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Abstract 

 

In this study, we modeled real valued functions using freeform lenses. In our model, the bottom surface 

of the lens is flat whereas its top surface is determined by a function, 𝑓(𝑥). We consider vertically 

coming light rays with x-coordinate 𝑥. Our aim is to find 𝑓(𝑥) such that 𝑥 is mapped to 𝐹(𝑥), the 

horizontal position where the light ray leaves the bottom surface. We have found the nonlinear 

differential equation for a generic lens to model a given function. Namely, given 𝐹(𝑥), the solution of 

the differential equation gives us the lens surface 𝑓(𝑥). Finally, we have calculated the lens surface for 

four functions numerically and have provided their plots respectively. 
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1. Introduction 
 

In physics, there are two ways to model light. First is the wave model (as supported by 

interference experiments such as the Young's double-slit experiment) and the second is the 

particle model (which is supported by the corpuscle theory of Newton, or more recently by the 

photo-electric effect as explained by Einstein). In the past, scientists tried to determine which 

model was the right one and today we know that both are equally valid. This is known in 

quantum mechanics as the wave-particle duality. This is also valid for entities thought primarily 

as particles, e.g. electrons, which also show wave-like interference effect under right conditions. 

In our study, we restrict ourselves with what is known as ray optics, in which light propagates 

as a ray. 

 

One may consider a ray of light as a sequence of photons (i.e. quanta of light) one following 

another on a straight line and change direction when a new medium is met. Moreover, each 
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medium has a quantity known as refractive index which determines the speed of light in the 

medium and in general depends on the wavelength (or frequency, equivalently) of light. In this 

study we considered a monochromatic light ray, that is with single color. The deflection of light 

depends on refractive indices of media and the angle that is made with the surface normal. (See 

Figure 1.) The quantities just mentioned are related to through an equation known as the Snell's 

Law: 

 

𝑛1 sin(𝜃1) = 𝑛2 sin(𝜃2)         (1) 

 

 
Figure 1. Dashed line is the surface normal. Refractive indices of media are denoted as 𝑛1, 𝑛2 

and the angles the rays make with the surface normal as 𝜃1, 𝜃2. See Equation (1) for the relation 

between these four quantities: known as the Snell's Law. 

 

 

The study of engineering a lens surface for an application where the surface is a degree of 

freedom is known as freeform lens design in the literature, see Refs. [2,4] for a review. This 

concept has a wide range of applications such as “green energy, aerospace, illumination and 

biomedical engineering” [2]. 

 

In this study, we are concerned with how to engineer an optical lens that materializes a function 

from 𝐹: ℝ → ℝ. By materializing a function, we mean that the surface of a lens should be 

designed in a way so that the incoming ray with 𝑥 x-coordinate is mapped to 𝐹(𝑥). Our model 

has an immediate generalization to functions with cylindrical symmetry since they are in the 

same manner only a function of single variable: the distance from the origin. 

 

In general, the study of freeform lens design is concerned with image forming [5] (may be 

useful for people needing custom-made optics in order to improve their sight, readers may also 

search the Internet for ‘freeform lens’ to see that there are companies that produce such 

elements) or non-image forming (e.g. illumination) [1,6,7,8] of some region of space. 
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In our study we do not focus on such matters but instead are interested in a lens as a means to 

materialize a real valued function. Moreover, as we shall see, we are also not interested in which 

way the incoming ray of light goes after it leaves the lens. Ref. [1] is the closest work to ours 

that we could find in the literature, however it is not directly about materialization of a function, 

rather about the problem of finding the geometry of lens surface that produces a specific 

illumination pattern far from the lens. As far as we know, our study is a new contribution to the 

literature in this regard. 

 

The organization of the paper is as follows: In Section 2 we introduce the model and related 

definitions, in Section 3 we provide information on how to engineer a lens to model a function 

𝐹(𝑥), in Section 4 we give four different lens surfaces for various functions and finally in 

Section 5 we conclude the paper. 

 

2. The model 

 
In this Section we introduce the model and perform calculations that will be useful later. 

 

2.1 Variables and assumptions 

 

We consider a lens between the curves 𝑦 = 𝑓(𝑥) and 𝑦 = 0. We suppose rays hit the lens from 

above, in the −�̂� direction. For simplicity we consider the whole real line, but in applications 

one may put a cutoff for minimum and maximum 𝑥 values, because obviously a lens cannot 

occupy an infinite extent in applications. Moreover, we suppose that 𝑓(𝑥) > 0 for all 𝑥 ∈ ℝ. 

 

Table 1. A list of definitions of variables we will use in the rest of the paper. You may see 

Figure 2 for a graphical illustration of some of the variables defined in this table. 

 

𝑟1 the position where the incoming ray meets the lens 

𝑟2 the position where the outgoing ray leaves the lens 

�̂�1 normal vector of upper lens surface 

�̂�2 normal vector of lower lens surface 

�̂�1 direction of the ray in the lens 

�̂�2 direction of the ray when it leaves the lens 

𝜃1 the angle that the incoming ray makes with  �̂�1 

𝜃2 the angle that ray in the lens makes with −�̂�1 

𝜃3 the angle that ray in the lens makes with −�̂�2 

𝜃4 the angle that ray that leaves lens makes with �̂�2 

𝑅(𝜃) matrix that rotates a vector counter-clockwise by an angle 𝜃 

 

The incoming ray is characterized solely by an 𝑥 value. The list of definitions of variables we 

use are found in Table 1 and illustrated in Figure 2. 
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Figure 2. An example of a lens where 𝑓(𝑥) = 1 + 𝑒−𝑥2
 . The medium that the original rays 

come from has refractive index 𝑛1, the lens 𝑛2, and the last medium has 𝑛3. The variables are 

shown on the figure. Directions of the ray,  �̂�1 and  �̂�2, follow the ray downwards. For their 

definitions see Table 1. 

 

 

In the context of this paper, we are mainly concerned with 𝑟2, where the ray leaves the lens. 

This is the function 𝐹 we introduced in the Introduction. Our aim is to engineer the lens surface 

such that the function 𝑟2 is realized. There is one assumption we use, in order to make the 

calculations easier, that the incoming ray hits the surface 𝑓(𝑥) then hits the 𝑦 = 0 surface and 

then leaves. We do not consider the cases where path of the ray intersects the lens more than 

twice. 

 

2.2 Calculations 

 

The incoming ray comes from above, vertically, with horizontal coordinate $x$. The point 

where it hits the lens, is easy to calculate: 

 

𝑟1 = (𝑥, 𝑓(𝑥))           (2) 

 

The angle that the incoming ray makes with the surface normal (�̂�1) is 𝜃1. So the ray, when it 

goes inside the lens, makes an angle 𝜃2 with −�̂�1. This angle is calculated by the Snell's Law: 

 

𝜃2 = arcsin (
𝑛1

𝑛2
sin 𝜃1)          (3) 

 

Here one should not confuse 𝑛1 (the refractive index of the first medium) with the normal vector 

�̂�1. Now let us find the direction (�̂�1) that the ray has in the lens: 
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�̂�1 = −𝑅(−𝑠𝑔𝑛(𝑓′)𝜃2)�̂�1          (4) 

 

So, the equation of the ray inside the lens can be written as follows: 

 

(𝑥, 𝑦) = �̂�1𝜆 + 𝑟1           (5) 

 

where 𝜆 is a free parameter. The ray will leave the lens from the 𝑦 = 0 surface. So when we 

solve this equation for 𝑦 = 0, we find 𝑟2 (the 𝑥 value of intersection point) as: 

 

𝑟2(𝑥) = 𝑟1,𝑥(𝑥) −
�̂�1,𝑥

�̂�1,𝑦
𝑟1,𝑦(𝑥)         (6) 

 

Using the explicit formula of 𝑟1(𝑥) in Equation (2) we obtain: 

 

𝑟2(𝑥) = 𝑥 −
�̂�1,𝑥

�̂�1,𝑦
𝑓(𝑥)          (7) 

 

We will concentrate on 𝑟2 later. Let us complete this Subsection by calculating the angle that 

the ray makes with the 𝑦 = 0 surface, when it leaves the lens. The surface normal in this case 

is  �̂�2 = (0, −1). The ray in the lens makes an angle 𝜃3. The angle the outgoing ray makes with 

the surface normal is 𝜃4 which can be given through the Snell's Law: 

 

𝜃4 = arcsin (
𝑛2

𝑛3
sin 𝜃3)          (8) 

 

We now have enough tools to move on to specifying the lens surface in the next Section. 

 

3. Engineering the lens surface 
 

In this Section, we focus on the effect 𝑓(𝑥) has on 𝑟2 , or in other words 𝐹 which we will use 

from now on. However, let us start by giving an explicit form of 𝑅(𝜃) which is a matrix that 

rotates the vector in the counter-clockwise direction by an angle 𝜃. In order to make the 

calculations simpler, we will use complex numbers in this Section. Hence: 

 

𝑅(𝜃) = 𝑒𝑖𝜃           (9) 

 

In Equation (4) the surface normal (�̂�1) appears. We need to write it as a complex number. 

If  �̂�(𝑥) is the tangent vector of 𝑓(𝑥) at the point 𝑥, we can write  �̂�1 = 𝑒𝑖 𝜋/2�̂�. The tangent 

vector can be written as follows: 

 

�̂� = exp(𝑖 arctan(𝑓′))          (10) 

 

and we can write: 

 

�̂�1 = 𝑖 exp(𝑖 arctan(𝑓′))          (11) 

 

Using this information in Equation (4) we can write: 

  

�̂�1 = −𝑖 exp[𝑖 arctan(𝑓′) − 𝑠𝑔𝑛(𝑓′)𝜃2]        (12) 
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The direction of the incoming ray is (0, −1) = −𝑖 and the surface normal ( �̂�1) is given above 

in Equation (11). The angle in-between, 𝜃1 is found as (we put the absolute value function in 

order to make sure that the angle is non-negative): 

 

𝜃1 = arctan(|𝑓′|)           (13) 

 

Using this information in Equation (3) we obtain: 

 

𝜃2 = arcsin (
𝑛1

𝑛2
sin(arctan(|𝑓′|)))         (14) 

 

Let us simply define 𝑛 via 1/𝑛 =  𝑛1/𝑛2. 

 

𝜃2 = arcsin (
sin(arctan(|𝑓′|))

𝑛
)          (15) 

 

Returning back to Equation (12) we have: 

 

�̂�1 = −𝑖 exp[𝑖(arctan(𝑓′) − 𝑠𝑔𝑛(𝑓′)𝜃2)]        (16) 

= −𝑖 exp [𝑖 (arctan(𝑓′) − 𝑠𝑛𝑔(𝑓′) arcsin (
sin(arctan(|𝑓′|))

𝑛
))]          (17) 

 

In order to find 𝐹, see Equation (7), we need to calculate the ratio of 𝑥, 𝑦 components of  �̂�1. 

We find it as: 

 
�̂�1,𝑥

�̂�1,𝑦
= − tan [arctan(𝑓′) − 𝑠𝑔𝑛(𝑓′) arcsin (

sin(arctan(|𝑓′|))

𝑛
)]     (18) 

 

Finally, we obtain a relation between 𝑓(𝑥) and 𝐹(𝑥): 

 

𝐹(𝑥) = 𝑥 + 𝑓(𝑥) tan [arctan(𝑓′) − 𝑠𝑔𝑛(𝑓′) arcsin (
sin(arctan(|𝑓′|))

𝑛
)]    (19) 

 

This is a highly nonlinear, 1st order ordinary differential equation. What we would like to find 

is 𝑓(𝑥) in terms of 𝐹(𝑥). On the other hand, we can do one more simplification, using the 

identity |𝑎| = 𝑠𝑔𝑛(𝑎) 𝑎. Using the fact that arcsin,sin,arctan are odd functions, we rewrite 

Equation (19) as: 

 

𝐹(𝑥) = 𝑥 + 𝑓(𝑥) tan [arctan(𝑓′) − arcsin (
sin(arctan(𝑓′))

𝑛
)]     (20) 

 

With one more simplification, we obtain: 

 

𝐹(𝑥) = 𝑥 + 𝑓(𝑥) tan [arctan(𝑓′(𝑥)) − arcsin (
𝑓′(𝑥)

𝑛 √𝑓′(𝑥)2+1
)]     (21) 

 

4. Examples of engineered lens surfaces 
 

In this Section, we give one analytical solution for a very simple case and the rest of our results 

are numerical solutions for some functions 𝐹(𝑥). For the ease of illustration, we consider odd 

functions 𝐹(𝑥) and this makes 𝑓(𝑥) function an even function. Due to this assumption, 𝐹(0) =
0 is obtained and we can set the initial value 𝑓′(0)  =  0. Moreover, we can restrict ourselves 
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with 𝑥 ∈ ℝ≥0. Since we will provide numerical solutions, we will consider 1/𝑛 =  𝑛1/𝑛2   =
 1/1.53, which is equivalent to saying that the first medium is air and the second medium (the 

lens) is glass. 

 

Our first example is the identity function, 𝐹(𝑥)  =  𝑥. This is the easiest case. Any 𝑓(𝑥)  =  𝑐 

where 𝑐 > 0 describes the identity function 𝐹(𝑥)  =  𝑥. Let us now consider 𝐹(𝑥)  =  𝑎𝑥 for 

some 𝑎 > 0. These functions correspond to zooming-in and zooming-out operations. For 

illustrative purposes we will consider 𝐹(𝑥)  =  2𝑥 and 𝐹(𝑥)  =  𝑥/2. Numerical solutions (they 

are not unique) are shown in Figure 3. The lens that does the 𝐹(𝑥)  =  2𝑥 scaling can be 

extended to infinity, however the lens designed for 𝐹(𝑥)  =  𝑥/2 cannot be extended to infinity 

since the lens surface is not convex. One may consider more complicated functions. For 

example, functions of the form 𝐹(𝑥)  =  𝑥2 and 𝐹(𝑥) =  𝑥 + sin(𝑥) /10. The resulting lenses 

are plotted in Figure 3. 

 

 
 

Figure 3. Illustration of four lenses that materializes different functions, 𝐹(𝑥). a) A lens design 

that corresponds to 𝐹(𝑥)  =  2𝑥 (with initial conditions 𝑓(0) = 1, 𝑓′(0) = 0), b) A lens design 

that corresponds to 𝐹(𝑥)  =  𝑥/2 (with initial conditions 𝑓(0) = 1, 𝑓′(0) = 0), c) A lens design 

that corresponds to 𝐹(𝑥)  =  𝑥2 (with initial conditions 𝑓(0) = 3, 𝑓′(0) = 0), and d) A lens 

design that corresponds to 𝐹(𝑥) =  𝑥 + sin(𝑥) /10 (with initial conditions 𝑓(0) = 1, 𝑓′(0) =
0). 

 

 

5. Conclusion 
 

In this study, we considered vertically incoming light rays towards a lens where the bottom 

surface is flat and the upper surface is specifically designed. Our main focus has been to model 

a real valued function via freeform lens design, such that the upper surface--characterized by a 
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function 𝑓(𝑥)--is designed in a manner to map 𝑥 to 𝐹(𝑥) where 𝐹(𝑥) is the function that we 

model and 𝑥 is the x-coordinate of the incoming light ray. Here 𝐹(𝑥) is the x-coordinate of the 

light ray, when it leaves the bottom surface of the lens. Apart from that, we have not been 

interested in what happens to rays after they leave the lens. Although we have seen that there 

are a few studies similar to our own, the closest being Ref. [1], their focus has been observed 

to be different. In that respect, as far as we are aware, our study is a new contribution to the 

literature. 
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