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Abstract

In this paper, we have considered normal paracontact metric space forms admitting almost η−Ricci solitons in some curvature tensors. Ricci
pseudosymmetry concepts of normal paracontact metric space forms admitting η−Ricci soliton have introduced according to the choosing
of some special curvature tensors such as Riemann, concircular, projective and W1 curvature tensor. After then, according to the choice
of the curvature tensors, necessary conditions are given for normal paracontact metric space form admitting η−Ricci soliton to be Ricci
semisymmetric. Then some characterizations are obtained and some classifications have made under the some conditions.
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1. Introduction

The study of paracontact geometry was initiated by Kenayuki and Williams [1]. Zamkovoy studied paracontact metric manifolds and their
subclasses [2]. Recently, Welyczko studied curvature and torsion of Frenet Legendre curves in 3-dimensional normal paracontact metric
manifolds [3],[4]. Recently, contact metric manifolds and their curvature properties have been studied by many authors in [5],[6],[7].
The notion of Ricci flow was introduced by Hamilton in 1982. With the help of this concept, Hamilton found the canonical metric on a
smooth manifold. Then Ricci flow has become a powerful tool for the study of Riemannianian manifolds, especially for those manifolds with
positive curvature. Perelman used Ricci flow and it surgery to prove Poncare conjecture in [8],[9]. The Ricci flow is an flow is an evolution
equation for metrics on a Riemannianian manifold defined as follows:

∂

∂ t
g(t) =−2S (g(t)) .

A Ricci soliton emerges as the limit of the solitons of the Ricci flow. A solution to the Ricci flow is called Ricci soliton if it moves only by a
one parameter group of diffeomorphism and scaling.
During the last two decades, the geometry of Ricci solitons has been the focus of attention of many mathematicians. In particular, it has
become more important after Perelman applied Ricci solitons to solve the long standing Poincare conjecture posed in 1904. In [10], Sharma
studied the Ricci solitons in contact geometry. Thereafter, Ricci solitons in contact metric manifolds have been studied by various authors
such as Bagewadi et al. in [11, 12, 13, 14], Bejan and Crasmareanu in [15], Blaga in [16], Chandra et al. in [17], Chen and Deshmukh in
[18], Deshmukh et al. in [19], He and Zhu in [20], Atçeken et al. in [21], Nagaraja and Premalatta in [22], Tripathi in [23] and many others
in [24, 25, 26, 27].
In this paper, we have considered normal paracontact metric space forms admitting almost η−Ricci solitons in some curvature tensors. Ricci
pseudosymmetry concepts of normal paracontact metric space forms admitting η−Ricci soliton have been introduced according to the
choosing of some special curvature tensors such as Riemannian, concircular, projective and W1 curvature tensor. After then, according to the
choice of the curvature tensors, necessary conditions are given for normal paracontact metric space form admitting η−Ricci soliton to be
Ricci semisymmetric. Then some characterizations are obtained and some classifications have been made under the some conditions.
For simplicity’s sake, the normal paracontact metric space form expression will be expressed as NPMS-form after this part of the article.
Similarly, for brevity, after this part of the article, η−Ricci soliton expressions will be shown as η−RS, Ricci pseudosymmetric as Ricci−P,
and Ricci semisymetric as Ricci−S.
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2. Preliminaries

Let’s take an n−dimensional differentiable Φ manifold. If it admits a tensor field φ of type (1,1), a contravariant vector field ξ and a 1-form
η satisfying the following conditions;

φ
2
ε1 = ε1−η (ε1)ξ , φξ = 0, η (φε1) = 0,η(ξ ) = 1, (1)

and

g(φε1,φε2) = g(ε1,ε2)−η (ε1)η (ε2) , g(ε1,ξ ) = η (ε1) , (2)

for all ε1,ε2,ξ ∈ χ (Φ) , (φ ,ξ ,η) is called almost paracontact structure and (Φ,φ ,ξ ,η) is called almost paracontact metric manifold. If the
covariant derivative of φ satisfies

(∇ε1 φ)ε2 =−g(ε1,ε2)ξ −η (ε2)ε1 +2η (ε1)η (ε2)ξ , (3)

then, Φ is called a normal paracontact metric manifold, where ∇ is Levi-Civita connection. From (3) , we can easily to see that

φε1 = ∇ε1 ξ , (4)

for any ε1 ∈ χ (Φ) [1].
Moreover, if such a manifold has constant sectional curvature equal to c, then it is the Riemannian curvature tensor is R given by

R(ε1,ε2)ε3 =
c+3

4 [g(ε2,ε3)ε1−g(ε1,ε3)ε2]+
c−1

4 [η (ε1)η (ε3)ε2

−η (ε2)η (ε3)ε1 +g(ε1,ε3)η (ε2)ξ −g(ε2,ε3)η (ε1)ξ +g(φε2,ε3)φε1

−g(φε1,ε3)φε2−2g(φε1,ε2)φε3] ,

(5)

for any vector fields ε1,ε2,ε3 ∈ χ (Φ) [5].
In a NPMS−form by direct calculations, we can easily to see that

S (ε1,ε2) =
c(n−5)+3n+1

4
g(ε1,ε2)+

(c−1)(5−n)
4

η (ε1)η (ε2) , (6)

from which

Qε1 =
c(n−5)+4n+1

4
ε1 +

(c−1)(5−n)
4

η (ε1)ξ , (7)

for any ε1,ε2 ∈ χ (Φ) , where Q is the Ricci operator and S is the Ricci tensor of Φ.

Lemma 2.1. Let Φ be a n-dimensional NPMS-form. In this case, the following equations hold.

R(ξ ,ε1)ε2 = g(ε1,ε2)ξ −η (ε2)ε1, (8)

R(ε1,ξ )ε2 =−g(ε1,ε2)ξ +η (ε2)ε1, (9)

R(ε1,ε2)ξ = η (ε2)ε1−η (ε1)ε2, (10)

η (R(ε1,ε2)ε3) = g(η (ε1)ε2−η (ε2)ε1,ε3) (11)

S (ε1,ξ ) = (n−1)η (ε1) , (12)

Qξ = (n−1)ξ , (13)

where R,S and Q are the Riemann curvature tensor, Ricci curvature tensor and Ricci operator, respectively.
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Let Φ be a Riemannian manifold, T is (0,k)−type tensor field and A is (0,2)−type tensor field. In this case, Tachibana tensor field Q(A,T )
is defined as

Q(A,T )(X1, ...,Xk;ε1,ε2) =−T ((ε1∧A ε2)X1, ...,Xk)− ...−T (X1, ...,Xk−1,(ε1∧A ε2)Xk) , (14)

where,

(ε1∧A ε2)ε3 = A(ε2,ε3)ε1−A(ε1,ε3)ε2, (15)

k ≥ 1,X1,X2, ...,Xk,ε1,ε2 ∈ Γ(T Φ).
Precisely, a Ricci soliton on a Riemannian manifold (Φ,g) is defined as a triple (g,ξ ,λ ) on Φ satisfying

Lξ g+2S+2λg = 0, (16)

where Lξ is the Lie derivative operator along the vector field ξ and λ is a real constant. We note that if ξ is a Killing vector field, then the
Ricci soliton reduces to an Einstein metric (g,λ ) . Futhermore, in [28], generalization is the notion of η−RS defined by J.T. Cho and M.
Kimura as a quadruple (g,ξ ,λ ,µ) satisfying

Lξ g+2S+2λg+2µη⊗η = 0, (17)

where λ and µ are real constants and η is the dual of ξ and S denotes the Ricci tensor of Φ. Furthermore if λ and µ are smooth functions on
Φ, then it called almost η−RS on Φ [28].
Suppose the quartet (g,ξ ,λ ,µ) is almost η−RS on manifold Φ. Then, classification is as follows.
· If λ < 0, then Φ is shrinking.
· If λ = 0, then Φ is steady.
· If λ > 0, then Φ is expanding.

3. Almost η−Ricci Solitons on Ricci Pseudosymmetric and Ricci Semisymmetric Normal Paracon-
tact Metric Space Forms

Now let (g,ξ ,λ ,µ) be almost η−RS on NPMS−form. Then we have(
Lξ g

)
(ε1,ε2) = Lξ g(ε1,ε2)−g

(
Lξ ε1,ε2

)
−g

(
ε1,Lξ ε2

)
= ξ g(ε1,ε2)−g([ξ ,ε1] ,ε2)−g(ε1, [ξ ,ε2])

= g
(

∇ξ ε1,ε2

)
+g

(
ε1,∇ξ ε2

)
−g

(
∇ξ ε1,ε2

)
+g(∇ε1 ξ ,ε2)−g

(
∇ξ ε2,ε1

)
+g(ε1,∇ε2 ξ ) ,

for all ε1,ε2 ∈ Γ(T Φ) . By using φ is symmetric, we have(
Lξ g

)
(ε1,ε2) = 2g(φε1,ε2) . (18)

Thus, in a NPMS−forms, from (17) and (18) , we have

S (ε1,ε2)+g(φε1,ε2)+λg(ε1,ε2)+µη (ε1)η (ε2) = 0. (19)

For ε2 = ξ in (19) , this implies that

S (ξ ,ε1) =−(λ +µ)η (ε1) . (20)

Taking into account of (12) and (20) , we conclude that

λ +µ = 1−n. (21)

Definition 3.1. Let Φ be an n−dimensional NPMS−form. If there exists a function H1 on Φ such that

R ·S = H1Q(g,S) ,

then the Φ is called Ricci−P.

Also, if H1 = 0, the Φ is called Ricci−S.
Let us now investigate the Ricci−P case of the n−dimensional NPMS−forms.

Theorem 3.2. Let Φ be a NPMS−forms and (g,ξ ,λ ,µ) be almost η−RS on Φ. If Φ is a Ricci−P, then Φ is either a shrinking or H1 = 1.
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Proof. Let’s assume that NPMS−form Φ be Ricci−P and (g,ξ ,λ ,µ) be almost η−RS on Φ. That’s mean

(R(ε1,ε2) ·S)(ε4,ε5) = H1Q(g,S)(ε4,ε5;ε1,ε2) ,

for all ε1,ε2,ε4,ε5 ∈ Γ(T Φ) . From the last equation, we can easily write

S (R(ε1,ε2)ε4,ε5)+S (ε4,R(ε1,ε2)ε5) = H1
{

S
((

ε1∧g ε2
)

ε4,ε5
)
+S

(
ε4,

(
ε1∧g ε2

)
ε5
)}

. (22)

If we choose ε5 = ξ in (22) , we get

S (R(ε1,ε2)ε4,ξ )+S (ε4,R(ε1,ε2)ξ ) = H1 {S (g(ε2,ε4)ε1−g(ε1,ε4)ε2,ξ ) +S (ε4,η (ε2)ε1−η (ε1)ε2)} . (23)

Putting (10) and (20) in (23) , we have

S (ε4,η (ε2)ε1−η (ε1)ε2)− (λ +µ)η (R(ε1,ε2)ε4)

= H1 {−(λ +µ)g(η (ε1)ε2−η (ε2)ε1,ε4) +S (ε4,η (ε2)ε1−η (ε1)ε2)} .
(24)

If we use (11) in (24), we get

−(λ +µ)g(η (ε1)ε2−η (ε2)ε1,ε4)+S (η (ε2)ε1−η (ε1)ε2,ε4)

= H1 {−(λ +µ)g(η (ε1)ε2−η (ε2)ε1,ε4) +S (ε4,η (ε2)ε1−η (ε1)ε2)} .
(25)

If we use (19) in the (25), we can write

µ (1−H1)g(η (ε2)ε1−η (ε1)ε2,ε4)− (1−H1)g(η (ε2)ε1−η (ε1)ε2,φε4) = 0. (26)

If we write φε4 instead of ε4 in (26) and make use of (1) , we obtain

−(1−H1)g(η (ε2)ε1−η (ε1)ε2,ε4)+µ (1−H1)g(η (ε2)ε1−η (ε1)ε2,φε4) = 0. (27)

It is clear from (26) and (27) , we get

(1−H1)
2
(

1−µ
2
)

g(η (ε2)ε1−η (ε1)ε2,ε4) = 0.

This completes the proof of Theorem.

Corollary 3.3. Let Φ be NPMS−form and (g,ξ ,λ ,µ) be almost η−RS on Φ. If Φ is a Ricci−S, then Φ is a shrinking.

For an n−dimensional semi-Riemannian manifold Φ, the concircular curvature tensor is defined as

C (ε1,ε2)ε3 = R(ε1,ε2)ε3−
r

n(n−1)
[g(ε2,ε3)ε1−g(ε1,ε3)ε2] . (28)

For an n−dimensional NPMS−form, if we choose ε3 = ξ in (28) , we can write

C (ε1,ε2)ξ =

[
1− r

n(n−1)

]
[η (ε2)ε1−η (ε1)ε2] . (29)

On the other hand, if we take the inner product of both sides of (26) by ξ , we get

η (C (ε1,ε2)ε3) =

[
1− r

n(n−1)

]
g(η (ε1)ε2−η (ε2)ε1,ε3) . (30)

Definition 3.4. Let Φ be an n−dimensional NPMS−form. If there exists a function H2 on Φ such that

C ·S = H2Q(g,S) ,

then the Φ is called concircular Ricci−P.

Also, if H2 = 0, the Φ is called concircular Ricci−S.
Thus we have the following theorem.

Theorem 3.5. Let Φ be NPMS−forms and (g,ξ ,λ ,µ) be almost η−RS on Φ. If Φ is a concircular Ricci−P, then Φ is either shrinking or

H2 =
n(n−1)− r

n(n−1)
.
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Proof. Let’s assume that NPMS−form Φ be concircular Ricci−P and (g,ξ ,λ ,µ) be almost η−RS on Φ. This implies that

(C (ε1,ε2) ·S)(ε4,ε5) = H2Q(g,S)(ε4,ε5;ε1,ε2) ,

for all ε1,ε2,ε4,ε5 ∈ Γ(T Φ) . From the last equation, we can easily write

S (C (ε1,ε2)ε4,ε5)+S (ε4,C (ε1,ε2)ε5) = H2
{

S
((

ε1∧g ε2
)

ε4,ε5
)
+S

(
ε4,

(
ε1∧g ε2

)
ε5
)}

. (31)

If we choose ε5 = ξ in (31) , we get

S (C (ε1,ε2)ε4,ξ )+S (ε4,C (ε1,ε2)ξ ) = H2 {S (g(ε2,ε4)ε1−g(ε1,ε4)ε2,ξ ) +S (ε4,η (ε2)ε1−η (ε1)ε2)} . (32)

By using of (20) and (29) in (32) , we have

S (ε4,A [η (ε2)ε1−η (ε1)ε2])− (λ +µ)η (C (ε1,ε2)ε4)

= H2 {−(λ +µ)g(η (ε1)ε2−η (ε2)ε1,ε4) +S (ε4,η (ε2)ε1−η (ε1)ε2)} ,
(33)

where A = 1− r
n(n−1) . Substituting (30) into (33), we have

−A(λ +µ)g(η (ε1)ε2−η (ε2)ε1,ε4)+AS (η (ε2)ε1−η (ε1)ε2,ε4)

= H2 {−(λ +µ)g(η (ε1)ε2−η (ε2)ε1,ε4) +S (η (ε2)ε1−η (ε1)ε2,ε4)} .
(34)

If we use (19) in the (34), we can write

µ (A−H2)g(η (ε2)ε1−η (ε1)ε2,ε4)− (A−H2)g(η (ε2)ε1−η (ε1)ε2,φε4) = 0. (35)

If we write φε4 instead of ε4 in (35) and make use of (1) , we obtain

−(A−H2)g(η (ε2)ε1−η (ε1)ε2,ε4)+µ (A−H2)g(η (ε2)ε1−η (ε1)ε2,φε4) = 0. (36)

It is clear from (35) and (36) ,

(A−H2)
2
(

1−µ
2
)

g(η (ε2)ε1−η (ε1)ε2,ε4) = 0.

This completes the proof of Theorem.

Corollary 3.6. Let Φ be NPMS−forms and (g,ξ ,λ ,µ) be almost η−RS on Φ. If Φ is a concircular Ricci−S, then Φ is either shrinking
or a manifold with constant scalar curvature r = n(n−1) .

For an n−dimensional semi-Riemannian manifold Φ, the projective curvature tensor is defined as

P(ε1,ε2)ε3 = R(ε1,ε2)ε3−
1

n−1
[S (ε2,ε3)ε1−S (ε1,ε3)ε2] . (37)

For an n−dimensional NPMS−form, if we choose ε3 = ξ in (37) , we can write

P(ε1,ε2)ξ = 0, (38)

and similarly if we take the inner product of both sides of (37) by ξ , we get

η (P(ε1,ε2)ε3) = 0. (39)

Definition 3.7. Let Φ be an n−dimensional NPMS−form. If there exists a function H3 on Φ such that

P ·S = H3Q(g,S) ,

then the Φ is called projective Ricci−P.

Also, if H3 = 0, the Φ is called projective Ricci−S.
Let us now investigate the projective Ricci−P case of the NPMS−form.

Theorem 3.8. Let Φ be NPMS−forms and (g,ξ ,λ ,µ) be almost η−RS on Φ. If Φ is a projective Ricci−P, then Φ is either projective
Ricci−S or shrinking.

Proof. Let’s assume that NPMS−form Φ be projective Ricci−P and (g,ξ ,λ ,µ) be almost η−RS on Φ. Then we have

(P(ε1,ε2) ·S)(ε4,ε5) = H3Q(g,S)(ε4,ε5;ε1,ε2) ,

for all ε1,ε2,ε4,ε5 ∈ Γ(T Φ) . This gives us, we can easily write

S (P(ε1,ε2)ε4,ε5)+S (ε4,P(ε1,ε2)ε5) = H3
{

S
((

ε1∧g ε2
)

ε4,ε5
)
+S

(
ε4,

(
ε1∧g ε2

)
ε5
)}

. (40)

Putting ε5 = ξ in (40) , we get

S (P(ε1,ε2)ε4,ξ )+S (ε4,P(ε1,ε2)ξ ) = H3 {S (g(ε2,ε4)ε1−g(ε1,ε4)ε2,ξ ) +S (ε4,η (ε2)ε1−η (ε1)ε2)} . (41)
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If we make use of (20) and (38) in (41) , we have

−(λ +µ)η (P(ε1,ε2)ε4) = H3 {−(λ +µ)g(η (ε1)ε2−η (ε2)ε1,ε4) +S (ε4,η (ε2)ε1−η (ε1)ε2)} . (42)

If we use (39) in the (42), we get

H3 {−(λ +µ)g(η (ε1)ε2−η (ε2)ε1,ε4) +S (η (ε2)ε1−η (ε1)ε2,ε4)}= 0. (43)

If we use (19) in the (43), we can write

H3 [µg(η (ε2)ε1−η (ε1)ε2,ε4)−g(η (ε2)ε1−η (ε1)ε2,φε4)] = 0. (44)

If we write φε4 instead of ε4 in (44) and make use of (1) , we obtain

H3 [−g(η (ε2)ε1−η (ε1)ε2,ε4)+µg(η (ε2)ε1−η (ε1)ε2,φε4)] = 0. (45)

It is clear from (44) and (45) , we obtain

H3

(
1−µ

2
)

g(η (ε2)ε1−η (ε1)ε2,ε4) = 0.

This completes the proof of Theorem.

For an n−dimensional semi-Riemannian manifold Φ, the W1−curvature tensor is defined as

W1 (ε1,ε2)ε3 = R(ε1,ε2)ε3 +
1

n−1
[S (ε2,ε3)ε1−S (ε1,ε3)ε2] . (46)

For an n−dimensional NPMS−form, if we choose ε3 = ξ in (46) , we can write

W1 (ε1,ε2)ξ = 2 [η (ε2)ε1−η (ε1)ε2] , (47)

and similarly if we take the inner product of both of sides of (46) by ξ , we get

η (W1 (ε1,ε2)ε3) = 2g(η (ε1)ε2−η (ε2)ε1,ε3) . (48)

Definition 3.9. Let Φ be an n−dimensional NPMS−form. If there exists a function H4 on Φ such that

W1 ·S = H4Q(g,S) ,

then the Φ is called W1−Ricci−P.

Also, if H4 = 0, the Φ is said to be W1−Ricci−S.
Let us now investigate the W1−Ricci−P case of the normal paracontact space form.

Theorem 3.10. Let Φ be NPMS−forms and (g,ξ ,λ ,µ) be almost η−RS on Φ. If Φ is W1−Ricci−P, then Φ is either shrinking or H4 = 2.

Proof. Let’s assume that normal paracontact space form Φ be W1−Ricci−P and (g,ξ ,λ ,µ) be almost η−RS on Φ. This implies that

(W1 (ε1,ε2) ·S)(ε4,ε5) = H4Q(g,S)(ε4,ε5;ε1,ε2) ,

for all ε1,ε2,ε4,ε5 ∈ Γ(T Φ) . From the last equation, we can easily write

S (W1 (ε1,ε2)ε4,ε5)+S (ε4,W1 (ε1,ε2)ε5) = H4
{

S
((

ε1∧g ε2
)

ε4,ε5
)
+S

(
ε4,

(
ε1∧g ε2

)
ε5
)}

. (49)

If we choose ε5 = ξ in (49) , we get

S (W1 (ε1,ε2)ε4,ξ )+S (ε4,W1 (ε1,ε2)ξ ) = H4 {S (g(ε2,ε4)ε1−g(ε1,ε4)ε2,ξ ) +S (ε4,η (ε1)ε2−η (ε2)ε1)} . (50)

If we make use of (20) and (47) in (50) , we have

2S (ε4,η (ε2)ε1−η (ε1)ε2)− (λ +µ)η (W1 (ε1,ε2)ε4)

= H4 {−(λ +µ)g(η (ε1)ε2−η (ε2)ε1,ε4) +S (ε4,η (ε2)ε1−η (ε1)ε2)} .
(51)

If we use (48) in the (51), we get

−2(λ +µ)g(η (ε1)ε2−η (ε2)ε1,ε4)+2S (η (ε2)ε1−η (ε1)ε2,ε4)

= H4 {−(λ +µ)g(η (ε1)ε2−η (ε2)ε1,ε4) +S (η (ε2)ε1−η (ε1)ε2,ε4)} .
(52)

If we use (19) in the (52), we can write

µ (2−H4)g(η (ε2)ε1−η (ε1)ε2,ε4)+(H4−2)g(η (ε2)ε1−η (ε1)ε2,φε4) = 0. (53)

If we write φε4 instead of ε4 in (44) and make use of (1) , we obtain

(H4−2)g(η (ε2)ε1−η (ε1)ε2,ε4)+µ (2−H4)g(η (ε2)ε1−η (ε1)ε2,φε4) = 0. (54)

It is clear from (53) and (54) , we get(
2−H2

4

)(
1−µ

2
)

g(η (ε2)ε1−η (ε1)ε2,ε4) = 0.

This completes the proof of Theorem.

Corollary 3.11. Let Φ be a NPMS−form and (g,ξ ,λ ,µ) be almost η−RS on Φ. If Φ is a W1−Ricci−S, then Φ is a shriking.
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4. Conclusion

In this paper, we have considered normal paracontact metric space forms admitting almost η−Ricci solitons in some curvature tensors. Ricci
pseudosymmetry concepts of normal paracontact metric space forms admitting η−Ricci soliton have introduced according to the choosing
of some special curvature tensors such as Riemann, concircular, projective and W1 curvature tensor. After then, according to the choice
of the curvature tensors, necessary conditions are given for normal paracontact metric space form admitting η−Ricci soliton to be Ricci
semisymmetric. Then some characterizations are obtained and some classifications have made under the some conditions.
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