [19] 

 

𝑋𝑖
𝑡+1 = {

   𝑥𝑖
𝑡 + 𝑟1 × sin(𝑟2) × |𝑟3𝑃𝑖

𝑡 − 𝑋𝑖
𝑡|,   𝑟4 < 0.5   

𝑥𝑖
𝑡 + 𝑟1 × cos(𝑟2) × |𝑟3𝑃𝑖

𝑡 − 𝑋𝑖
𝑡|,  𝑟4 ≥ 0.5.

        (20) 

In the SCA, there are four main parameters used as follows: 

 

𝑟1 : Determines the region (or route) of the next location. 

𝑟2 : Determines how far to move inward or outward to reach the destination. 

𝑟3 : Determines the stochastic weight randomly. If 𝑟3 is more than 1, the stochasticity is significant, and if 

𝑟3 is less than 1, the stochasticity is ineffective. 

𝑟4 : Determines the transition between the sine and cosine components in Equation (20). 
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To determine the search space, one must look for solutions other than the space between the fields that 

correspond to the various goals. Figure 6 illustrates this by showing the effects of sine and cosine functions 

with a range of variation [-2, 2]. 

 

 

Figure 6. Moving Around or Beyond a Solution Using Sine and Cosine in [-2, 2] 

Figure 6 depicts how the sine and cosine function ranges vary along with a method for updating the location 

of one solution to another. By supplying a random number 𝑟2 in the range [0, 2], as in Equation 18, the 

random location is determined. Since of this, the search space will be explored and utilized [39]. 

 

Equations (18), (19), and (20) are used to adaptively change the sine and cosine distances to balance 

exploration and exploitation. Equation (21) illustrates how the range of the sine and cosine functions 

decreased during the iterations. 

 

𝑟1 = 𝑎 − 𝑡
𝑎

𝑇
           (21) 

 

where 𝑡 is the current iteration. 𝑇 is the maximum number of the iteration and 𝑎 is a constant. 

 

The flowchart of the SCA is illustrated in Figure 7. As explained in Figure 7, the flow of the algorithm 

starts with a random solution set. The optimization stores the best solution and assigns it as the goal point. 

The other solutions are updated based on the target point. The range of sine and cosine functions is updated 

as the number of iterations increases to ensure utilization. When the iteration counter reaches the maximum 

number of iterations, the algorithm ends the optimization process by default. 
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Figure 7. The flowchart of the SCA 

2.3.4. Social group optimization  

Humans are known to be excellent imitators or followers when accomplishing a task. It has been found that 

the problem-solving abilities of groups are superior to the skills of individuals when it comes to utilizing 

and exploring the various attributes of individual group members to solve a particular problem. As a result 

of this idea, a novel optimization method known as social group optimization (SGO) was introduced [40].  

 

SGO is an optimization technique that focuses on the ability of a group to solve a problem. This algorithm 

assembles a group of people with different abilities, and the group works together to solve a given problem. 

The method is divided into two phases: the development phase, also called the exploration phase, and the 

extraction phase, also called the exploitation phase [41]. 

 

The algorithm development phase focuses on the transfer of knowledge by the most knowledgeable member 

of the group to others. Equation (22) expresses this phase mathematically, which helps the other group 

members rank themselves in comparison to the best person: 

 

𝑋new = 𝑐 ∗ 𝑋old + 𝑟 ∗ (𝑋best − 𝑋old )        (22) 

 

where r is a random integer in [0,1]; c is the self-observation or self-introspection parameter for each 

individual, and its value varies from 0 to 1; Xnew, Xold, and Xbest represent the individual’s new position, the 

individual’s old position of in the initialization phase, and the position of the group's best individual, 

respectively.  

 

The social interaction of the people with one another is the focus of the acquiring phase. During this phase, 

the individual's social behavior is mathematically modeled to interact with the group's top performer (Xbest) 

and the other randomly chosen group members. By this procedure, the interacting person (Xi) learns any 

new information from the random individual (Xr), if any, and develops. The following is a presentation of 

the mathematical model: 

 

𝑋new = 𝑋old + 𝑟1 ∗ (𝑋𝑖 − 𝑋𝑟) + 𝑟2 ∗ (𝑋best − 𝑋𝑖), if 𝑋𝑖, better than 𝑋𝑟, (𝑓(𝑋𝑖) < 𝑓(𝑋𝑟)) (23) 
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𝑋new = 𝑋old + 𝑟1 ∗ (𝑋𝑟 − 𝑋𝑖) + 𝑟2 ∗ (𝑋best − 𝑋𝑖), if 𝑋𝑟,better than 𝑋𝑖, (𝑓(𝑋𝑖) > 𝑓(𝑋𝑟)) (24) 

 

where r1 and r2 are random numbers between 0 and 1, promoting algorithmic randomness and improving 

interpersonal behavior. In this case, Xold refers to a person's status during development. They are allowed if 

Xnew values provide a higher fitness value for the desired function. 

 

The flowchart for social group optimization is shown in Figure 8. Its pseudocode is given below [20]. 

Step 1: Problem enumeration and parameter initialization 

Set initial values for population size (N), number of design variables (D) and generations (g), 

and variable constraints (UL, LL). 

Step 2: Determine the optimization problem: maximize or reduce f(x). 

Step 3: Initialize the population 

Based on the user-selected characteristics (number of parameters) and population size, a random 

population is created. 

Step 4: Improving Phase 

Next, decide which iteration's best answer is 𝑔𝑏𝑒𝑠𝑡𝑔. Each individual receives knowledge from 

the best member of its group, or gbest, just as in evolution. 

Step 5: The self-monitoring factor is represented by the parameter c. The value of c can be determined 

empirically for a given problem. For this study, it was set at 0.2. 

Step 6: Acquiring phase 

Each member of a social group socializes with the best people in the group throughout the 

acquisition period. It also sporadically converses with other group members to learn more. 

Step 7: Termination criterion 

If the maximum generation number is reached, end the simulation; otherwise, repeat Steps 3 and 

4. 

 

Figure 8. Flowchart of the SGO 
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2.3.5. Bat Algorithm 

The Baat Algorithm (BA) is a natural metaheuristic optimization algorithm presented by Xin-She Yang in 

2010. This algorithm focuses on solving global optimization problems by mimicking the echolocation 

method used by bat species in nature [42]. In the wild, bats use a method such as sonar to detect their prey, 

avoid obstacles, and stay in the dark. BA was designed to mimic this natural process and find the best 

solutions to specific optimization problems. The principle of the algorithm is based on the fact that it scans 

the problem domain like a bat and then moves to the point it has determined to be the best solution. 

 

Bats move randomly to locate their prey. To determine the position of their prey, they emit sound signals 

of different wavelength r with loudness 𝐿0, position 𝑥𝑖, a fixed frequency 𝑓𝑚𝑖𝑛, and velocity 𝑣𝑖. Bats adjust 

the frequency of sound waves to determine the distance to their targets and regulate their signal propagation 

rate between 0 and 1. Each bat can have a different frequency, loudness, and signal propagation rate [43]. 

 

For each bat, position (𝑥𝑖) and velocity (𝑣𝑖) values can be specified and updated throughout the process. 

Sound intensity (𝐿𝑚
𝑖𝑡𝑒𝑟) can vary from a fixed large value (𝐿0) to the smallest constant value (𝐿𝑚𝑖𝑛). The 

current velocities (𝑣𝑖
𝑡) and positions (𝑥𝑖

𝑡) are calculated using Equations (25), (26) and (27) in a given time 

interval (t) [44] 

 

𝑓𝑖 = 𝑓𝑚𝑖𝑛 + (𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛)𝑎         (25) 

 

𝑣𝑖
𝑡 = 𝑣𝑖

𝑡−1 + (𝑥𝑖
𝑡 − 𝑥𝑏𝑒𝑠𝑡

𝑡 )𝑓𝑖         (26) 

 

𝑥𝑖
𝑡 = 𝑥𝑖

𝑡−1 + 𝑣𝑖
𝑡 .          (27) 

 

where 𝑓𝑖 is the frequency value of the sound produced by the bat; while fmax and fmin express the minimum 

and maximum values of this frequency, the variable a is a random variable and ranges from 0 to 1. After 

selecting the best solution value among the calculated values, a new solution value is found as a result of 

local random operations 

 

𝑥new = 𝑥old + 𝜀𝐿𝑡.          (28) 

 

In Equation (28), the average sound intensity produced by the bats in the time interval t is expressed as 𝐿𝑡. 

ε is a random variable between 1 and -1. The signal propagation rate and loudness should be updated during 

the iterations performed. When the bat detects its prey, the loudness generally decreases (𝐿) while the signal 

propagation rate (r) increases 

 

𝐴𝑖
𝑡+1 = 𝛽𝐴𝑖

𝑡 , 𝑟𝑖
𝑡+1 = 𝑟𝑖

0[1 − exp(−𝛾𝑡)].       (29) 

 

In Equation (28), when t approaches infinity, 𝑟𝑖
𝑡 → 𝑟𝑖

0 and 𝐿𝑖
𝑡 → 0. In Equation (29), γ is a positive constant 

and β is a constant between 0 and 1. The flowchart of the BA is depicted in Figure 9. 
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Figure 9. The flowchart of the BA  

 

3. EVALUATION CRITERIA 

The shape and scale parameters of the W.pdf were estimated using the above methods, and the frequency 

of the wind speed distribution was modeled. To evaluate the integration between the frequency values 

obtained by the methods and the actual frequency values, the RMSE and the chi-square test were used as 

performance criteria. These criteria are given in Equations (30) and (31)  

 

𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑉𝑐𝑖 − 𝑉𝑜𝑖)2𝑛

𝑖=1           (30) 

 

𝜒2 = ∑ (
(𝑉𝑐𝑖−𝑉𝑜𝑖)

2

𝑉𝑜𝑖

)
𝑛

𝑘=0

.          (31) 

 

In Equation (28) and Equation (29) 𝑉𝑖, is represented the ith value, and �̅�𝑜 is the average of measured wind 

speed. Representing with 𝑉𝑐𝑖 estimated  ith  wind data of W.odf and n is the number of the measured data. 

The fact that RMSE and the chi-square performance criteria are as close to zero as possible shows the 

success of the model. 

 

4. RESULTS AND DISCUSSION 

In the Foça area in Izmir province, wind speed data are first divided into wind speed bin. The wind 

frequencies were determined for these velocity bins, and the distribution of the wind probabilities of the 

velocity classes was determined using their frequencies. The determined values for the mean velocity and 

standard deviation are based on the measurements of the wind speed bin and the probabilistic blowing 

density. The moment approach and metaheuristic optimization techniques were used to estimate the scale 

and shape parameters of the W.pdf based on the blow percentages of the wind speed frequencies. Four 

different swarm intelligence-based optimization algorithms, PSO, SCA, SGO, and BA, were used in this 

work. Table 3 lists the Weibull distribution parameters obtained. 

 

As seen Table 3, the largest value of the shape parameter was determined in MM, while the smallest value 

was determined in BA. The largest value was calculated with PSO and the smallest value was estimated 

with BA when we considered the scale parameter. 
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Table 3. Weibull distribution parameters   

Model Name Shape parameter k Scale parameter c 

Moment Method (MM) 2.0166 6.8901 

Particle Swarm Optimization Algorithm (PSO) 1.9483 6.9418 

Sine Cosine Algorithm (SCA) 1.9611 6.9401 

Social Group Optimization Algorithm (SGO) 1.9618 6.9359 

Bat Algorithm (BA) 1.9788 6.8591 

 

The swarm intelligence heuristic optimization algorithms PSO, SCA, SGO, and BA were run with 50, 100, 

500, and 1000 iterations, and it was observed that the best answers were usually very close. The 

convergence graphs of these algorithms are shown in Figures 10 for iterations of 50. The outcomes of the 

other iterations were extremely similar to those of iterations 50. The charts show how rapidly the algorithms 

get the desired outcome. The figures show that the algorithms converge to the result very quickly. 

 

 
Figure 10. PSO, SCA, SGO, and BA convergence graphs for 50 iterations 

 

Using the Weibull distribution parameters determined as a result of applying the methods. The wind speed 

frequency was computed using RMSE and 𝜒2 performance criteria and the results obtained according to 

the performance criteria are illustrated in Table 4. Table 4 shows that the heuristic algorithms give the same 

result when examining the six digits after the decimal point in the RMSE criterion data. This comparison 

shows that the metaheuristic algorithms perform better than MM. On the other hand, when the 𝜒2 criterion 

is examined, the optimization algorithms give both the best result (BA) and the worst result (PSO). BA is 

evaluated with an RMSE of 0.006646 and a 𝜒2 Chisquare of 0.012086. In comparison to other methods, it 

shows a slightly higher RMSE but a lower 𝜒2 Chisquare. Overall examination of the Table 4, it can be seen 

that each method performs similarly for the specific parameter estimation problem, with minor variations. 

The choice of method should be assessed based on the specific application and problem context. 
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Table 4. The performance values of parameter estimation methods 

Methods 
Performance Values 

RMSE 𝜒2 Chisquare 

Moment Method (MM) 0.006752 0.012475 

Particle Swarm Optimization Algorithm (PSO) 0.006578 0.013448 

Sine Cosine Algorithm (SCA) 0.006568 0.012934 

Social Group Optimization Algorithm (SGO) 0.006567 0.012848 

Bat Algorithm (BA) 0.006646 0.012086 

 

Using the parameters of W.pdf obtained by the applied algorithms, percentage values of wind speed are 

depicted in Figure 11. PSO, SCA, and SGO algorithms have a significant amount of overlap, as seen in the 

graphs.  

 

 
Figure 11. Using the parameters of the W.pdf obtained by the applied methods 

 

5. CONCLUSION 

 

In this work, W.pdf is used to characterize the wind essential for wind energy. W.pdf is a widely used 

method to model the probability distribution of wind speed. The moment method was used for parameter 

estimation. The moment method aims to estimate the function parameters using the data's mean, variance, 

and similar properties. The obtained data were tested using PSO, SCA, SGO, and BA. These algorithms 

are the methods used to find the most appropriate value of the function and test its performance on the data. 

 

Using optimization techniques and the moment method, the shape and scale parameters of the W.pdf were 

evaluated. The wind energy potential in the Foça district of İzmir was then calculated using these criteria. 

PSO, SCA, SGO, and BA were used to estimate the values of the dispersion parameters, with the estimation 

results of MM serving as a reference. The RMSE and chi-square test were used to compare the parameter 

estimation techniques. As a result, when the performance criteria and graphs were examined, it was found 

that the proposed Bat algorithm was more successful than the numerical methods in estimating wind speed. 

This result can help to select methods in wind energy studies and lead to more accurate results in assessing 

wind speed.  
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Extending the study to include other relevant parameters and comparing the used algorithms in this work 

with emerging optimization techniques or hybrid methods could further refine the parameter estimation 

process. Additionally, a validation study using real-world wind energy data from various locations would 

validate the algorithm's generalizability, fostering its potential adoption in practical wind energy 

assessments. 
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