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Abstract 

Machine learning is enabling transformative changes in the tourism industry. Various machine learning 

algorithms and models can detect patterns in huge amounts of data for the prediction process, 

recommendations, and decisions without any coding or programming. The tourism sector generates massive 

data through sources as such online reviews and ratings, social media activity, traffic information, and 

customer relationship management records. Machine learning is poised to unlock insights and opportunities 

from this data. This paper provides an overview of how machine learning is currently influencing and may 

shape the future of tourism. Techniques for predictive analytics, personalized recommendation systems, 

computer vision, natural language processing, and more are powering applications to improve customer 

experiences, optimize and automate operations, gain competitive advantage, and support sustainability. 

Current applications are discussed, including demand forecasting, personalized travel recommendations, 

automated photo filtering, sentiment analysis of tourism reviews, chatbots for customer service, and others. 

Emerging opportunities are explored, as machine learning may enhance smart tourism for destinations through 

intelligent transportation, customized experiences, optimized resource allocation, and improved accessibility. 

Challenges exist regarding data quality, privacy, bias, and job disruption. However, machine learning is 

expected to become an integral tool for data-driven, personalized, and sustainable tourism. Overall, this review 

paper aims to synthesize the state of machine learning in tourism by highlighting current applications, 

opportunities, considerations, and likely future trends. The conclusions point to machine learning as a catalyst 

for innovation in tourism that may significantly transform the visitor experience, business operations, and 

destination management in the years to come. 
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1. Introduction 

Machine Learning (ML) has indeed become a pervasive technology that influences numerous aspects of our 

lives. It has transformed various industries and become essential in many applications and services. ML algorithms 

and models power voice assistants like Siri, Cortana, Bixby, and Alexa, enabling them to understand and respond 

to user commands and queries. These assistants utilize techniques including speech recognition and natural 

language processing to provide users with the desired information and assistance. Chatbots are another area where 

ML plays a crucial role. They employ ML algorithms to understand and interpret user inputs, enabling them to 

engage in human-like conversations and provide relevant responses. Chatbots are used in customer service, e-

commerce, and various other domains to enhance user experiences and streamline interactions. Personalized 

marketing heavily relies on ML techniques to analyze user data, preferences, and behavior patterns. This enables 

businesses to target specific customer segments with tailored recommendations, advertisements, and promotions, 

improving the effectiveness of marketing campaigns. ML is instrumental in predicting customer behavior and 

trends. By analyzing large volumes of data, ML models can identify patterns, correlations, and insights that help 

businesses understand and anticipate customer needs, preferences, and purchasing decisions. This information 

can be leveraged to optimize business strategies and improve customer satisfaction. ML also plays a crucial role 

in optimizing processes and improving efficiency in various domains. From supply chain management to logistics, 

ML algorithms can analyze large datasets, identify patterns, and make predictions, enabling businesses to make 

data-driven decisions and streamline operations [1-6]  

In the realm of tourism, ML plays a crucial role in enhancing various aspects of the industry. ML algorithms 

are utilized to analyze vast amounts of data and extract valuable insights that contribute to improving the overall 

travel experience for individuals. One significant application of ML in tourism is personalized recommendation 

systems. By leveraging ML models, travel platforms can analyze user preferences, historical data, and behavior 

patterns to provide tailored recommendations for destinations, accommodations, activities, and attractions. This 

enables travelers to receive suggestions that align with their interests, making their trip planning more efficient 

and enjoyable. ML is also instrumental in optimizing pricing and revenue management in the tourism sector. ML 
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algorithms can analyze market trends, historical booking data, and competitor pricing to predict demand patterns 

and dynamically adjust prices for flights, hotels, and other travel services. This helps businesses maximize their 

revenue by offering competitive prices while accounting for factors such as seasonality, demand fluctuations, and 

customer preferences. Furthermore, ML techniques are employed in enhancing travel safety and security. ML 

models can analyze historical data on travel patterns, weather conditions, and security incidents to identify 

potential risks and anomalies. This allows authorities and travel agencies to implement proactive measures and 

develop efficient risk management strategies to ensure the safety of travelers. ML also contributes to improving 

customer service in the tourism industry. Chatbots powered by ML algorithms can provide instant responses to 

customer queries, offering personalized assistance and support throughout the travel journey. These chatbots can 

understand natural language, recognize customer preferences, and provide relevant information, thereby 

enhancing customer satisfaction and engagement. Additionally, ML is utilized in sentiment analysis of customer 

reviews and social media data related to travel experiences. By analyzing textual data and user-generated content, 

ML algorithms can identify positive and negative sentiments, helping tourism businesses understand customer 

feedback and sentiment trends. This enables companies to make data-driven decisions to enhance their offerings 

and address any areas of concern, ultimately improving customer experiences. Taking everything into account, 

machine learning plays a significant role in the tourism industry, enabling personalized recommendations, 

optimizing pricing, enhancing safety and security measures, improving customer service, and analyzing customer 

sentiment. As ML continues to advance, it holds the potential to revolutionize the way we explore and enjoy the 

world, making travel experiences more tailored, efficient, and enjoyable for everyone [1-16]. 

Artificial intelligence (AI), big data, and ML are often mentioned together, particularly in the context of "smart 

tourism" and "smart destinations." The concept of "smartness" in tourism involves integrating various information 

and communication technologies (ICTs) into the physical infrastructure, optimizing travel experiences through 

personalization and real-time analysis, and building a business ecosystem geared towards smartness. Big data 

plays a crucial role in this context, as it encompasses different types of data, such as transactional data, user-

generated content, sensor data, and more. Analyzing and processing this data using ML techniques can provide 

valuable insights and enable smarter decision-making in the tourism industry. In summary, ML allows computers 

to learn from data and experience, identifying patterns and making predictions without explicit programming. It 

involves working with datasets, features, and models, where the trained model can be used to make predictions 

on new data. In the context of smart tourism, ML and big data play significant roles in optimizing travel 

experiences and enabling data-driven decision-making [1-21] 

In conclusion, the integration of ML into the tourism industry has ushered in a new era of personalized and 

data-driven travel experiences. This review article explores the diverse applications of ML in tourism, highlighting 

its role in personalized recommendations, pricing optimization, travel safety, customer service, and sentiment 

analysis. By harnessing the power of ML algorithms, travel businesses can leverage big data to provide tailored 

suggestions, optimize pricing strategies, ensure traveler safety, enhance customer service through chatbots, and 

gain valuable insights from customer sentiment analysis. As ML continues to evolve, it is poised to revolutionize 

the way we explore the world, making travel more efficient, enjoyable, and customized to individual preferences. 

This article aims to shed light on the transformative potential of ML in the tourism industry and provide a 

comprehensive overview of its applications and benefits.  

This study presents a detailed overview of the correlation between two fields namely tourism and machine 

learning to emphasize the demand in the applications of ML approaches within the tourism science. This study 

also utilizes a systematic search technique by using Web of Science (WoS), Google Scholar, and Scopus databases 

to determine the publications in the existing literature. Furthermore, this study highlights the pros and cons of 

using Google Scholar, Web of Science, and Scopus. While Google Scholar's expansive coverage and user-friendly 

interface are acknowledged, limitations such as potential inaccuracies in citation counts and the lack of advanced 

tools are also noted. Web of Science and Scopus, on the other hand, are recognized for their selective coverage 

and more precise citation-matching methodologies. The importance of selecting appropriate journals for 

publication is also outlined. The analysis of citations from both machine learning and tourism journals underscores 

the interdisciplinary nature of the research, with potential implications for a broader audience. Additionally, the 

study also delves into the significance of authors in shaping the credibility and validity of research. Authors with 

expertise in both machine learning and tourism are identified as crucial contributors to impactful interdisciplinary 

work. Their ability to bridge the gap between distinct research communities, coupled with established networks, 

enhances the visibility and influence of their work. In conclusion, this study provides a myriad of the exploration 

and the landscape where tourism and machine learning intersect. It not only provides insights into the current state 

of research but also offers valuable guidance for researchers, emphasizing the importance of interdisciplinary 

collaboration, careful journal selection, and the role of authors in driving impactful research. 
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2. Published Articles 

The analysis of publications related to tourism and machine learning indicates a growing interest in applying 

ML approaches to various tasks within the tourism domain. A search query combining "Tourism" and "Machine 

Learning" in keywords resulted in 199 papers in the database of Web of Science for the years 2005 to 2023 [1-

200]. Other search queries combining “Tourism” and “Machine Learning” in article titles depicted 42 papers in 

Web of Science from 2016 to 2023. Then, the Google Scholar database is searched along with title words and 

keywords separately. 125 paper titled “Machine learning” and “Tourism” is founded in terms of citations of 898, 

h-index of 14, and g-index of 28. The search query with keywords including machine learning, and tourism is 

found out as 980 with 25232 citations. The statistical analysis of this search query depicts h-index of 79 and g-

index of 145. On the other hand, the published papers titled machine learning and tourism are counted as 64 while 

the papers with keywords including machine learning and tourism are indicated at 200 via the database of 

SCOPUS. The most cited paper related to machine learning and tourism searched along with the title is observed 

by Nilashi et.al titled “A recommender system for tourism industry using cluster ensemble and prediction machine 

learning techniques” [37]. 144 published article cites this study. Following, another study by Go et.al. titled 

“Machine learning of robots in tourism and hospitality: interactive technology acceptance model (iTAM) – cutting 

edge” is among the most cited paper and was published in 2020 [194]. In a short year, the number of citations for 

this study reached up to 97, The citation results emphasize the importance of the machine learning application in 

the tourism field. Another most cited paper is proposed by Xie et. al.in 2021 titled “Forecasting Chinese cruise 

tourism demand with big data: An optimized machine learning approach” along with the number of 83 citations 

[181]. Another research query utilized by Scopus for titles along with machine learning, and tourism counted on 

the number of papers as 64. The citations of the overall papers are obtained as 443. The analysis by Scopus depicts 

the h-index and g-index as 9 and 20, respectively. The most cited paper again is determined as “A recommender 

system for tourism industry using cluster ensemble and prediction machine learning techniques” titled study by 

Nilashi et.al. along with the number of 100 citations. Then, the second most cited paper observed “Machine 

learning of robots in tourism and hospitality: interactive technology acceptance model (iTAM) – cutting edge” 

titled study by Go et.al. as found in Google Scholar. However, the number of citations observed by Scopus is 

attained as 59. Figure 1 provides the increment of ML methods in tourism research. The illustrations depict the 

increasement occurs particularly from 2018 onwards.  

 

 
a) 

 
b) 

Figure 1. Published articles with search queries in titles through a) Google Scholar, b) Scopus 
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The above results outline that Google Scholar has some advantages and disadvantageous over WoS and 

Scopus. To sum up these advantages, Google Scholar has a much larger coverage of academic publications 

compared to WoS and Scopus. It includes most peer-reviewed journals, conference papers, preprints, theses, 

books, and other scholarly literature. WoS and Scopus have a more selective coverage focused on high-impact 

journals. Google Scholar has a broader range of languages and includes publications in languages other than 

English. WoS and Scopus primarily focus on English-language journals and publications. Google Scholar is freely 

available to anyone. WoS and Scopus are subscription-based databases, so access depends on university or library 

subscriptions. Google Scholar offers a simple but powerful search interface. Searches in WoS and Scopus may 

require more advanced skills and knowledge to effectively filter and refine results. Like WoS and Scopus, Google 

Scholar indexes citation data and shows how many times each publication has been cited. This allows you to track 

the impact and influence of publications. However, the quality and credibility of sources in Google Scholar can 

vary. WoS and Scopus have more standardized selection criteria and primarily index reputable, peer-reviewed 

publications. Google Scholar can contain duplicate records for the same publication. WoS and Scopus have more 

accurate matching algorithms to avoid duplicates. Citation counts in Google Scholar may include some erroneous 

citations. WoS and Scopus have more precise citation-matching methodologies. The simple interface of Google 

Scholar lacks some of the advanced tools and filters available in the WoS and Scopus interfaces. These tools may 

be useful for more in-depth research and analysis. In summary, Google Scholar is a useful, free discovery tool for 

researchers thanks to its broad coverage, easy search, and citation tools. For most researchers, using Google 

Scholar in combination with other databases is a good research strategy. Then, the number of citations about the 

titled article with machine learning and tourism is outlined in Figure 2. Therefore, in this study, the primary tool 

selected was Google Scholar to find the most cited papers in the literature. The citation results indicate the 

importance of this topic. 

 

 
a) 

 
b) 

Figure 2. Number of citations along with the machine learning and tourism with respect to the years from 2012 to 2023. 
 

Some journals specifically focus on machine learning, some on tourism and hospitality, and some are 

interdisciplinary. Choosing a journal, which is most closely related to your topic, exposes any article to the most 

relevant readers and researchers. Additionally, by selecting a suitable publisher, the potential impact of any work 
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might be increased by this method. On the other hand, the journal you select will determine to a large extent the 

potential impact and circulation of your research. High-impact journals are more widely read and cited. Journal 

metrics like the CiteScore or Impact Factor should be considered when assessing the reach of the journal. The 

prestige and reputation of the journal convey prestige on your own work. Being published in a leading journal in 

your field is a mark of top-quality research and can open up further networking and collaboration opportunities. 

Hence, carefully evaluating potential journals and selecting one that will maximize the reach and impact of your 

work is an important part of the publication process. For interdisciplinary research, finding a journal that balances 

both fields of study and has expertise in reviewing such work should be a top priority. The rewards of getting 

published in the right journal can be significant for your career and the influence of your research. That’s why, 

the related journals, conference papers, preprints, theses, books, and other scholarly literature are investigated 

through SCOPUS and Google Scholar databases. Table 1 and Table 2 depict the journals, conference papers, 

preprints, and books, where the studies related to machine learning and tourism have been published up to now, 

along with Scopus and Google Scholar, respectively. 
 

Table 1. The journals, conference papers, preprints, and books based on SCOPUS 

16th International Middle Eastern Simulation and Modelling Conference 2020, MESM 2020 

2016 IEEE/ACIS 15th International Conference on Computer and Information Science, ICIS 2016 - Proceedings 

2018 International Conference on Advances in Big Data, Computing and Data Communication Systems, icABCD 2018 

2021 IEEE International Conference on Computing, ICOCO 2021 

2022 IEEE International Conference on Electrical Engineering, Big Data and Algorithms, EEBDA 2022 

2022 International Conference on Computers and Artificial Intelligence Technologies, CAIT 2022 

2022 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing, COM-IT-CON 2022 

ACM International Conference Proceeding Series 

Acta Astronautica 

Acta Geographica  

Advances in Intelligent Systems and Computing 

African Journal of Hospitality, Tourism and Leisure 

Annals of Tourism Research 

Applied Economics Letters 

Asian Journal of Information Technology 

CEUR Workshop Proceedings 

Computational and Mathematical Methods in Medicine 

Computers and Industrial Engineering 

Current Issues in Tourism 

Electronics  

Environment, Development and Sustainability 

Eurasip Journal on Wireless Communications and Networking 

European Journal of Innovation Management 

Frontiers in Psychology 

Handbook of Research on Big Data Clustering and Machine Learning 

Heliyon 

InCIT 2020 - 5th International Conference on Information Technology 

Informatics 

Intellectual Economics 

International Journal of Advanced Computer Science and Applications 

International Journal of Technology Marketing 

International Transactions on Electrical Energy Systems 

Journal of Theoretical and Applied Information Technology 

Journal of Tourism and Development 

Journal of Tourism, Heritage and Services Marketing 

Journal of Travel Research 

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 

Lecture Notes in Electrical Engineering 

Lecture Notes in Networks and Systems 

Machine Learning: Advances in Research and Applications 

Materials Today: Proceedings 

Microprocessors and Microsystems 

Mobile Information Systems 

Proceedings - 2021 4th International Conference on Computational Intelligence and Communication Technologies, CCICT 2021 

Proceedings - 2021 IEEE 23rd Conference on Business Informatics, CBI 2021 - Main Papers 

Proceedings - 2022 4th International Workshop on Artificial Intelligence and Education, WAIE 2022 

Proceedings of 2021 13th International Conference on Information and Communication Technology and System, ICTS 2021 

Research Anthology on Machine Learning Techniques, Methods, and Applications 
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Revista de Economia Aplicada 

Scientific Programming 

Soft Computing 

Stats 

Studies in Computational Intelligence 

Tourism Economics 

Tourism Management 

Tourism Management Perspectives 

Tourism Review 

 
 

Table 2. The journals, conference papers, preprints, and books based on Google Scholar 

2016 IEEE Eight International Conference on Advanced Computing 

2016 IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS) 

2018 International Conference on Advances in Big Data, Computing and Data Communication Systems (icABCD) 

2020 - 5th International Conference on Information Technology (InCIT) 

2020 CEUR Workshop Proceedings  

2021 13th International Conference on Information and Communication Technology and System (ICTS) 

2021 Fourth International Conference on Computational Intelligence and Communication Technologies (CCICT) 

2021 IEEE 23rd Conference on Business Informatics (CBI) 

2022 International Conference on Computers and Artificial Intelligence Technologies (CAIT) 

7th International Conference, LOD 2021 

Acta Astronautica 

Acta Geographica Sinica 

African Journal of Hospitality, Tourism and Leisure 

Annals of the University Dunarea de Jos of Galati: Fascicle: I, Economics and Applied Informatics 

Annals of Tourism Research 

Applied Data Science in Tourism 

Applied Economics Letters 

Asian Journal of Information Technology 

Asia-Pacific Journal of Management and Technology  

Balkan Journal of Electrical and Computer Engineering 

Computational and Mathematical Methods in Medicine 

Computer and Digital Engineering 

Computers and Industrial Engineering 

Current Issues in Tourism 

Design of Intelligent Applications using Machine Learning and Deep Learning Techniques 

ECONVN 2021: Prediction and Causality in Econometrics and Related Topics 

Electronics 

Environment, Development and Sustainability 

EURASIP Journal on Wireless Communications and Networking 

Frontiers in Psychology 

Handbook of Research on Big Data Clustering and Machine Learning 

Health and Technology 

Heliyon 

Hochschule für nachhaltige Entwicklung Eberswalde 

ICGST International Journal on Artificial Intelligence and Machine Learning 

IEICE Technical Report 

IFC-Bank Indonesia Satellite Seminar on “Big Data” at the ISI Regional Statistics Conference 2017 

IJRAR- International Journal of Research and Analytical Reviews 

i-Manager's Journal on Computer Science 

Informatics 

Information Science and Applications 2017 

ICISA 2017 

INT BUSINESS INFORMATION MANAGEMENT ASSOC-IBIMA 

Intelektinė ekonomika 

International Conference on Advanced Computing and Intelligent Engineering, ICACIE, 2016 

International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon) 

International Journal of Advanced Trends in Computer Science and Engineering 

International Journal of Computer Applications 

International Journal of Contemporary Hospitability Management 

International Journal of Engineering Applied Sciences and Technology 

International Journal of Technology Marketing 

International Transactions on Electrical Energy Systems 

Information Technology and Tourism 

https://ejournal.lincolnrpl.org/index.php/ajmt/issue/view/7
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IOSR Journal of Computer Engineering (IOSR-JCE) 

ISWC (Posters and Demos)  

Journal of Artificial Intelligence, Machine Learning and Neural Network (JAIMLNN) 

Journal of Destination Marketing and Management 

Journal of Engineering and Sciences 

Journal of Theoretical and Applied Information Technology 

Journal of Tourism 

Journal of Travel Research 

Marketing 

Materials Today: Proceedings 

MIBES Transactions 

MLMI '20: Proceedings of the 2020 3rd International Conference on Machine Learning and Machine Intelligence 

Mobile Information Systems 

Network (Mbps) 

PRAJNAN 

Proceedings of International Conference on Recent Trends in Computing 

Research Square  

Scientific Programming 

Soft Computing 

Sosyoekonomi 

SSRN 

Stats 

Tourism Analytics Before and After COVID-19 

Case Studies from Asia and Europe 

Tourism Economics 

Tourism Management 

Tourism Management Perspectives 

Tourism review 

Women's voices in tourism research 

XIII Congreso Internacional Turismo y Tecnologías de la Información y las Comunicaciones  

 

Citations from both machine learning and tourism journals, as well as interdisciplinary publications, show that 

your work is influencing and advancing an interdisciplinary research area. This is more meaningful than the 

impact on just one discipline. Citations should be tracked from diverse sources. By being cited in both machine 

learning venues and tourism venues, your work is exposed to a much larger combined audience from both fields. 

This amplifies the visibility and potential influence of your research. You have the opportunity to connect both 

with machine learning experts and tourism experts, which could lead to interesting interdisciplinary collaborations 

generating innovative new ideas. Effective interdisciplinary work requires researchers from distinct fields to come 

together. An influential interdisciplinary publication that accumulates many citations can help to define the scope, 

boundaries, and topics of an emerging combined research domain, like "machine learning in tourism". Your work 

may be pivotal in shaping how this domain develops.  Citations from different fields may point to unique 

limitations or open questions raised by each group of readers. This points to possible new research directions to 

explore in order to bridge machine learning and tourism more effectively. Addressing issues from multiple angles 

will result in more robust, comprehensive work. If cited by researchers focused on applied work, or in industry 

publications, your theoretical research may be influencing real-world practice. This demonstrates the usefulness 

and potential for the real-world impact of interdisciplinary work. That’s, interdisciplinary research requires 

reaching, influencing and connecting distinct communities. An article that combines machine learning and tourism 

through accumulating a diversity of citations across fields will achieve this most effectively. Such influence 

shapes the growth of this interdisciplinary domain in a way that benefits both theory and practice. Citations point 

to issues to address across boundaries and possibilities for ground-breaking collaborative work. Table 3 and Table 

4 outline the articles with the most citations obtained by SCOPUS and Google Scholar, respectively. 

 
Table 3. The most cited studies related to machine learning and tourism obtained by SCOPUS 

Ref. Cites Title Year 

37 144 A recommender system for tourism industry using cluster ensemble and prediction machine learning techniques 2017 

194 97 
Machine learning of robots in tourism and hospitality: interactive technology acceptance model (iTAM)–cutting 

edge 
2020 

181 83 Forecasting Chinese cruise tourism demand with big data: An optimized machine learning approach 2021 

19 49 Combination forecasts of tourism demand with machine learning models 2016 

201 47 
Developing tourism demand forecasting models using machine learning techniques with trend, seasonal, and cyclic 

components 
2015 
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50 42 
Multi-objective hub-spoke network design of perishable tourism products using combination machine learning and 

meta-heuristic algorithms 
2022 

136 31 Machine learning in internet search query selection for tourism forecasting 2021 

193 30 
Exploring China's 5A global geoparks through online tourism reviews: A mining model based on machine learning 

approach 
2021 

153 28 
Modelling tourism demand to Spain with machine learning techniques. The impact of forecast horizon on model 

selection 
2018 

46 24 A human-guided machine learning approach for 5G smart tourism IoT 2020 

202 22 Tourism demand forecasting using machine learning methods 2008 

203 16 Machine Learning in Tourism: A Brief Overview: Generation of Knowledge from Experience 2022 

173 14 International tourism demand forecasting with machine learning models: The power of the number of lagged inputs 2022 

204 14 Twitter data sentiment analysis of tourism in Thailand during the COVID-19 pandemic using machine learning 2022 

205 14 Structural review of relics tourism by text mining and machine learning 2022 

42 14 
Proposing a systematic approach for integrating traditional research methods into machine learning in text analytics 

in tourism and hospitality 
2021 

206 13 Machine learning in tourism 2020 

207 11 Performance of raspberry pi micro clusters for edge machine learning in tourism 2019 

208 10 Tourism recommendation using machine learning approach 2018 

209 10 Machine learning methods in tourism demand forecasting: Some evidence from Greece 2017 

210 10 A machine learning approach to named entity recognition for the travel and tourism domain 2016 

211 10 
Regional tourism demand forecasting with machine learning models: Gaussian process regression vs. neural 

network models in a multiple-input multiple-output setting 
2017 

 

 
Table 4. The most cited studies related to machine learning and tourism obtained by Google Scholar 

Ref. Cites Title Year 

212 881 Smart tourism destinations enhancing tourism experience through personalisation of services 2015 

54 855 Sentiment classification of online reviews to travel destinations by supervised machine learning approaches 2009 

213 741 Ontology matching: A machine learning approach 2004 

175 727 
A comparative analysis of major online review platforms: Implications for social media analytics in hospitality 

and tourism 
2017 

214 651 Hospitality and tourism online reviews: Recent trends and future directions 2015 

215 646 
Technology in tourism-from information communication technologies to e-Tourism and smart tourism towards 

ambient intelligence tourism: a perspective article 
2020 

216 544 Ontology learning and its application to automated terminology translation 2003 

217 545 Technological disruptions in services: lessons from tourism and hospitality 2019 

218 524 Real-time co-creation and nowness service: lessons from tourism and hospitality 2019 

133 494 Sentiment analysis in tourism: capitalizing on big data 2019 

219 477 Support vector regression with genetic algorithms in forecasting tourism demand 2007 

220 441 
User-generated content as a research mode in tourism and hospitality applications: Topics, methods, and 

software 
2015 

221 437 Tourism information technology 2019 

222 396 The good, the bad and the ugly on COVID-19 tourism recovery 2021 

223 391 Big data analytics for knowledge generation in tourism destinations–A case from Sweden 2014 

224 358 
A review of research into automation in tourism: Launching the Annals of Tourism Research Curated Collection 

on Artificial Intelligence and Robotics in Tourism 
2020 

225 343 Forecasting tourism demand with composite search index 2017 

226 323 Business intelligence and big data in hospitality and tourism: a systematic literature review 2018 

227 293 The digital revolution in the travel and tourism industry 2020 

228 275 Tourism demand forecasting: A deep learning approach 2019 

6 269 Forecasting tourist arrivals with machine learning and internet search index 2019 

229 262 New technologies in tourism: From multi-disciplinary to anti-disciplinary advances and trajectories 2018 

230 242 From digitization to the age of acceleration: On information technology and tourism 2018 

231 225 SPETA: Social pervasive e-Tourism advisor 2009 

 
Based on Table 3 and Table 4, the most cited papers are observed as [37] and [212] via SCOPUS and Google 

Scholar, respectively. The prior and derived works of [37] and [212] as given in Figure 3.  
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a) 

  
b) 

Figure 3. The derived and prior works of a) [37] and b) [212] 
 

By analyzing the published studies through Google Scholar and Scopus in terms of most citations, the first 

authors of the studies are determined as given in Table 5. The main reason is to determine these authors that the 

expertise of the authors defines the extended credibility and validity of the work. Authors with expertise in both 

machine learning and tourism will produce work grounded in knowledge and experience from both domains. They 

will have a deeper understanding of how methods and concepts from each field can be connected and integrated 

effectively. The authors will have access to separate networks in the machine learning and tourism research 

communities. This exposes the work to more researchers and provides more opportunities to stimulate interest 

and new collaborations across boundaries. Established authors with large networks will have an easier time 

bridging between fields. The reputation and recognition of the authors affect the initial and ongoing impact of the 

work. Well-known authors can draw more attention and citations to the article, helping to speed up its diffusion 

between research communities. Their reputation also lends more credibility to the work, making researchers from 

other fields more inclined to cite and build upon it. Authors familiar with both source domains are better equipped 

to frame and communicate their interdisciplinary work in a way that resonates with multiple audiences. They 

understand how to convey key machine learning concepts and methods to tourism researchers, and vice versa. 

This helps to overcome potential barriers when connecting disparate groups. Authors with expertise and 

connections in both machine learning and tourism are in an ideal position to continue conducting meaningful 

follow-up research that bridges these domains. They can further develop concepts and methods jointly in 

innovative ways. This results in a cohesive, progressive research stream rather than isolated publications. Authors 

linked to industry or applied research may be motivated to combine machine learning and tourism towards 

achieving a practical real-world goal. Their work will thus be aimed at solving concrete problems, rather than 

being purely theoretical. Applied authors can better assess where and how machine learning capabilities could 
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transform and improve tourism practices. As a result, authors’ interdisciplinarity, expertise, networks and 

motivations are all significant factors that determine the potential for connecting machine learning and tourism. 

While single authors may integrate these domains, teams that collectively span multiple communities are better 

equipped for sustained, high-impact interdisciplinary work. The backgrounds and goals of authors shape how, and 

how far, the integration between source fields progresses. 

 
Table 5. The first author of the studies with the most cited 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The increasing number of publications and the presence of ML research in tourism-focused journals suggest a 

growing recognition of the potential benefits that ML can bring to the tourism industry. ML methods can enable 

the processing and analysis of large datasets, extraction of meaningful features, and generation of personalized 

recommendations, among other tasks. The integration of ML in tourism research opens up new possibilities for 

understanding tourist behaviour, optimizing tourism experiences, and improving decision-making processes in 

the industry. Feature engineering and feature selection are crucial steps in ML as good features form the backbone 

of any ML model. The quality of the model relies on the quality of the data it was trained on, and using bad data 

can lead to significant errors. Therefore, it is important to select only those features that have a meaningful impact 

on the model's quality. After preparing the data and selecting features, the algorithm is trained using the training 

data. The data is typically divided into two parts as such training and testing sets, where t training section is 

applied to educate the algorithm, and the testing data is used to evaluate its performance. Unsupervised learning 

tasks do not require the separated data, therefore, do not involve cross-validation. As soon as the model is 

educated, it is evaluated. Depending on supervised technique, the efficacy of the algorithm can be assessed, 

providing insights for optimizing data processing and hyperparameters. ML systems include hyperparameters that 

can be adjusted to affect the algorithm's performance, and finding the best settings often involves an iterative 

process of data preparation, model fitting, hyperparameter tuning, and model evaluation. The validated model is 

then applied to real-world tasks, such as making predictions, and the results are interpreted and contextualized 

within the specific domain. 

Three main types of ML algorithms which are the kind of learning as such unsupervised, supervised, and 

reinforcement. Unsupervised learning is covered in detail in chapters on clustering and dimensionality reduction, 

while supervised learning is discussed in chapters on classification and regression. Reinforcement learning, 

although less relevant for tourism cases, is another type of ML algorithm. Additionally, natural language 

processing (NLP) is a specialized ML case, including algorithms for text classification, topic modelling, and 

sentiment analysis, among others. ML approaches can be classified based on the type of data and the availability 

of labels for the dependent variable. Supervised algorithms are used when labels are available for either continuous 

or discrete dependent variables, while unsupervised methods are applied when no labels are given. In addition to 

the traditional supervised, unsupervised, and reinforcement learning paradigms, several other ML paradigms have 

evolved in recent years. These include model-based learning, memory-based learning, and deep learning. Deep 

learning, particularly with neural networks, has played a significant role in the current ML renaissance. It 
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represents a distinct subfield within ML and has the ability to scale with large amounts of data, often yielding 

superior results compared to traditional approaches. However, it is important to note that neural networks are not 

always superior to classical ML approaches.  

The choice between deep learning and traditional ML methods depends on the specific problem and the 

available data. For a more comprehensive discussion on neural networks and deep learning, further literature such 

as Aggarwal [232] or Ekman [233] can provide detailed insights. Machine learning, as a subset of artificial 

intelligence, can be applied to various types of data in the tourism industry across different stages of a tourist's 

journey. In fact, there are ML techniques specifically designed for scenarios with limited data, such as transfer 

learning and few-shot learning. Transfer learning enables the knowledge gained from training on one dataset to 

be transferred and applied to a related task or domain with smaller amounts of data. Few-shot learning focuses on 

training models with minimal data instances by leveraging prior knowledge or by utilizing techniques like data 

augmentation. Even with smaller datasets, ML approaches can still uncover patterns and relationships within 

complex data. These patterns can then be utilized to make predictions and informed decisions. ML models can 

generalize from the available data to identify underlying patterns, which enables them to make predictions on 

new, unseen data points. In scientific research projects, where data collection might be limited or resource-

intensive, ML techniques can still be valuable. By employing ML algorithms, researchers can explore their data, 

identify patterns, and gain insights that may not be immediately apparent through traditional statistical analysis 

methods. ML can assist in automating the analysis process, saving time and effort, and enabling researchers to 

focus on interpreting the results and formulating hypotheses. In summary, while the availability of large datasets 

has undoubtedly expanded the possibilities and potential of ML, it is not a strict requirement for successful 

application. ML techniques can still yield valuable insights and predictions even with smaller datasets, making it 

a versatile tool for various domains, including scientific research. Commonly used data types in the literature as 

given in Table-6. As given in Table 6, a wealth of data types related to tourism exist for fuelling machine learning 

applications. When integrated and analysed collectively, these diverse data sources provide a multifaceted 

understanding of destination appeal, tourist behaviour, trends, patterns, experiences, needs, and opportunities for 

innovation. Machine learning is crucial for harnessing the potential of such data towards more personalized, 

seamless, and sustainable tourism development.  

 
Table 6. Key Data Types for Machine Learning and Tourism Applications 

Data Types Ref. Examples 

Online 

reviews 

[35,54,79,87,

90,92,98,129,

139,158,160,

169,192,214] 

Reviews from platforms like TripAdvisor, Yelp, Expedia, etc. provide valuable 

data for machine learning in tourism. Data includes review text, review 

sentiment, review ratings, and information about the reviewer and destination. 

This data is useful for applications like sentiment analysis, recommendation 

systems, extractive summarization, and predictive analytics. 

Images 

[39,60,71,80,

89,104,115,1

82,186,187] 

Images of tourist destinations, attractions, hotels, etc. from platforms like 

Instagram or posted with online reviews can be used for machine learning tasks 

such as image classification, object detection, visual semantic embedding, and 

automatic hashtag generation. These capabilities can enhance recommendation 

systems and social media analytics. 

Ratings [36] 

The ratings (especially 5-star ratings) that tourists provide on various review 

and booking platforms represent useful quantitative data for machine learning. 

Ratings can be analyzed for tasks such as ranking and benchmarking 

destinations or anticipating peak travel seasons. They provide an indicator of 

overall tourist satisfaction and experience. 

Search data [88] 

Search data from platforms like Google, Bing, Kayak, and Skyscanner contain 

valuable information about tourist interests, preferences, and intent. Analyzing 

search query terms, search frequencies, and other metadata through machine 

learning can uncover patterns to improve recommendation and personalization 

capabilities. Search data is useful for gaining broad market insights. 

Location 

data 
[197] 

The location data generated from tourists' mobile devices and wearables as they 

travel provides significant data for machine learning applications. Analyzing 

location data can reveal patterns related to how tourists navigate a destination, 

visit points of interest, choose hotels or dining locations, and more. This data 

fuels location-aware applications and context-based personalization. 

Demograph

ic data 
[2] 

Basic demographic information about tourists such as age, gender, country of 

origin, income level, family size, etc. represents useful data for machine 

learning in tourism. Analyzing how different segments of visitors interact with 

and experience a destination leads to models that provide tailored, targeted 

recommendations and personalization of services for specific demographic 

groups. 
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Transporta

tion data 

[149,185,196,

197,198] 

Data related to how tourists get around a destination, such as public transport 

usage, taxi services, walking or biking, vehicle rental or ownership, etc. gives 

insight into visitor flows and how infrastructure supports tourism. Machine 

learning analysis of transportation data aims to gain efficiencies, reduce 

environmental impact, and ensure high quality of experience regardless of 

transportation mode choice. 

 
ML can be described as a field of study that enables computers to learn from experience and data without being 

explicitly programmed. It involves the use of computational methods and algorithms that learn patterns and 

relationships from examples, with the goal of improving performance and making accurate predictions. In ML, 

datasets consist of examples that contain features, where each row represents an instance and each column 

represents a feature. Features are measurable pieces of data that are fed into an ML algorithm to help solve a 

problem or make predictions. By training an ML algorithm with the dataset, a model is created, which represents 

the learned patterns and knowledge derived from the data. For example, a random forest algorithm can be trained 

with training data to generate a random forest model. Once the model is trained, it can be used to make predictions 

on new, unseen data. This predictive model takes in new data and produces predictions or classifications based 

on the patterns and knowledge it has learned during the training process. 

Machine learning contributes a diverse range of techniques to gain insight from data, predict and optimize 

outcomes, personalize the customer experience and innovate services within tourism. The capabilities offered by 

machine learning can transform both strategic and operational aspects, with the potential for significant efficiency, 

sustainability and economic gains. Some key machine learning terms and techniques relevant to tourism as given 

in Table 7. 

 
Table 7. Machine Learning Techniques Used in Tourism Settings 

ML Techniques Reference The Purpose of Usage 

Sentiment 

analysis 

[1,9,10,22,35,54,69,93,107, 

113,133,134,161,187,204] 

Analyses the emotional tone of text data like online 

reviews to determine whether the sentiment is positive, 

negative or neutral. Useful for analyzing tourist 

satisfaction. 

Topic modelling [195] 

Identifies latent topics within unstructured text data. 

Can uncover trends and themes in tourism domains like 

reviews, news articles, blogs, etc. 

Classification 
[1,22,54,69,71,85,152] 

 

Assigns items to categories based on patterns in the data. 

Useful for tasks like segmenting visitors into market 

segments, classifying images, or filtering online 

reviews. 

Regression [24,55,157,211,219] 

Predicts a continuous numeric value based on input data. 

Can be used for tourism forecasting and prediction, e.g. 

predicting hotel revenue or numbers of visitors 

Clustering [73] 

Groups similar items together without pre-defined 

categories. Used for visitor segmentation and also 

identifying groups of interesting points-of-interest, 

dining venues, events, etc. 

Recommender 

systems 
[2,7,12,34,37,65] 

Provide personalized recommendations based on 

analysis of user profiles, interests and behaviors. Play an 

important role in personalization and destination 

promotion. 

Neural networks [11,47,117] 

Identify complex patterns in very large data sets. Used 

for tourism tasks such as advanced personalization, 

image recognition, forecasting and predictive 

modelling. Require huge amounts of data to be 

effective. 

Naïve Bayes [98, 235, 236] 

A probabilistic classifier based on Bayes' theorem that 

calculates the probability of an item belonging to a 

particular category. Despite its simplicity, effective for 

tasks like sentiment analysis, topic modelling and 

classification. 

Support Vector 

Machines (SVM) 
[1,77,117,219] 

Identify patterns that separate categories in the data. 

Effective at handling high-dimensional spaces and 

widely used for tasks such as text classification, 

forecasting, regression and anomaly detection within 

tourism. 

Contextual 

modelling 
[154, 234] 

Incorporates information about the surrounding context, 

situation or environment. Important for implementing 
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machine learning in complex, real-world applications. 

Could include incorporating knowledge about seasons, 

events, companion, location, time, etc. for tourism 

personalization. 

Decision trees [38,61,81,86] 

Create a flowchart-like model of decisions and their 

possible consequences. Useful for tourism applications 

such as optimizing marketing campaigns, transportation 

networks and staff scheduling. 

Computer Vision [68,105] 

Enables machine learning models to identify and 

analyse visual content like images or videos. 

Techniques include image classification, object 

detection, visual search and automated image tagging. 

Useful for applications such as analysing tourism photos 

to determine point of interest density or popularity. 

 

This covers some of the major machine learning techniques and terms that apply to tourism and 

hospitality. When integrated together, these diverse methods provide a powerful basis for building 

machine learning applications within the tourism industry 
 

3. Discussion 

Considering the article most cited and published along with the different databases namely SCOPUS, Web of 

Science, and Google Scholar, three of them are detailed to understand the trend of the machine learning application 

in tourism. Initially, [37] proposes a recommender system for the tourism industry using a combination of 

clustering and predictive modelling with machine learning. The system provides personalized recommendations 

for locations and activities to visitors based on their profiles and preferences. The recommender system has two 

main components: 

• Clustering: The cluster ensemble technique is used to group visitors into segments based on demographic 

attributes like age, gender, occupation and behavioural attributes like interests, preferred locations, and activities. 

The K-means, hierarchical, and DBSCAN clustering algorithms were used in the ensemble. Ensemble clustering 

aims to improve robustness and accuracy. 

• Predictive Modelling: Machine learning models including kNN, naive Bayes, decision trees, and random 

forests are trained on visitor profiles and location/activity preference data to make predictions for new visitors 

based on their cluster segment. The models provide a list of recommendations tailored to visitors in that cluster 

group. 

The paper evaluates the performance of the proposed recommender system using metrics like precision, recall, 

F-measure, and accuracy. Experimental results show the ensemble cluster model achieved superior performance 

over individual clustering algorithms and the predictive models enhanced recommendation accuracy compared to 

basic recommender techniques. The recommender system can provide more personalized and tailored suggestions 

to visitors in the tourism domain compared to generic or "one-size-fits-all" recommendations. Clustering visitors 

into meaningful segments allows for targeted recommendations based on shared attributes and preferences within 

each group. And machine learning predictive models can continue learning and improving over time as new data 

is collected. Limitations include the need for large amounts of data on visitor profiles, preferences, and behaviours 

to properly train the machine learning models. Data may be difficult and expensive to obtain from some tourism 

organizations. Scalability and computational complexity are also challenging as the volume of visitors and 

locations/activities increase. Future work could explore how to gain additional data to further enhance the models, 

alternative or hybrid machine learning techniques to improve accuracy and user satisfaction, and how to deploy 

the recommender system in a way that is customized and valuable for individual tourism destinations and 

businesses. 

[194] proposes an interactive technology acceptance model (iTAM) to explain how factors related to human-

robot interaction and machine learning influence the adoption of service robots in the tourism and hospitality 

industry. The iTAM builds upon the original technology acceptance model (TAM) that focuses on perceived 

usefulness and ease of use. The interactive technology acceptance model (iTAM) includes 3 additional 

components: 

• Interactivity: The ability of robots to engage in meaningful, responsive, and active social interactions with 

people. Interactivity contributes to perceived social presence, parasocial relationships, and enjoyment.   

• Adaptability: How robots can learn, improve, and modify their knowledge and skills through machine 

learning based on new data and interactions. Adaptability enhances perceived intelligence, customization, and 

usefulness. 
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• Anthropomorphism: Giving human-like qualities and attributes to robots through their design and 

interactivity. Anthropomorphism positively impacts perceived enjoyment, social presence, and parasocial 

relationships with robots. 

These 3 components, along with perceived usefulness and ease of use from the original TAM, influence 

people's attitudes toward service robots and their willingness to adopt and engage with them. Positive attitudes 

and experiences then also further contribute to machine learning as new data is collected to improve the robots. 

The paper proposes and evaluates a survey instrument to measure the iTAM components and model. Data was 

collected from over 500 survey respondents on their perspectives related to robot service in tourism and hospitality 

contexts like hotels, airports, and restaurants. Structural equation modelling validated the proposed interactive 

technology acceptance model and the relationships between its key factors. The iTAM provides a novel 

framework for understanding how machine learning-enabled social robots can be designed and improved to 

maximize acceptance, adoption, and continued use in service environments. A robot's ability to meaningfully 

interact, adapt to users, and exhibit human-like qualities are key to its success. Applying the iTAM could help 

researchers and practitioners develop robots that not only have practical, task-oriented benefits but also social and 

experiential value. Limitations include the need for empirical research with actual long-term human-robot 

interactions to supplement survey findings. The complexity of real-world service contexts may also challenge the 

implementation of social robots and machine learning in some situations. Privacy and ethical concerns related to 

data collection and use are additional considerations. Continued progress in natural language processing, computer 

vision, and other areas of artificial intelligence would further enhance interactive, learning-based robot services. 

[181] aims to forecast demand for cruise tourism in China using an optimized machine learning approach with 

big data. Cruise tourism is a fast-growing sector, but there is limited research on methods for forecasting emerging 

cruise markets like China. The study obtains online search query data related to cruise tourism as a proxy for 

public interest and potential demand. The data consists of weekly search volumes for 120 keywords on the Baidu 

search engine from 2005 to 2017. The large dataset qualifies as "big data" due to its high volume, velocity, and 

variety. An optimized machine learning model is proposed that combines feature selection, hyperparameter 

tuning, and ensemble learning techniques to maximize forecast accuracy: 

• Feature selection using Random Forest importance scores reduced the 120 keywords to the 30 most 

relevant for predicting cruise demand. This simplifies the model and reduces noise. 

• Hyperparameter tuning using Random Search optimized settings for the XGBoost (eXtreme Gradient 

Boosting) algorithm. XGBoost is a highly effective tree ensemble method suitable for large datasets. Optimization 

helps maximize the power of the model. 

• Ensemble learning combines forecasts from XGBoost, Random Forest, and Holt-Winters exponential 

smoothing to balance machine learning and statistical methods. The ensemble approach aims to improve 

robustness and accuracy.  

The model is evaluated using root mean square error (RMSE), mean absolute error (MAE), mean absolute 

percentage error (MAPE), and R-squared for different forecast horizons up to 12 weeks ahead. Results show the 

optimized machine learning model achieved significantly better accuracy than any single approach alone and, 

especially, compared to the basic trend forecast. The study demonstrates the potential of using big data and 

sophisticated machine learning techniques for forecasting in complex domains like tourism where traditional 

statistical methods may be limited. Cruise tourism appears strongly affected by search and digital trends, so online 

behaviour can tap into public interest before demand is realized. However, online factors alone may not capture 

all drivers of emerging cruise demand, especially long-term impacts. Integrating additional variables related to 

the economy, demographics, and tourism infrastructure with web data could further enhance forecasting 

performance. Practically, forecasts of cruise tourism demand could help strategic decision-making related to 

marketing, investment, operations, and management in the cruise industry. More accurate predictions enable 

stronger preauction and preparation to optimize opportunities related to changes in demand. But policymakers 

and businesses should also consider that machine learning models may reflect and even amplify biases or 

inequities in the data. So professional judgment still plays an important role in utilizing AI-enabled forecasts.  

All 3 papers [37,181,194] apply machine learning to address key opportunities and challenges related to 

personalization, acceptance of emerging technologies, and forecasting in the tourism domain. Clustering, 

predictive modelling, robotics, and big data analytics are promising for industry progress but require consideration 

of limitations involving data quality, customization, complexity, and human judgment. A mix of methods may 

maximize benefits. Survey and performance metrics provide initial evaluation but longitudinal, real-world studies 

most insightful. Progress in neural networks, computer vision, NLP and other AI could greatly enhance techniques 

while raising additional concerns related to bias or job disruption that researchers are beginning to explore. 
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The paper of [212] focuses on an important trend: smart tourism and personalization and proposes a conceptual 

framework for smart destinations that can enhance the tourism experience. This paper covers a very broad, 

comprehensive scope at a destination level. However, it has some pros, which lack technical depth or empirical 

evaluation as it takes a more conceptual approach. In [54], machine learning methods (naive Bayes, SVM, neural 

network) are applied to a tourism-related problem (analysing online reviews), and the performance of different 

ML techniques is empirically evaluated and compared for the task. This paper could have useful industry 

applications for review analysis and customer insight. On the other hand, this paper only analyses reviews for 

tourist destinations in China, limiting wider insight. In [213], a machine learning-based method is proposed for 

ontology matching that could apply to the tourism domain. The method and approach in significant technical 

depth are explained. The performance against other existing methods is evaluated for demonstrating good results. 

However, this study is not tourism-specific and lacks a tourism example application, very theoretically and 

technically complex. Therefore, it may lack accessibility for some readers and the scope is narrow focusing on 

just one ML task and method. In summary, the articles take quite different approaches. The first takes a broad 

conceptual scope but lacks technical depth. The second applies ML to a specific tourism task but has a narrow 

empirical focus. The third proposes an ML method at a high technical level but lacks a tourism grounding. So, 

there are trade-offs in terms of scope, application, accessibility and technical proficiency. The articles could be 

combined by, for example, applying and evaluating the method from the third article on the review analysis task 

from the second article, set within the smart destination context of the first. This could result in an article with 

significant scope, technical merit, empirical evidence, and tourism relevance. The diverse citations of these 

articles, then, point to the potential and need for this type of integrated, in-depth work. 

4. Near Future Aspects 

Depending on the seminal research in this review paper, A myriad of key gaps and limitations in current 

machine learning applications for tourism is included as follows: 

 Lack of large datasets: Many machine learning techniques require huge amounts of data to be effective, 

especially deep learning methods. Limited availability of large, multidimensional tourism datasets 

constraints model performance. More open data sharing between industry stakeholders and further 

integration of diverse data sources could help address this. 

 Narrow focus: Most studies apply machine learning to a single data type (e.g. online reviews) or for one 

specific task (e.g. sentiment analysis). A more holistic approach that combines multiple data sources and 

machine learning techniques is needed. This could provide a broader, multifaceted understanding of 

tourists and tourism systems.  

 Theoretical rather than practical: The majority of studies propose a methodological framework or 

evaluate machine learning techniques on a tourism dataset. There is a lack of real-world implementations 

and analysis of business metrics to demonstrate practical value. More collaboration with industry is 

required.  

 Static rather than dynamic: Machine learning models are often built on static snapshots of data. There 

is little work on developing models able to adapt in real time based on continuous data streams. This 

limits the ability to detect and respond to sudden changes or events. Online learning and continuous model 

evaluation techniques could be explored. 

 Limited personalization: While significant research exists on recommendation systems, machine 

learning is limitedly applied to gain a deep, multifaceted understanding of tourists that could enable truly 

personalized experiences across platforms and vendors. Integrating diverse data types and testing in real 

usage contexts may progress this capability. 

 Reactively rather than proactively: Machine learning in tourism largely aims to analyse what has 

already occurred to gain insights and make predictions. Techniques have not been widely explored to 

anticipate tourists' future needs and desires before they are explicitly expressed. Proactive personalization 

will rely on gaining a deeper understanding of individuals.   

 Lack of transparency: Many of the most advanced machine learning techniques (especially deep 

learning) act as "black boxes" - their inner workings are opaque. This lack of explainability is problematic 

when inaccurate or potentially biased predictions have a real impact on people. Approaches are needed 

to increase transparency and enable the auditing of machine learning systems. 

 Ethical issues: The collection and use of tourist data by private companies raise ethical concerns related 

to privacy, consent and data ownership. There is a lack of consistent guidelines for the ethical use of 
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machine learning and resulting applications within the tourism industry. Frameworks for addressing 

ethical risks are required to gain trust and encourage adoption. 

 

To conclude, gaps exist in data, scope, real-world integration, dynamic modelling, personalization, proactivity, 

transparency and ethics for machine learning in tourism. A more holistic, multifaceted approach that addresses 

both opportunities and risks will be needed to fulfil the potential benefits of moving to AI and data-driven tourism. 

Overall, greater collaboration between researchers and industry will be key. 
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