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Abstract

Consolidation of accounts has always generated problems for accountants 
and auditors because of its computational difficulties, especially when the subsidiaries 
have mutual stockholdings, circular stockholdings and indirect stockholdings. The 
application of mathematics to accounting is not always simple and clear, yet, referring 
to the fact that accounting has a structure, not obvious a priori, but real vector space in 
two dimensions, and we can apply methods based on linear algebra, classic technique 
of matrices and less traditional methods such as Markov chains. These methods are 
irreplaceable to understand and describe the logical groups and consolidations. We 
can go further in the analysis of relationships between companies in a group and we 
can have the ambition to rationalize and then to optimize these relationships using, 
generally, the optimal forms of  mathematics, mathematics of symmetrical shapes, and 
the properties of the Euler characteristic and the Pythagorean regular polyhedrons, 
especially. Firstly we recall briefly the historical principles of application of matrix 
methods to the accounting, and the classical and non-classical methods to solve the 
general  problem  of  consolidated financial statements. 
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Introduction
Accounting has always been considered as part of mathematics, 

particularly in Antiquity and the Middle Ages, but mathematics has evolved a 
lot over the time. The former professional mathematicians, the mathematicus 
included accounting in their teaching job. The inclusion of accounting 
in the field of mathematics is right, because accounting, particularly basic 
accounting, uses the four arithmetic operations, addition, subtraction, 
multiplication and division. We might conclude immediately that accounting 
is the arithmetic operations used to explain the legal and economic. But this 
approach is not quite correct, because the accounting is not only the law and 
the economy using arithmetic. However, if you remove the mathematics 
of accounting, there is only the law and the economy, and if we ignore 
the law and the economy, it remains only arithmetic and in both cases the 
underlying nature of accounting disappears. If we refer to the epistemology of 
accounting, it can not exist without its two components, mathematical firstly, 
economic and legal secondly, like a complex number which can exist only 
in its two parts, real and complex. Do not forget that the ultimate goal is 
the description of reality, and at any time it must ensure that its formalism, 
logics or mathematics, is not in contradiction with reality. Accounting is a 
language, that is to say, a shell that can only exist if there is a content which 
gives it its real existence. Theoretical and applied mathematics, which have 
a special ability to serve content or reference are tolerated only recently in 
accounting, but still a limited number of accountants and auditors are aware 
of the relevance of mathematics in general, and linear algebra and matrices 
in particular, to solve complex problems, unsolvable with conventional tools. 
There is still much to be done to generalize the application of mathematical 
science in accounting, but the double-entry bookkeeping have, intrinsically, 
a vector space structure and can be described by the relationship between 
law and vectors and matrices, it is still possible to take advantage of certain 
privileged areas in the consolidated balance sheets and corporate groups for 
example.
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1.  Accounting History Represented by Linear Algebra Structures 
Accounting  users have some problems to use other tools than the 

four basic arithmetic operations, with a preference for addition or subtraction, 
sometimes division or  multiplication to calculate costs and ratios, and they 
will sometimes use exponential or logarithmic computing to discount, but 
never beyond. They  are  not aware that accounting has a vector space structure. 
Demonstrations and the most comprehensive  developments  in  this  regard  have 
been made by R. Sterling (1967) and J. Bouinot (1971). Having demonstrated 
that accounting was a vector space structure, it was possible to apply the 
techniques to accounting matrix. Indeed, in the history of mathematics, matrices 
have been developed when the theory of vector spaces has been established. 
	 According to R. Mattessich, technology applied to matrix accounting 
is almost as old as humanity (Mattessich, 1989). He notes that in the early 
ages of civilization, prehistoric man was already using the principles of Input-
Output to describe the physical reality of his immediate environment, using 
different kinds of tokens. From these findings, Mattessich (1957, 1964) using 
the work of  Leontief  showed  that all economic transactions can be presented 
in journal  form but also in  the form of matrices, vectors, equations or 
algebraic flowcharts in a network. For him, the matrix structures were always 
implicitly present in accounting, including the protohistoric period. Magic 
squares and  Latin squares, tables of specific numbers were also known for a 
very long time by the Chinese and Arabs.

1.1 Classical history of linear algebra and matrix theory 
	 The classic history of linear algebra and matrix theory begins much 
later. (Athloen and McLaughlin, 1987; Vitulli, n.a). Everything started from 
the study of the coefficients of linear equations and determinants. Leibnitz 
began to use it in 1693 and Cramer presented its determinant formula to 
solve equations (Cramer’s rule) in 1750. But already in 1700 Lagrange was 
an implicit user of matrices in its work on bilinear forms, calculating the 
maximum and minimum of functions with several variables (Lagrangian). A 
few years later, in 1800, Carl Friedrich Gauss developed  the method known 
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as Gaussian elimination and used it to solve some problems of geodesy. 
Some authors consider the Gaussian elimination was already known to the 
Chinese, because He Hui, in 263 AD, assigns Chang Ts’ang as the author 
of the method, to - 200 BC.  More specifically, Gauss was mentioned in a 
manual about geodesy written by Wilhelm Jordan (1842-1899), a German 
researcher in geodesy, who studied the reliefs of Germany and Africa and 
founded the German Journal of Geodesy, combining the two names Gauss-
Jordan. The Gauss-Jordan elimination, also called Gaussian elimination, 
and named in honor of  Gauss and Wilhelm Jordan, is an algorithm in linear 
algebra for finding the solutions of a system of linear equations to identify 
the rank of a matrix or to calculate the inverse of a (square) invertible matrix. 
The technique of Gauss-Jordan elimination seems to have been erroneously 
attributed to Camille Jordan when it is Wilhelm Jordan who published it 
in 1888 in the third edition of his textbook on geodesy. The story of this 
algorithm has been studied by Althoen and McLaughlin (1987). Wilhelm 
Jordan is often confused  with the French mathematician Camille Jordan, 
or the German physicist Pascual Jordan. The English man James Joseph 
Sylvester used first the term “matrix” to describe an array of numbers in 1850. 
James Joseph Sylvester (1814 - 1897) worked with Arthur Cayley on algebraic 
forms, especially on quadratic forms and their invariants and the theory of 
determinants. He has written hundreds of articles published in particular in 
the Cambridge and Dublin Mathematical Journal. He taught mathematics at 
the Royal Military Academy at Woolwich and at the American University 
Johns Hopkins. Then, Arthur Cayley worked on linear transformations and 
defined matrix multiplication, and the inverse matrix. Arthur Cayley (1821 
- 1895) Professor at the University of Cambridge is one of the fathers of 
the modern British school of mathematics. He was the first to introduce the 
multiplication of matrices and the Cayley-Hamilton theorem that any square 
matrix is a solution of its characteristic polynomial. He outlined, in 1854, a 
first approach to the modern notion of group. The names of William Rowan 
Hamilton and Cayley are associated with the Cayley-Hamilton theorem 

stating that a square matrix  is ​​a root of its characteristic polynomial. In fact, 



55

the  Cayley-Hamilton theorem was proved before them, by Ferdinand Georg 
Frobenius in 1878. Cayley theorem has been used extensively in this work, 
and Hamilton proved in the case of two dimensions. Cayley also highlighted 
the link between the determinants and matrices. William Rowan Hamilton 
(1805 - 1865) discovered the quaternions, and he showed that the linear 
operators in the space of quaternions are a special case of the theorem of 
Cayley-Hamilton. He also found the general method to solve equations of 
the fifth degree, and important elements about the development of quantum 
mechanics. Matrices experiencing new fields of application, especially in 
physics in 1925, when Werner Heisenberg gives the first matrix formulation 
of quantum mechanics, paving the way for all physicists using matrices 
and tensors. Modern mathematicians, John von Neumann and Alan Turing 
were also interested in matrices. John von Neumann, who made important 
discoveries in quantum mechanics, set theory and economics matrices used to 
develop the Minimax theorem which provides a rational approach to decision 
making in clashes between two competitors or adversaries. For its part, 
Turing, genius of computing, introduced the LU decomposition of a matrix 
in 1948. LU decomposition is a decomposition of a matrix  as  a product of a 
lower triangular matrix L (Low) and an upper triangular matrix U (Up). This 
decomposition is one of the methods used to solve systems of linear equations. 
Finally, we can mention  Roger Penrose who developed the theory of generalized 
inverse matrices. When a matrix has two rows or two identical columns, its 
determinant is zero and it is not invertible. But sometimes, in the accounting 
field, we can find two sets of identical operations that nullify the determinant. 
In this case, we can use the generalized inverse matrices to find the solution, 
which is real, but impossible to find by classical Gauss-Jordan inversion. 
	 For the application of accounting matrices, we must not neglect 
the work of F. Quesnay, without whom the matrix methods would be less 
developed (Quesnay, 1760). The Tableau économique of  Quesnay can easily 
be transcribed as an economic system, or better Leontief inter-industry 
matrix. Describing the relations between social classes (producer’s class, 
landowner’s class, sterile class) with product streams and cash flows, he is 
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an essential precursor of accounting matrix. Its tableau économique was a 
breakthrough. But  the real founder of  the matrix accounting was Augustus de 
Morgan. In  the fifth edition of his book Elements of arithmetic (De Morgan, 
1846, p. 180-189, 1st edition 1830), Appendix 7, a brief overview on how the 
accounts are kept, “when they are properly kept”. De Morgan described in a 
few paragraphs how to keep accounts according to the conventional system, 
the correct way to hold the instruments to be used, the types of records used.

Table 1 – Accounting Matrix of Augustus de Morgan
       A 

debtor
B 

debtor
C 

debtor
D 

debtor
E 

debtor
A, creditor   23 19 32 4 
B, creditor  17  6 11 25 
C, creditor  9 41  10 2 
D, creditor  14 28 16  3 
E, creditor  15 4 60 1  

 

                     Source: De Morgan, 1846, p. 184

Quoting J. Jackson (1956), De Morgan is the most important  author 
of  19th century in terms of innovative accounting records. The way opened 
by De Morgan remained unexplored until the work of WW Leontief who 
began studying the input-output matrix in 1947 and has perfected them until 
1966 (Leontief, 1947, 1954, 1966, 1986). The great merit of Leontief was 
clear that the input-output analysis is an application of the neoclassical theory 
of general equilibrium. He extended his argument by saying that it is possible 
to go from big economic systems to small economic systems and from small 
systems to business groups and individual companies. In each case, the 
equilibrium is realized by a set of linear equations grouped together to form 
an input-output matrix for the determination of technical coefficients. The 
Leontief’s works are an essential reference on matrix accounting and they are 
still relevant today. His works inspired Mattessich (1957) who drew the bases 
of a  matrix formulation of accounting  systems and Ijiri (1967), in his book 
called Foundations of Accounting Measurement.
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1.2 The integration of the matrix computation in double-entry 		
	 bookkeeping 

With the history of accounting, we used four types of writing: 
pictograms, signs, words, and  syllabic  alphabets. We also used a limited number 
of types of accounts, at all ages and in all countries, alongside superimposed 
positions accounts (Sumerian accounts, accounts Egyptian), there are 
accounts in separate columns where one devotes a page register or documents 
the positive changes (inputs or revenue or jobs or flows), such as the left page 
and the facing page, the right for negative changes (outputs or expenditures 
or resources or credits). The third type of presentation of the route is married 
to columns, as in our current bank statements on the same sheet where the 
increases and decreases occupy two neighboring columns. Matrix accounting 
where  an  accounting record Cy = (S Ey , S Ry), with  Cy x (R + x R +) is at the 
coordinates of a row and a column is the fourth possibility, the last have been 
discovered. Let us briefly recall the calculating procedure for matrix applied 
to classical accounts. The initial situation is represented by a column vector 
(Si) where the accounts used are classified in the order of chart of account, 
receivable accounts with the sign (+) and the payable accounts with the sign 
(-). Current operations are then stored in a matrix of operations [Mo] with 
debited accounts in columns and credited accounts in rows, or, conversely, 
if desired, as shown in Exhibit 1. For the new situation after the movements 
described in the matrix [MB] must transpose it to get t[Mo] and then multiply 
the difference resulting from [tMo] - [Mo] by the column vector unit (S1). 
	 We obtain (Si) = (t[Mi] - [Mi] x (S1)  

The final vector of account after operations (Sf) is obtained by 
adding the vector to the initial position and the movement vector (Sf) = (Si) 
+ (Sm). The vector (Sf) corresponds to pre-closing trial balance. If you want 
to establish adjusted trial balance, after performing year-end stocktaking 
operations, determine the final inventory, save the inventory records, save the 
adjustments of accruals. For this we must introduce the matrix of inventory 
operations that can be called [Mi]. As before, we must then calculate the 
transposed t[Mi] and multiply the difference by a column vector unit (S1). 
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	 We obtain (Si) = (t[Mi] - [Mi] x (S1)  
The final situation after inventory adjustments is the sum of two 

vectors (Sf) and (If) or (SF) = (Sf) + (Si). The vector (SF) corresponds to 
the accounts of post-closing trial balance after the adjustments of accounts 
for expenses and revenues. Then, it is possible to establish the company’s 
balance sheet with not balanced accounts. (Shank, 1972; Degos and Leclère, 
1990). In addition to these basic operations, accounting matrix is ​​useful for 
more complex accounting tasks, such as modeling systems or consolidation 
of  budget balances and accounts (Degos and Leclère, 1990).

2. Emergence of Consolidated Financial Statements and Gauss-	
	 Jordan’s  Algorithm

Consolidation of accounts has been for a long time a specialty of 
English-speaking professionals (Finney, 1922; Nicholson, 1924; Newlove, 
1926 Paton, 1932; Macbeath and Platt, 1951). Few years ago, Walker recalled 
this story (Walker, 1978). In France, the consolidation has been slower to 
emerge, particularly through the work of Veyrenc and Richard (1954) two 
former presidents of the Institute of Chartered Accountants. Consolidated 
accounts only became compulsory since 1985, but it existed since 1968, when 
the National Council of Accounting1 has published the first work (Bensadon, 
2010). On a theoretical level, J. Biabaut (1969) showed that the problem of 
consolidation was a special case of graph theory where it is necessary not 
only to enhance the edges, as in the general case, but also enhance the vertices 
(Biabaut, 1969, pp. . 43 et seq.) He extended the work of  C. Flament on graph 
theory applied to the group structure (Flament, 1963). The consolidation  allows 
the set-up of financial statements of a group of subsidiaries controlled by a 
holding company, for they are released, but also to be used for internal group. 
	 1) The study of the National Council of Accounting included some 
imperfections, especially when it studied the reciprocal shareholdings and circular 
reciprocal shareholding. In addition, the method described to eliminate reciprocal 
shareholdings was wrong because it prescribed to eliminate the apparent reciprocal 
shareholding (first level) and not real reciprocal shareholding (the limit of the loop 
tends to infinity).
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It allows the aggregation, that is to say adding the accounts of each company 
in a single unit. This aggregation, in classical form or matrix form presents 
no real problem, what does is the requirement to eliminate inter-company 
transactions and to make adjustments to make possible additions on the one 
hand, and the obligation to determine the nature and the actual percentage of 
control and participation of the parent company in its subsidiaries, especially 
when the control is not direct or when the control is reciprocal of the other 
hand2. In all these cases, accounting matrix can provide rational answers.

For  a  group of  subsidiaries that are  located  within a  scope of  
consolidation, there are three types of participation: associate societies 
undergo exclusive and majority interest of the holding company which 
owns a majority stake in their capital, companies linked where the parent 
company has a significant interest of at least 20% with minority interest, and 
in rare cases the interests of Community companies jointly controlled  by 
two different holdings.  The dependency link between the holding and its 
subsidiaries is realized by the percentage of control expressing the voting 
rights held and by the percentage of interest simply expressing the part 
of capital that the holding company owns in its subsidiaries, directly or 
indirectly. We are primarily interested in equity computations and we will 
send readers interested in French regulation CRC 99-02, approved by the 
Decree of 22 June 1999, which sets out the rules and procedures relating 
to the consolidated European Regulation 2005 IAS 7 Council in June 2002 
of the European Parliament which constraints listed companies to present 
their consolidated accounts according to IFRS standards (IAS 27 and IAS 
28) and International Regulations (new IAS 27 on financial statements, IAS 
28 new on investments in associates and partners, supplemented by IFRS 10 

	 2)  We believe this is Newlove (1926), professor at Johns Hopkins University, 
in chapters 11 and 12 of his book, which dealt with the first fairly complete problems 
and indirect interests of reciprocal links. In chapter 12, p. 201-211, he studied 
shareholdings without reciprocal control and with reciprocal control.
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on state financial  statements,  IFRS 11 on partnerships and IFRS 12 on the 
information of interests in other entities).

2.1  Shareholding, and  reciprocal  shareholding  of a Group without 	
	 matrix	

Consider a simplified group consisting of a holding company 
and one or two subsidiaries. In this case there is no need to use the matrix 
computation and you can use simple techniques of classical algebra:  
	 • Reciprocal shareholding in a mutual parent company and one 
subsidiary: Suppose a parent company SM that owns x % of the capital of 
the subsidiary FU that owns itself  y % stake in the holding company. If the 
subsidiary has y % of the parent company, the other shareholders of the parent 
company have (100 - y) % of their company. They therefore hold [(100 - y)%] 
´ x % of the subsidiary, but the stakes are reciprocal, were in the presence 
of an infinite loop, which is associated with a sum of terms in a geometric 
progression whose sum is:
	 [(100 - y) x x] x [(100 - xnyn) / (100 - x, y)]   
     and which tends to    [(100 - y) x x] / (100 - x, y). 
	 •  Circular reciprocal shareholding between parent company and two 
subsidiaries: suppose a parent company SM that owns u % of its subsidiary 
FA, the subsidiary FA has v % of the other subsidiary FB and the subsidiary FB 
has w % of the parent company. The parent company has therefore a certain 
percentage to determine its subsidiary FB, but also the actual percentage 
of participation in FA is not apparent u % percentage. If we use the same 
reasoning as in the case of a single subsidiary, involving the shareholders of the 
parent company who have (100 - w) % of the company, we can determine the 
participation in SM as (100 - w) / (100 - uvw), participation in the  subsidiary 
FA: [(100 - w) x u] / (100 - uvw) and participation in  the subsidiary  FB: [(100 
- w) x uv] / (100 - uvw). With more than three companies, it is impossible 
to do simple operations from fractions and percentages and we have to use 
matrix  techniques.   
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2.2  Shareholding, and reciprocal  shareholding  using  matrix  methods
Consider the example given table 2.

Table 2 – Shareholdings between Holding company (HC) and 
subsidiaries of Castor & Pollux Group

Company
of Group

Company XY control
(x%) of another company

Company XY is controled
at (y%) by another

HC SA (80%), SB (30%), 
SC (30%), SD (80%)

 No control

SA SB (10%) HC (80%),  SB (10%)
SB SA (10%), SC (40%) SA (10%),   SC (20%)
SC SB (20%), SD (20%) SB (40%),  SD  (10%)
SD SC (10%), SD (20%) HC (80 %), SC  (20%)

	 It is  not easy to calculate, a priori, the interests of the holding 
company in each of its subsidiaries as a result of reciprocal links in the form 
of loops, the real interests being different than apparent interests. If (Y) is the 
vector of total shares of the holding company that is sought, (P) is the vector 
of visible minority and [A] matrix entries where each component a i,j is the 
participation of the society I in company J, and a i,i = 0;

  yH     1     0 0 0 0 0 

  yA     0,10     0,80 0 0,10 0 0 
(Y) = yB ; (P) = 0,40 ; [A] = 0,30 0,10 0 0,20 0 

 yC     0,20     0,30 0 0,40 0 0,10

  yD     0     0,80 0 0 0,20 0 
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By  iteration shareholding  in second order is [A] x (P), shareholding 	
         in 3rd order is [A] 2 x (P), and shareholding in n order is [A] n – 1 x (P), 

then (Yn) = (P) + [A] x (P) + [A] 2 x (P) + ... + [A] n – 1 x (P), 
But (Y) = lim (Yn) when (Yn) ® ¥ . If we multiply by [A] and if we 		

         subtract [A] ´ (Yn) from (Yn) after eliminating similar terms, as lim 		
         [A] n = 0, we get:

(Y) – [A] x (Y) = (P). 
Let [I] the identity matrix, we get:
(Y) – [A] x (Y) = [I – A] ´ (Y) = (P)
If we have [B] = [I - A] we can write: [B] x (Y) = (P) Þ  (Y) = [B] -1 x (P).

If we take the example of the Castor & Pollux Group of table 1, the 		
        matrix [B] is equal to:

  1 0 0 0 0  

  - 0,80 1 - 0,10 0 0  
[B] = - 0,30 - 0,10 1 - 0,20 0  

 - 0,30 0 - 0,40 1 - 0,10  

  - 0,80 0 0 - 0,20 1  

 

     
       

          Its inverse [B] -1 is equal to:

  1 0 0 0 0 

  0,851 1,011 0,110 0,022 0,002 
[B] -1 = 0,504 0,110 1,100 0,224 0,022 

 0,594 0,045 0,449 1,112 0,111  

  0,919 0,009 0,090 0,222 1,022           
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And the vector of shares sought is equal to:

0 
0,149

(Y) = [B] – 1 × (P) =  0,496
 0,406

0,081

This corresponds to the following interests:

Table 3 – Real interest in Castor & Pollux Group

Company
of Group

Holding
interest

Visible
interest

Minority
interest

Consolidation
method

HC 100 % 0 % Parent company
SA 85,1 % 80 % 14,9 % Full consolidation
SB 50,4 % 30 % 49,6 % Full consolidation
SC 59,4 % 30 % 40,6 % Full consolidation
SD 91,9 % 80 % 8,1 % Full consolidation

The results, above, have been made, including the computing of inverse 
matrices, with the classical  Gauss-Jordan method, from the percentages 
stored as fractions. There are other methods of computation, but one of the 
most attractive and  the  most magical is the method of Markov chains.

3. Consolidation, Markov chains, and Platonic solids

Andrei Andreyevich Markov (Андрей Андреевич Марков) was a 
Russian mathematician born June 2, 1856 and died July 20, 1922. He was 
a professor at the State University of St. Petersburg, Pafnouti Chebyshev 
(Пафнутий Львович Чебышёв) of to the Russian School of Mathematics 
and Statistics, founded by Daniel Bernoulli and Leonhard Euler who himself 
died in St. Petersburg. Member of the Academy of Sciences in St. Petersburg, 
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Markov  became interested in lexicography and the succession of letters 
of the Russian alphabet used in Pushkin’s novel Eugene Onegin (Евгений 
Онегин). The succession of each letter of the novel, appearing not at random, 
but according to the previous letter with a certain probability, was the first 
work as a prelude to the discovery of  Markov chains. By  studying 20,000 
characters of Eugene Onegin, he set up the transition matrix [P] as follows:

Matrix  12,8 %  87,2 %  

[P] =  66,3 % 33,7 %  

	 Such a matrix is ​​called stochastic, that is to say the sum of each row 
is equal to 1. This property is present in each transition matrix because the 
elements for row i are the likelihood of all possible transition from one state 
to another, without omitting any. If there are zeros in the transition matrix, this 
means that the transition is impossible. Fig. 1 shows the transition matrix of 
the above cases:

	 Figure 1 – Likelihood of succession of vowels and consonants 
(Markov, 1913)

Vowels Consonants 

87,2 % 

66,3 % 

12,8 % 33,7 % 

	 In Russian, in Eugene Onegin are the likelihood that a vowel 
followed by a consonant is 87.2 % and the likelihood that a consonant 
followed by a vowel is 66.3%. The law limits associated with likelihood of 
transition is p = (43.2%, 56.2%), it is the overall probability of occurrence of 
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vowels and consonants. These results were established in 1913, but Markov 
had already released its first findings in 1906, assuming a finite state space 
(Markov, 1906) and thirty years later, Kolmogorov (Андрей Николаевич 
Колмогоров) generalized the theory of Markov for the infinite state spaces. 
	 The real and general problem studied by the Markov chains is 
(Kemeny et al, 1964): the process is in the initial state i. What is the likelihood 
that it is found in state j after n iterations at time n. As we get several states (or 
more vertices in a graph) it is necessary to calculate all the likelihood for all 
the initial positions of i at time 0 and for all end  positions j at time n. These 
probabilities can be represented by a stochastic matrix, for example after n 
iterations for a  Markov process with three states:

          
  pn

11 pn
21 pn

31 

[P] n =  pn
12 pn

22 pn
32 

  pn
13 pn

23 pn
33 

          

	
	 This matrix, called transition matrix, is square, stochastic because all 
lines are equal to 1 and regular, since all terms are non negative. More if 
you can go from one state to any other, the matrix is ​​ergodic. Markov chain 
assumes an initial state defined by: (P) 0 = ( P0

1, P
0
2, P

0
3). 

The probability that the vector (P) in state aj after n iterations is given by the 
vector (P)n =  (Pn

1, P
n
2 P

n
3). Multiplying the vector (P)0 of initial probabilities 

by nth power of the transition matrix [P], we get the vector which components 
give the probabilities of  being in each state after n iterations. In some cases, 
the vector is a fixed point of  the matrix [P] in the following equation: w = w x 
(P)n. At the invariant point, the elements of the matrix are real non-probabilistic 
values ​​and not probabilistic expression, and one of the paradoxes of Markov 
chains is that a probabilistic system tends to a non-probabilistic limit. 
Applications of  Markov chains are innumerable, the most recent evaluation 
notes include  rating agencies, and  the probability of  passage of any note, 
for example A, a better rating (AA) or a worst rating (BBB). Such a matrix 
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has 8 states, from the highest grade AAA to failure. One can also evaluate for 
financial market indexes going from bearish stage where the index is stable, 
to a bullish situation, where the index is rising sharply, or a recession where 
index decreases. For consolidations, we use the Markov model, regardless 
of likelihood, but also noting that the model tends to a stable situation where 
there is absorbing states and an invariant point.

	 3.1 Markov Chains to better describe consolidated groups.
	 In the classical Gauss-Jordan method, we have a reductive view 
of minority interests, outside the Group. Instead, the use of Markov chains 
allows to better address this problem (Guérin and Pouget, 1972). If we keep 
the example of the Castor & Pollux Group, it is necessary to slightly modify 
the table 2 with table 4:

Table 4 – Links of Castor & Pollux Group with minority interests (MI)

Company
of Group

Company XY control
(x%) of another company

Company XY is controled
at (y%) by another

HC SA (80%), SB (30%), 

SC (30%), SD (80%)

HC (100%)

SA SB (10%) HC (80%), SB (10%), MI (10%)

SB SA (10%), SC (40%), MI (40%) SA (10%), SC (20%), MI (40%)

SC SB (20%), SD (20%) SB (40%), SD (10%), MI (20%)

SD SC (10%), SD (20%) HC (80 %), SC (20%)

MI SA (10%), SB (40%), SC (20%) MI (100%)
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The table above can be represented by the incidence matrix [X] as follows:

       

  1 0,80 0,30 0,30 0,80 0
  0 0 0,10 0 0 0
[X] = 0 0,10 0 0,40 0 0

 0 0 0,20 0 0,20 0
  0 0 0 0,10 0 0
  0 0,10 0,40 0,20 0 1

	 The matrix [X] will be «separated» into two matrices: the matrix [B] 
of dimensions (6.6) with only two values ​​1 for elements b1,1 corresponding 
to the participation in the holding company itself, and b6,6 corresponding to 
the participation of minority interest in themselves, and the matrix [A] which 
will include all the elements of the matrix [X], except the elements a1,1 and a6,6 

which have the value 0 . We can check that [X] = [A] + [B].

 
	 By calculating the difference between the unit matrix 
[I] and the matrix [A], reversing [I - A] and multiplying the 
matrix [B] by the inverse, we get the matrix [Xn] which is a limit. 
We get: [Xn] = [B] x [I - A] -1

  1 - 0,80 - 0,30 - 0,30 - 0,80 0 
  0 1  - 0,10 0 0 0 
[I - A] = 0 - 0,10 1 - 0,40 0 0 

  0 0 - 0,20 1 - 0,20 0 
 0 0 0 - 0,10 1 0  

  0 - 0,10 - 0,40 - 0,20 0 1 
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	 The inverse matrix [I - A] is:

  1 0,851 0,504 0,594 0,919 0 
  0 1,011 0,110  0,045 0,009 0 
[I - A] -1 = 0 0,110 1,100 0,449 0,090 0 

  0 0,022 0,224 1,112 0,222 0 
 0 0,002 0,022 0,111 1,022 0  

  0 0,149 0,496 0,406 0,081 1 

	

	 And its limit [Xn] is:

  1 0,851 0,504 0,594 0,919 0 
  0 0  0 0 0 0 

[Xn] = 0 0  0 0 0 0 
  0 0  0 0 0 0 

 0 0  0 0 0 0  
  0 0,149 0,496 0,406 0,081 1 

	
	 We can read the matrix [Xn] as follows: column 1, nobody controls 
the  holding  company. Column 2, the  holding company controls 85.1 % of 
its subsidiary  FA  and minority shareholders controls up to 14.0 % of group.  
The results are similar to results found with the  Gauss-Jordan method due to 
the use of fractions and not decimals rounded (85.1 % = 3785/4451 x 100 %), 
14.9 % = 666 / 4451 x 100 %), and in the absence of collinearity phenomena. 
When the complexity of groups increases, the reciprocal shareholding and 
circular shareholding are difficult to detect at single glance, and facing this 
increased complexity, managers and auditors  must control opacity phenomena 
and dilution of assets in a lot of subsidiaries. Matrix techniques are able to 
bring out  the hidden reality under more or less  misleading appearances.
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	 3.2 Markov chains, Platonic  solids  and  graphs  to optimize the 		
	 group  structure
	 When we have to do some audit of a group, with a legal position 
of statutory auditors, we are often struck by the “architectural disorder” of 
groups formed randomly, depending on the opportunities for purchase or 
control. Often, when the group is unbalanced, for any reason whatsoever, it is 
not easy to restore a harmonious structure and many professionals do not have 
a solution to offer in front of this situation.
	 And yet, it seems  that a solution  exists, inspired  by  the  architecture 
of perfect  Pythagoreans solids, completely symmetrical, or even the  
architecture of imperfect solids described  by Luca Pacioli and drawn by 
Leonardo da Vinci (Pacioli, 1509). We assume, probably to be checked, a 
coherent structure, such as symmetric, is much more resistant to external 
pressures and much easier to control, on the one hand, and a coherent structure 
allows better circulation information and products: tours can be shorter, 
more secure and rational. The richness of the regular polyhedron in terms of 
symmetry has enriched the mathematical  theory of groups by the symmetry 
groups in space. First use was made by  Johannes Kepler (1596) to represent 
the orbits of the five planets known at the time: Jupiter, Mars, Earth, Venus 
and Mercury. Luca Pacioli describes them not only in the Divina proportione, 
as we have seen above, but also in the Summa de arithmetica (Pacioli, 1494). 
A comprehensive study was made by L’Huillier (1812) and more recently by 
Joly (1979). Represented in three dimensions, the regular  polyhedrons are 
not very easy to use, but can be represented by their graphs, from Descartes-
Euler theorem, also called the Euler characteristic. According to this feature, 
the convex polyhedrons obey the relation S - A + F = 2, where S is the number 
of vertices, A is the number of edges and F is the number of faces. For five 
regular solids, we get:
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Table 5 – Euler characteristics of regular polyhedrons

Polyhedron Shape
of    

faces

Number
of               

sides

Number 
of 

vertices

Number 
of   

edges

Number 
of    

faces

Schläfli
symbol

Vertex
Config.

Tetrahedron Triangle 3 4 6 4 {3,3} 3.3.3

Cube Square 4 8 12 6 {4,3} 4.4.4

Octahedron Triangle 3 6 12 8 {3,4} 3.3.3.3

Icosahedron Triangle 3 12 30 20 {5,3} 5.5.5.

Dodecahedron Pentagon 5 20 20 12 {3,5} 3.3.3.3.3

	 Each Platonic solid can therefore be denoted by a symbol {p, q} 
where p = the number of edges of each face (or the number of vertices of 
each face) and q = the number of faces meeting at each vertex (or the number 
of edges meeting at each vertex). The symbol {p, q}, called the Schläfli 
symbol, gives a combinatorial description of the polyhedron. The Schläfli 
symbols of the five Platonic solids are given in the table 5 right. Ignoring 
the solid faces, and studying only the edges and vertices we can represent 
some graphs (Source: Alsina, 2011), which brings us back to representations 
similar to those in Table 2 or Table 4, presented above.
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Figure 2 – Graphs of Platonic solids
       

	 To build a group to consolidate with such graphs, we must first 
choose the position of the parent company, eg in the center of the graph 
and decide a majority stake in key subsidiaries. Then, each vertex must not 
receive more than 100 % of controls and that he does not carry more than 
100 %. Let us take for example the case of the tetrahedron, the top left of 
the five graphs: we can try to see what would result in a structure where 
the parent company would control 90 % of its 3 subsidiaries directly and 
indirectly 5 % or even 50 % directly and 45 % indirectly, or finally if all 
companies would control up to another 10 %. Once we have chosen the 
structure, it is reduced to the problem of the previous paragraph: valuation of 
the Group’s investments, excluding equity group valuation and determination 
of beneficial interests in the parent company in each of its subsidiaries. 
We could do the same with the other graphs. Matrices participations in 
different cases can be used to optimize the structure of the group step by 
step, and in addition, matrices participation can become a diagnostic tool:  
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	 - The  number  of  columns  equal  to  the number of vertices 
indicates the general nature of the structure: 4 columns and 4 companies 
for a tetrahedron, 6 columns and 6 companies for a cube, 8 columns and 8 
companies to an octahedron, etc..
	 - The first row of the matrix shows the controls suffered by the parent 
company;
	 - In columns we see the percentage of control of the holding on each 
subsidiary;
	 - The first diagonal must be zero if a company has no own shares.
	 It is also possible to integrate a standard of participation: 
reciprocal shareholdings are regulated, in France, by Articles L. 
223-29, L. 223-30 and L. 223-31 of the Commercial Code, but 
in other countries interests are not limited, for example in Italy. 
You can also try to determine the limits of self-control for each graph type. 
The last table gives some indications:

Table 6 – Limits of the self-control regarding the shape of graphs

Number  
of

companies

Structure
to choose

Theoritical
maximum

interest
by company

Theoritical
maximum
interest for 

holding

Theoritical
minimum
interest

by company

Theoritical
minimum 
interest

for holding
4 Tetrahedron 33 % 99 % 17 % 51 %

6 Cube 20 % 100 % 10 % 51 %

8 Octahedron 15 % 99 % 7 % 50 %

12 Icosahedron 8 % 99 % 4 % 50 %

20 Dodecahedron 5 % 100 % 3 % 50 %

	 With theoretical interests above - the group’s control on itself would 
be absolute, and we must avoid it (Degos and Leclère, 1990, 1999, 2009) 
because if a group completely controls itself it prevents shareholders from 
voting.



Conclusion
There  are still  a lot of   accounting  problems  related  to  corporate  

groups where the matrices and Markov chains have shown – historically – 
they were useful for the calculation of capital, reserves and results of the 
consolidated balance sheet of the holding company for the optimization of 
Group Treasury for planning investment projects of the group, using the real 
options method associated with Markov chains, to make simulations and 
predictions in the short, medium and long term. The matrix methods have 
historically provided to complex  accounting not only a  necessary scientific 
rigor but also a creativity that brings added value. “The accounting description 
should always make an effort to shape the reality and the application of the 
formalism alone is not enough” (Lassègue, 1962). But the mathematical 
formalism is a guarantee of rigor and control. And more, made in  the form 
outlined above, accounting has a better ability to serve as a basis for economic 
calculation and its speculations, to support and validate the quantitative 
elements of strategy. Accounting, in itself, is not always intended to bind 
parameters other than by calculation; the economy may instead highlight 
the positive or contradictory aspects of a problem with all the nuances and 
all the necessary extensions. Mathematics, economics and accounting are 
often separated in research and teaching, but sometimes it is necessary to 
coordinate them and provide practical solutions to problems of performance 
management. Matrix methods are a relevant link between past accounting, 
Matrix methods  are a relevant  link between past accounting, and future.
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