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Abstract
This paper addresses a model on a single server queue and two service representatives.
After a customer is served, he/she has the three options: opting for receive the same
service again (re-service), joining as a new customer for another regular service (feedback),
or leaving the service system altogether. To ensure the queueing system is Markovian,
we introduce an additional variable (supplementary variable) and using this approach, we
derive the explicit distribution of queue size at random and departure epochs. Additionally,
we determine the distribution of response time, inter-departure time, and busy period.
By using the embedded Markov chain technique we have also derived the queue size
distribution at departure epoch. We have also presented the cost analysis of the model
with some numerical examples. The numerical illustration validates our findings and
provides valuable insights into the queuing system.
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1. Introduction
In a queueing system where a single server offers two different types of services, it is

commonly referred to as a single-server queueing system with two types of heterogeneous
service. The initial theory for this type of queueing model was developed by [2]. They made
the assumptions that the service times of customers are independent and follow an expo-
nential distribution. Additionally, the server takes a single vacation, which is influenced by
Bernoulli schedules, where the vacation period follows an exponential distribution. They
obtained explicit steady-state results for the probability generating functions of the queue
size and system size, along with other performance measures of the system. Madan et al.
[16] extended this research by studying a single server queue with batch arrivals and two
types of heterogeneous service, where the general service time distributions differ. They
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also introduced the possibility of customers opting for re-service after completing their ini-
tial service. They obtained steady-state probability generating function for the queue size
and system size, as well as important performance measures such as the average number of
customers and the average waiting time in the queue and system. Another similar model
was investigated by [17], where they assumed general vacation time and Bernoulli schedule
for server vacation under a single vacation policy. They derived the steady-state queue
size distribution, the mean busy period of the server, and other performance measures of
the system. Kalita and Choudhury [6] investigated an M/G/1 queue with two types of
general heterogeneous service and optional repeated service subject to servers breakdown
and delayed repair. Also, in this area, (that is, in the area of the two types of general
heterogeneous service) can be found in the study conducted by [12] where they investi-
gated the two types of general heterogeneous service on M/G/1 queue with delayed repair
under randomized vacation policy. Moreover, Begum and Choudhury [3] studied M/G/1
queue with two types of general heterogeneous service with Bernoulli vacation and server
breakdown, the server after completion of a service is allowed to take in a single vacation
under the Bernoulli schedule.

In the context of Bernoulli feedback, when a customer is unsatisfied with their service,
they have the option to join the queue again for service with a certain probability. Takacs
[24] provides detailed insights into the Bernoulli feedback mechanism in his book. Takacs
[25] investigated a queueing model of M/G/1 type with Bernoulli feedback and deter-
mined the distribution of queue size as well as the first two moments of the distribution
function representing the total time spent by a customer in the system. Rege [23] studied
the M/G/1 queue with Bernoulli feedback, offering a proof based on branching process
to simplify the derivation of certain performance measures. Rege [23] also explained the
significance of these performance measures in practical terms. Choudhury and Paul [7] ex-
tended the Bernoulli feedback mechanism to a two-phase of heterogeneous service M/G/1
queue. They derived the distribution of queue size and service completion epochs, as
well as the distribution of response time and busy period. Kumar et al. [14] examined
a non-Markovian feedback single-server retrial queue with collisions and general retrial
times. They used the supplementary variable technique to obtain the steady-state joint
distribution of the server’s state and the orbit length. Important performance measures
and stability conditions of the system were also provided. Choi et al. [5] considered an
M/G/1 queue with Bernoulli feedback and multiple classes of customers, each with differ-
ent arrival rates, service time distributions, and feedback parameters. They obtained the
joint probability generating function of the system size for each class, allowing them to
calculate the moments of the system size and total response time for each customer class.
Mahanta and Choudhury [18] studied feedback queue on M/

(G1
G2

)
/1 with vacation. Using

the supplementary variable technique they obtained the probability generating function
of the queue size distribution at random epoch and departure epoch. They also obtained
mean queue size at random epoch, mean waiting time and mean busy period of the system.
Jain and Kaur [11] studied Bernoulli feedback on Mx/G/1 unreliable server retrial bulk
queue with multiphase optional service incorporating the features of balking, Bernoulli va-
cation. For evaluating the queue size distribution and other system performance metrics,
supplementary variable technique is used. The approximate solutions for the steady state
probabilities and waiting time are suggested using maximum entropy principle (MEP).
For the discrete-time queueing models, in this direction, one can refer to [15] and [28].
GnanaSekar and Kandaiyan [10] studied the dynamics of feedback within a single server
retrial queueing system with delayed repair under a working vacation policy, where cus-
tomers are allowed to balk and renege in some situations. Utilizing the supplementary
variable technique, they derived the steady state probability generating function for both
system size and orbit size. Furthermore, they conducted an analysis of system param-
eter impacts through numerical examples. Khan and Paramasivam [13] investigated an
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M/M/1/N encouraged arrival queue with feedback, balking, and the management of re-
neged clients. They examined a quality control policy for the Markovian model using an
iterative approach up to the nth customer in the system. Additionally, they determined
performance measures such as the expected number of units in the system and queue, aver-
age number of occupied services, and expected waiting time in both the system and queue.
Melikov et al. [21] delved into a Markov model of a queuing-inventory system encompass-
ing primary, retrial, and feedback customers. They utilized the matrix-geometric method
to compute steady-state probabilities. Mahanta et al. [19] investigated Markov modulated
Poisson input with feedback queue under N - policy. GnanaSekar and Kandaiyan [9] stud-
ied feedback retrial queue with two dependent phases of service under Bernoulli working
vacation. The service times for the two stages are often independent in normal queueing
frameworks. The first phase service time has an impact on the second phase service time.
In order to determine the steady-state probabilities and probability-generating function
for the different states, the supplementary variable technique was utilized. Furthermore,
Niranjan et al. [22] considered an essential two-phase bulk service, immediate Bernoulli
feedback for customers, and renewal service time of the first essential service for the bulk
arrival and bulk service queueing model. They investigated the probability-generating
function of the queue size at any time. Additionally, they conducted an optimum cost
analysis to minimize total average cost, with practical applications in existing data trans-
mission and processing in LTE-A networks using the DRX mechanism.

The novelty of this paper lies in the fact that, to the best of the authors’ knowledge,
no previous study in the literature has examined a single server M/G/1 queueing system
with two types of general heterogeneous service, repeated service, and Bernoulli feedback
in a single aspect. Motivated by this gap, the authors aim to analyze such a model. The
paper analyzes two types of service representatives and assumes a first-come-first-served
service discipline, allowing customers to choose their desired service system. Customers
can either opt for the same type of service again or join as new customers to receive another
regular service. The model is analyzed using the supplementary variable technique, where
the elapsed service time serves as the supplementary variable. The steady-state queue
size distribution at arbitrary epoch is obtained, along with the distribution of various
time durations such as inter-departure time, response time, and busy period for arriving
customers. Numerical results are presented to demonstrate the applicability of the model.

The structure of the paper is as follows: Section 2 describes the mathematical model.
Complete theoretical analysis of the model in the steady state is presented in Section 3.
In Section 4 the embedded Markov chain result for the model is presented and in Section
5 the cost analysis is carried out. Section 6 illustrates a simulation study to validate the
analytical results, followed by practical applications of the model is briefly discussed in
Section 7. Finally, the paper concludes in Section 8.

2. Model description
In this Section, we describe the mathematical model which is stated below:
The customers arrive to the queueing system according to the Poisson process, that

is, the inter-arrival times of the customers are independent and exponentially distributed
where λ represents the arrival rate of the customers.

The system consists of a single server that offers two different types of services, namely
the first type of service (FTS) denoted as B1, and the second type of service (STS)
denoted as B2. Further, bj(x), Bj(x), and B∗

j (s) be the probability density function (p.d.f),
probability distribution function (PDF), Laplace transform of Bj-th service, respectively,
and the corresponding moments are denoted by β

(k)
j , k ≥ 1.

The customer also has the opportunity to select any one of the representative services -
either he can select the FTS with probability p1 or he can select the STS with probability
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p2(= 1 − p1). The total service time needed by a unit for completing the service cycle in
the following manner.

B =
{

B1, with probability p1
B2, with probability p2.

Once a service system is selected, the Laplace-Steiltjes transform (LST) for the total
duration of the service time can be determined as

B∗(s) = p1B∗
1(s) + p2B∗

2(s).

Once a customer finishes receiving any of the representative services, they are given the
choice to either repeat the same service one more time (but only once), or to exit from
the queueing system. Let the probability of repeating the same type of service be fj

whereas the probability of not repeating the service and goes away from the system be
1−fj , j = 1, 2. Further, let Fj , Ij(x) and I∗

j (s) denote the jth type of repeated service time,
corresponding distribution function and Laplace transform respectively. Also γ

(k)
j , k ≥ 1

denotes the finite moments of the repeated service time. Therefore, the modified service
is

Bj =
{

Bj + Fj , with probability fj

Bj , with probability 1 − fj .

The LST B∗
j (s) of repeated service Fj for j = 1, 2 is

B∗
j (s) = fjB∗

j (s)I∗
j (s) + (1 − fj)B∗

j (s).

Therefore the LST of the modified service time is given by

B∗(s) = (f1B∗
1(s) + (1 − f1))p1B∗

1(s) + (f2B∗
2(s) + (1 − f2))p2B∗

2(s). (2.1)

And the first two raw moments of the modified service time are given by

β1 = (1 + f1) p1β
(1)
1 + (1 + f2) p2β

(1)
2 , (2.2)

β2 =
(

β
(2)
1 + f1

(
β

(2)
1 + 2

(
β

(1)
1

)2
))

p1 +
(

β
(2)
2 + f2

(
β

(2)
2 + 2

(
β

(1)
2

)2
))

p2. (2.3)

If for a certain reason a customer is not satisfied with its service then the customer
can also immediately join or move on of the tail of the original queue to receive another
regular service with a certain probability Θ, or they can move away from the system with
probability Θ′ (= 1−Θ). Let Γ and Ω(x) denote the Bernoulli feedback and corresponding
general distribution function, respectively.

3. Analysis of the model
Let us define the following random variable at time t:

• Nq(t) := Queue size.
• B0

j (t) := Elapsed jth representative service.
• F 0

j (t) := Elapsed jth type of re-service.
• Y (t) := State of the system.

The state of the system (Y (t)) at time t is given as

Y (t) =


0, if the system is idle at time t
1, if the system is occupied by the FTS at time t
2, if the system is occupied by the STS at time t
3, if the system is occupied by the FRS at time t
4, if the system is occupied by the SRS at time t,

(3.1)



Queue with optional repeated service and Bernoulli feedback mechanism 855

where we assign FRS and SRS to indicate the first and second type of service respectively,
that are subject to repetition. The supplementary variables B0

1(t), B0
2(t), F 0

1 (t), F 0
2 (t) are

introduced in order to obtain a bivariate Markov process {NQ(t), χ(t)}, where

χ(t) =



0, if Y (t) = 0
B0

1(t), if Y (t) = 1
B0

2(t), if Y (t) = 2
F 0

1 (t), if Y (t) = 3
F 0

2 (t), if Y (t) = 4.

(3.2)

Let us define the following probabilities:
V0(t) = Prob[Nq(t) = 0, χ(t) = 0],

An,j(x; t)dx = Prob[Nq(t) = n, χ(t) = B0
j (t); x < B0

j (t) ≤ x + dx], x > 0, n ≥ 0, j = 1, 2,

Bn,j(x; t)dx = Prob[Nq(t) = n, χ(t) = F 0
j (t); x < F 0

j (t) ≤ x + dx], x > 0, n ≥ 0, j = 1, 2.

We have B0
j (0) = 0, B0

j (∞) = 1, F 0
j (0) = 0, F 0

j (∞) = 1; j = 1, 2 and Bj(x) is continuous
at x = 0 such that,

ξj(x) = bj(x)
1 − Bj(x)

are the first order differential (hazard rate) function of Bj and therefore,

bj(Ω) = ξj(Ω)e
−

Ω∫
0

ξj(x)dx

, j = 1, 2.

Further, the steady-state probability generating functions (PGF’s) are given as

Aj(x, z) =
∞∑

n=0
An,j(x)zn, Aj(z) =

∞∑
n=0

An,jzn, j = 1, 2, (3.3)

Bj(x, z) =
∞∑

n=0
Bn,j(x)zn, Bj(z) =

∞∑
n=0

Bn,jzn, j = 1, 2, (3.4)

where

An,j(x) = lim
t→∞

An,j(x; t), An,j =
∫ ∞

0
An,j(x)dx, j = 1, 2,

Bn,j(x) = lim
t→∞

Bn,j(x; t), Bn,j =
∫ ∞

0
Bn,j(x)dx, j = 1, 2,

and
V0 = lim

t→∞
V0(t).

The state transition diagram of this queuing system is depicted in Figure 1, illustrating
the system’s different states using a 2-tuple, namely (α, η). The value of α represents the
number of customers in the system at a given time t, while η indicates the state of the
system at that time. The variable α can assume values ranging from 0 onwards, indicating
the presence of 0, 1, 2, and so on customers, while η can assume values of 0, 1, 2, 3, 4, or
5. In this system, state 0 represents the idle period, state 1 represents the FTS period,
state 2 represents the FRS period, state 3 represents the STS period, state 4 represents
the SRS period, and state 5 signifies the Benoulli feedback time.

Now using the argument of [8], we obtain the following steady-state equations of the
system.

λV0 = (1 − f1)Θ′
∫ ∞

0
A0,1(x)ξ1(x)dx + (1 − f2)Θ′

∫ ∞

0
A0,2(x)ξ2(x)dx

+ Θ′
∫ ∞

0
B0,1(x)ξ1(x)dx + Θ′

∫ ∞

0
B0,2(x)ξ2(x)dx. (3.5)
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d

dx
An,j(x) + (λ + ξj(x))An,j(x) = λAn−1,j(x), n ≥ 0; j = 1, 2, (3.6)

d

dx
Bn,j(x) + (λ + ξj(x))Bn,j(x) = λBn−1,j(x), n ≥ 0; j = 1, 2. (3.7)

Figure 1. State transition diagram of the model.

The boundary conditions for solving the aforementioned steady-state equations are

An,1(0) =
2∑

j=1
(1 − fj)p1

(
Θ
∫ ∞

0
An,j(x)ξj(x)dx + Θ′

∫ ∞

0
An+1,j(x)ξj(x)dx

)

+
2∑

j=1
p1

(
Θ
∫ ∞

0
Bn,j(x)ξj(x)dx + Θ′

∫ ∞

0
Bn+1,j(x)ξj(x)dx

)
, n ≥ 0, j = 1, 2, (3.8)



Queue with optional repeated service and Bernoulli feedback mechanism 857

A0,1(0) =
2∑

j=1
(1 − fj)p1

(
Θ
∫ ∞

0
A0,j(x)ξj(x)dx + Θ′

∫ ∞

0
A1,j(x)ξj(x)dx

)

+
2∑

j=1
p1

(
Θ
∫ ∞

0
B0,j(x)ξj(x)dx + Θ′

∫ ∞

0
B1,j(x)ξj(x)dx

)
+ λV0p1, j = 1, 2, (3.9)

An,2(0) =
2∑

j=1
(1 − fj)p2

(
Θ
∫ ∞

0
An,j(x)ξj(x)dx + Θ′

∫ ∞

0
An+1,j(x)ξj(x)dx

)

+
2∑

j=1
p2

(
Θ
∫ ∞

0
Bn,j(x)ξj(x)dx + Θ′

∫ ∞

0
Bn+1,j(x)ξj(x)dx

)
, n ≥ 0, j = 1, 2, (3.10)

A0,2(0) =
2∑

j=1
(1 − fj)p2

(
Θ
∫ ∞

0
A0,j(x)ξj(x)dx + Θ′

∫ ∞

0
A1,j(x)ξj(x)dx

)

+
2∑

j=1
p2

(
Θ
∫ ∞

0
B0,j(x)ξj(x)dx + Θ′

∫ ∞

0
B1,j(x)ξj(x)dx

)
+ λV0p2, j = 1, 2, (3.11)

Bn,j(0) = fj

∫ ∞

0
An,j(x)ξj(x)dx, j = 1, 2; n ≥ 0. (3.12)

Now using Equations (3.5)-(3.12), we obtain the steady state PGF of the queue size
distribution which is given in the next section.

3.1. The PGF of the queue size distribution at random epoch
In this section, we provide the Probability Generating Function (PGF) for the dis-

tribution of the queue size, along with the condition required for the system to remain
stable.

Denoting the PGF of the queue size, regardless of the service type, as Aq(z), we solve
Equations (3.5)-(3.12), and then substitute the results into Equations (3.3)-(3.4) and fi-
nally we derive the following results.

Aj(z) =

(
B∗

j (λ − λz) − 1
)
pjV0

z − (zΘ + Θ′)
((

(1 − f1) + f1B∗
1(λ − λz)

)
p1B∗

1(λ − λz)

+
(
(1 − f2) + f2B∗

2(λ − λz)
)
p2B∗

2(λ − λz)
)

, j = 1, 2, (3.13)

Bj(z) =

(
B∗

j (λ − λz) − 1
)
fjpjB∗

j (λ − λz)V0

z − (zΘ + Θ′)
((

(1 − f1) + f1B∗
1(λ − λz)

)
p1B∗

1(λ − λz)

+
(
(1 − f2) + f2B∗

2(λ − λz)
)
p2B∗

2(λ − λz)
)

, j = 1, 2, (3.14)

where B∗
j (λ − λz) =

∞∫
0

e−(λ−λz)xdBj(x).

Now using Aq(z) = A1(z) + A2(z) + B1(z) + B2(z), we get

Aq(z) =

((
B∗

1(λ − λz) − 1
)(

1 + f1B∗
1(λ − λz)

)
p1

+
(
B∗

2(λ − λz) − 1
)(

1 + f2B∗
2(λ − λz)

)
p2
)
V0

z − (zΘ + Θ′)
((

(1 − f1) + f1B∗
1(λ − λz)

)
p1B∗

1(λ − λz)

+
(
(1 − f2) + f2B∗

2(λ − λz)
)
p2B∗

2(λ − λz)
)

. (3.15)
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Now taking the limit z → 1 in Equation (3.15), we get the steady state probability that
the server is busy irrespective of the type of service as

Aq(1) = lim
z→1

Aq(z) = p1V0λβ
(1)
1 (1 + f1) + p2V0λβ

(1)
2 (1 + f2)

Θ′ − p1λβ
(1)
1 (1 + f1) − p2λβ

(1)
2 (1 + f2)

. (3.16)

Further, from the normalizing condition V0+Aq(1) = 1, we get the steady-state probability
that the system is empty as

V0 = 1 − p1λβ
(1)
1 (1 + f1) + p2λβ

(1)
2 (1 + f2)

Θ′ , (3.17)

and the steady-state probability that the system is in idle state as

ρ = p1λ(1 + f1)β(1)
1 + p2λ(1 + f2)β(1)

2 . (3.18)

Now from Equation (3.17), we have the condition that ρ

Θ′ < 1, which is the condition of
stability necessary for the steady state solution to exist, see pp. 303 in [20].

Theorem 3.1. The average queue size (Mq) under steady state is given by

Mq =

2f1p1λ2β
(2)
1 + (1 − f1)p1

[
λ2β

(2)
1 + λβ

(1)
1

]
+ 2f2p2λ2β

(2)
2 + (1 − f2)p2

[
λ2β

(2)
2 + λβ

(1)
2

]
2
[
1 − Θ − p1λβ

(1)
1 (1 + f1) − p2λβ

(1)
2 (1 + f2)

] . (3.19)

Proof. Differentiating Equation (3.15) with respect to z and then setting z = 1, i.e.,
Mq = lim

z→1
d
dz Aq(z), we obtain the required result. □

Remark 3.2. If Wq denotes the steady state average waiting time in the queue, then this
can be obtained by the following relation.

Wq = Mq

λ
(3.20)

Theorem 3.3. Under the stability condition ρ

Θ′ < 1, we can obtain the probabilities of
different system states as follows:

(A): The probability of the server being busy in the FTS is given by, PB1 = λp1β
(1)
1

Θ′ .

(B): The probability of the server being busy in STS is given by, PB2 = λp2β
(1)
2

Θ′ .

(C): The probability of the server being busy in FRS is given by, PF1 = λp1f1β
(1)
1

Θ′ .

(D): The probability of the server being busy in SRS is given by, PF2 = λp2f2β
(1)
2

Θ′ .

Proof. Taking limit z → 1 in Aj(z) and Bj(z), we obtain the required results. □

3.2. PGF of the queue size distribution at departure epoch
Let hi be the probability that there are i (≥ 0) customers in the queue at a departure

epoch. Further, let H(z) be the corresponding PGF, i.e., H(z) =
∞∑

i=0
hiz

i.
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Theorem 3.4. Under the condition ρ

Θ′ < 1, the PGF of queue size distribution at depar-
ture epoch H(z) is given by

H(z) =

(
Θ′ − p1λβ

(1)
1 (1 + f1) − p2λβ

(1)
2 (1 + f2)

)
(Θz + Θ′)(1 − z)

((
(1 − f1)

+ f1B∗
1(λ − λz)

)
p1B∗

1(λ − λz) +
(
(1 − f2) + f2B∗

2(λ − λz)
)
p2B∗

2(λ − λz)
)

z − (Θz + Θ′)
((

(1 − f1) + f1B∗
1(λ − λz)

)
p1B∗

1(λ − λz)

+
(
(1 − f2) + f2B∗

2(λ − λz)
)
p2B∗

2(λ − λz)
)

.

(3.21)

Proof. Based on the empirical evidence presented in [29], we can firmly state that if a
customer observes i customers in the queue right after finishing their service, it means that
there were exactly i customers in the queue right before their service ended. To represent
the probability of having i customers in the queue at the service completion epoch, and
by denoting it as hi where i = 0, 1, 2, . . . , we can express as follows:

h0 = T (1 − f1)Θ′
∫ ∞

0
ξ1(x)A0,1(x)dx + T (1 − f2)Θ′

∫ ∞

0
ξ2(x)A0,2(x)dx

+ TΘ′
∫ ∞

0
ξ1(x)B0,1(x)dx + TΘ′

∫ ∞

0
ξ2(x)B0,2(x)dx, (3.22)

hi = T (1 − f1)
(

Θ′
∫ ∞

0
ξ1(x)Ai,1(x)dx + Θ

∫ ∞

0
ξ1(x)Ai−1,1(x)dx

)
+ T (1 − f2)

(
Θ′
∫ ∞

0
ξ2(x)Ai,2(x)dx + Θ

∫ ∞

0
ξ2(x)Ai−1,2(x)dx

)
+ T

(
Θ′
∫ ∞

0
ξ1(x)Bi,1(x)dx + Θ

∫ ∞

0
ξ1(x)Bi−1,1(x)dx

)
+ T

(
Θ′
∫ ∞

0
ξ2(x)Bi,2(x)dx + Θ

∫ ∞

0
ξ2(x)Bi−1,2(x)dx

)
, i ≥ 1, (3.23)

where T represents the normalizing constant. To derive the following expression we mul-
tiply Equations (3.22)-(3.23) by zi and then summing over the range of i, we obtain as

H(z) =

TλV0(Θz + Θ′)(1 − z)
[(

(1 − f1) + f1B∗
1(λ − λz)

)
p1B∗

1(λ − λz)
+
(
(1 − f2) + f2B∗

2(λ − λz)
)
p2B∗

2(λ − λz)
]

z − (Θz + Θ′)
[(

(1 − f1) + f1B∗
1(λ − λz)

)
p1B∗

1(λ − λz)
+
(
(1 − f2) + f2B∗

2(λ − λz)
)
p2B∗

2(λ − λz)
] . (3.24)

Taking limit z → 1 in Equation (3.24), we get

T = Θ′ − p1λβ
(1)
1 (1 + f1) − p2λβ

(1)
2 (1 + f2)

λV0
. (3.25)

Now using Equation (3.25) in Equation (3.24), we get H(z) as given in Equation (3.21). □

Remark 3.5. If we take p1 = 1 or p2 = 0, that is, there is no STS in the system and
(f1, f2) = 0 means no re-service in the system, then Equation (3.21) reduces to

H(z) = (Θ′ − ρ)(1 − z)(Θz + Θ′)B∗
1(λ − λz)

[(Θz + Θ′)B∗
1(λ − λz) − z]

. (3.26)

This is the PGF of queue size distribution at departure epoch which matches with the
Equation (14) of [27].

Theorem 3.6. Based on the PGF of the queue size distribution at departure epoch, we
can generalize the Pollaczek Khinchine formula.
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Proof. Takagi [26] in the page number (51) states the behavior of queue size distribution
at departure epoch of M/G/1 queue with Bernoulli feedback system, let Φ(z) be the PGF
of queue size distribution at a departure epoch then by utilizing the argument of [26], we
have

Φ(z) = H(z)
Θz + Θ′ . (3.27)

Now using Equation (3.21) in Equation (3.27), we get

Φ(z) =

(Θ′ − ρ)(z − 1)
[(

(1 − f1) + f1B∗
1(λ − λz)

)
p1B∗

1(λ − λz)
+
(
(1 − f2) + f2B∗

2(λ − λz)
)
p2B∗

2(λ − λz)
]

z − (Θz + Θ′)
[(

(1 − f1) + f1B∗
1(λ − λz)

)
p1B∗

1(λ − λz)
+
(
(1 − f2) + f2B∗

2(λ − λz)
)
p2B∗

2(λ − λz)
] , (3.28)

which satisfies the well known Pollaczek Khinchine formula. □

Remark 3.7. In the above result setting p1 = 1, p2 = 0, (f1, f2) = 0, we get the
result which was derived by [25] in the standard M/G/1 queueing system with Bernoulli
feedback. That is

Φ(z) = (Θ′ − ρ)(z − 1)B∗
1(λ − λz)

z − (Θz + Θ′)B∗
1(λ − λz)

.

Remark 3.8. Let L+ be the mean queue size at departure epoch. Differentiating Equation
(3.28) with respect to z and then setting z = 1, we get

L+ =
(

dΦ(z)
dz

)
z=1

= ρ(1 − ρ)
(Θ′ − ρ)

+
λ2
((

β
(2)
1 + β

(2)
2 f1

)
p1 + (1 + f2) p2β

(2)
2

)
2(Θ′ − ρ)

+
λ2
(

p1
(
β

(1)
1

)2
(f1 − 2) + p2

(
β

(1)
2

)2
f2

)
(Θ′ − ρ)

. (3.29)

3.3. LST of response time distribution
An arbitrary customer’s response time is the time duration associated from its arrival

epoch to the instant of departure. The PDF of the response time is dependable on the
service discipline.

Theorem 3.9. If we denote the response time of an arbitrary customer as R, then subject
to the stability condition where ρ

Θ′ < 1, we can determine the corresponding Laplace-
Stieltjes transform (LST) of the response time (R ∗ (S)) and the expressions for the value
is

R∗(s) = s(Θ′ − ρ)B∗(s)
(s − λ) + (λ − sΘ)B∗(s)

. (3.30)

Proof. In order to find R∗(s), we need to obtain some important results. Let βT denotes
the time interval from the instant of starting any type of service to the final departure
epoch with no or at least one Bernoulli feedback. Further, assume that the LST of βT is
denoted by β∗

T (s). Then β∗
T (s) is given by (see [24])

β∗
T (s) =

∞∑
n=0

Θ′B∗(s)[ΘB∗(s)]n = Θ′B∗(s)
1 − ΘB∗(s)

. (3.31)

Now, let D be the delay of a test unit and D∗(s) be the corresponding LST. The delay
of the test unit of the first unit in MX/G/1 queueing system is equivalent to the delay
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of a test unit in an ordinary M/G/1 queueing system with Bernoulli feedback, see [4].
Therefore, D∗(s) is given by

D∗(s) = s(1 − ρ/Θ′)
s − λ (1 − β∗

T (s))
. (3.32)

Since, the response time constitutes with two important random variables: βT and D.
Thus, the LST of the response time in our system under study is given by

R∗(s) = D∗(s)β∗
T (s). (3.33)

Using Equations (3.31)-(3.32) in Equation (3.33) gives Equation (3.30).
There are different ways to admit to the system for taking the service again of the

unsuccessful unit. In [25], a feedback customer takes service by joining the tail of the
queue; in [26] such a customer joins the queue under random order service discipline. In
our model, we have considered that the customer joins the tail of the original queue and
is immediately taken for service again and again. However, the expected response time
performs the same for all the different service disciplines. □

Remark 3.10. Differentiating Equation (3.30) with respect to s and then putting s = 0
and multiplying the obtained result by −1, we get the mean response time (E(R)) of the
model as

E(R) =

(
2
λ

)
ρ(1 − ρ) + λ

(
p1β

(2)
1 + p2β

(2)
2

)
− λp1

(
2(2 − f1)

(
β

(1)
1

)2
− f1β

(2)
1

)
+ λp2

(
2
(
β

(1)
2

)2
+ β

(2)
2

)
f2

2(Θ′ − ρ)
. (3.34)

Remark 3.11. Comparing E(R) and L+ from Equations (3.29) and (3.34), we have
λL+ = E(R) at the departure epoch. This relationship verifies the Little’s formula for our
mathematical model.

3.4. LST of the inter departure time distribution
The LST of the inter departure time under steady state condition is obtained as

T ∗
D(s) = ρ

Θ′ β
∗
T (s) +

(
1 − ρ

Θ′

)
β∗

T (s)I∗
A(s), (3.35)

where I∗
A(s)

(
= λ

λ+s

)
is the LST of inter arrival time distribution. Therefore, Equation

(3.35) gives

T ∗
D(s) =

(ρs + λΘ′)
(

((1 − f1) + f1B∗
1(s)) p1B∗

1(s) + ((1 − f2) + f2B∗
2(s)) p2B∗

2(s)
)

(λ + s)
(
1 − Θ

(
((1 − f1) + f1B∗

1(s)) p1B∗
1(s) + ((1 − f2) + f2B∗

2(s)) p2B∗
2(s)

)) .

3.5. LST of the busy period distribution
The term busy period refers to a specific time duration when the server is consistently

engaged and remains occupied until it eventually becomes idle again. If Tbp indicates the
length of the busy period and T ∗

bp(s) is the LST of the busy period distribution then we
have

T ∗
bp(s) = L∗

mst

(
s + λ − λT ∗

bp(s)
)

. (3.36)

This is written from the standard argument derived by [25]. L∗
mst(s) indicates the LST of

the modified service time with no or at least one Bernoulli feedback; i.e., here L∗
mst(s) =

β∗
T (s).
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Theorem 3.12. If ρ

Θ′ < 1, then the first and second moment of the length of the busy
period are given as

first moment =
β

(1)
2 + f2β

(1)
2 + p1

(
(β(1)

1 − β
(1)
2 ) − (f2β

(1)
2 − f1β

(1)
1 )

)
Θ′ − λ

(
β

(1)
2 + f2β

(1)
2 + p1

(
(β(1)

1 − β
(1)
2 ) − (f2β

(1)
2 − f1β

(1)
1 )

)) ,

second moment = Θ′3∆(p1, Θ, f1, f2)(
Θ′ − λ

(
β

(1)
2 + f2β

(1)
2 + p1

(
(β(1)

1 − β
(1)
2 ) − (f2β

(1)
2 − f1β

(1)
1 )

)))3 ,

where ∆(p1, Θ, f1, f2) =
( 1

(Θ − 1)2
(
β

(2)
2 +Θβ

(2)
2 +2Θf2

2 β
(2)
2 +2Θp2

1(−β
(1)
1 +β

(1)
2 −f1β

(1)
1 +

f2(β(1)
2 ))2 +f2(2(1+Θ)(β(1)

2 )2 −(Θ−1)β(2)
2 )+p1(β(2)

1 −Θβ
(2)
1 +4Θβ

(1)
1 β

(1)
2 −β

(2)
2 −3Θβ

(2)
2 +

4Θf2β
(1)
1 β

(1)
2 −2f2(β(1)

2 )2−6Θf2(β(1)
2 )2−f2β

(2)
2 +Θf2β

(2)
2 −4Θf2

2 β
(2)
2 +f1(−2(Θ−1)β(1)

1 β
(1)
1 +

4Θβ
(1)
2 β

(1)
1 + β

(2)
1 − Θβ

(2)
1 + 4Θf2β

(1)
1 β

(1)
2 ))

))
.

Proof. To find the first moment of the length of the busy period, the reader can obtain
it by taking the derivative of T ∗

bp(s) with respect to s, then substituting s with 0. Finally,
multiply the resulting value by -1. This is also represented the average length of the busy
period of the system. Here,

E(Tbp) = −L∗(1)
mst(0)

(
1 − λT ∗(1)

bp (0)
)

.

And the second moment of Tbp is

E(T 2
bp) =

(
d2

ds2 T ∗
bp(s)

)
s=0

= L∗(2)
mst(0)

(
1 − λT ∗(1)

bp (0)
)2

+ L∗(1)
mst(0)

(
−λT ∗(2)

bp (0)
)

.

□

4. Embedded Markov chain result (PGF of the queue size distribution
at departure epoch)

Suppose, ti represents the time of ith service completion epoch, specifically indicating
the epoch when the total service required by a customer ends. We can observe that a
sequence denoted as Xm = N(tm + 0) (where N(tm) signifies the number of units in the
system at the time instant tm) forms a discrete time Markov chain (DTMC). This DTMC
serves as an embedded Markov renewal process of a continuous time Markov process. The
sequence {Xm; m ≥ 0} exhibits homogeneous DTMC and it is owing to the following
transition.

Xm+1 =
{

Lm+1 − 1, if Xm = 0
Xm + Lm+1 − 1, if Xm > 0,

(4.1)

where Lm signifies the quantity of units that have entered the system during the mth total
service period.

Furthermore, we introduce △i,m matrix which was originally introduced and examined
by [1]. This matrix is closely linked to the transition probability matrix (TPM), denoted
as P = (pk,n).

A finite or infinite stochastic matrix P = (pk,n) is called a △i,m matrix, m ≥ i ≥ 1 if
pk,n for k > m and k − n > i.

When i = m, then △i,m matrix reduces to △m matrix, which in fact is a special case
of △2 matrix. Thus, the TPM P = (pk,n) associated with the DTMC {Xm; m ≥ 1} is of
the form.
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P =


P00 P01 P02 ...
P10 P11 P12 ...
0 P21 P22 ...
0 0 P32 ...
: : : :


Here,

Pkn =


∑n+1

i=1
∑2

j=1 pj ((1 − fj)dj,n−i+1 + fjγj,n−i+1) , if k = 0, n = 0
2∑

j=1
pj ((1 − fj)dj,m−i+1 + fjγj,n−i+1) , if k ≥ n − 1, n ≥ 1

0, if k ≥ 1, 0 ≤ n ≤ k − 1.

(4.2)

Let us define,

dj,n =
∞∫

o

e−λx(λx)n

n!
dBj(x),

γj,n =
∞∫

o

e−λx(λx)n

n!
dFj(x),

where dj,n characterizes the probability that ‘n’ units enter during the j type of service,
and γj,n characterizes the probability that ‘n’ units enter during the j type of repeated
service.
Next, we assume that:

ρ

Θ′ =

 2∑
j=1

pj(ρBj + fjρFj )

 < 1,

where ρBj = λβ
(1)
j , ρFj = λγ

(1)
j to generate that {Xm; m ≥ 0} is positive recurrent.

Consequently, ρ
Θ′ < 1 is the necessary and sufficient condition for the existence of steady

state condition. Thus, limiting probability hn = lim
m→∞

Prob (Xm = n) exist and is positive.
then the Kolmogorov equation associated with DTMC Xm; m ≥ 0 can be written as

hn =
∞∑

k=0
hkPkn; n ≥ 0.

This implies that, for n ≥ 0, we have

hn =
n+1∑
m=1

(h0(1 − z) + hm)
[ 2∑

j=1
pj((1 − rj)dj,n−m+1 + fjγj,n−m+1)

]
; n ≥ 0. (4.3)

Next, let us define the following PGF’s for hn, dj,n, γj,n, j ∈ {1, 2} as

H(z) =
∞∑

n=0
znhn,

Dj(z) =
∞∑

n=0
zndj,n,

γj(z) =
∞∑

n=0
znγj,n,

respectively.
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Then from Equation (4.3) we have

H(z) = h0 (1 − z)


2∑

j=1
pj ((1 − fj)Dj(z) + fjγj(z)) z−1

+ (H(z) − h0)
(

2∑
j=1

pj ((1 − rj)Dj(z) + fjγj(z)) z−1
)
 . (4.4)

Now, because of the presence of convolution, Equation (4.4) can be transformed with the
help of PGF’s:

Dj(z) = B∗
j (λ − λz),

γj(z) = Dj(z)B∗
j (λ − λz), for j = 1, 2.

Therefore, from Equation (4.4), we have

H(z) =
h0[1 − α(z)]

[∑2
j=1 pj((1 − fj) + fjR∗

j (λ − λz))B∗
j (λ − λz))

]
(Θ′ + Θz)[∑2

j=1 pj((1 − fj) + fjB∗
j (λ − λz))B∗

j (λ − λz))(Θ′ + Θz) − z
] . (4.5)

Now, since
∞∑

n=0
hn = H(1) = 1, Equation (4.5) yields

h0 = (Θ′ − ρ). (4.6)
By observing Equation (4.6) as provided above, it is apparent that ρ

Θ′ < 1. This condi-
tion serves as the necessary and sufficient requirement for the existence of a steady-state
solution in our model. Consequently, with ρ

Θ′ < 1 we can derive as follows:

(Θ′ + Θz)
2∑

j=1
pj((1 − fj) + fjB∗

j (λ − λz))B∗
j (λ − λz) − z = 0,

which never vanishes inside the region |z| ≤ 1, by virtue of Rouche’s theorem.

Therefore, by utilizing Equation (4.6) in Equation (4.5) we ultimately obtain the prob-
ability generating function (PGF) for the queue size distribution at departure epoch as
shown below:

H(z) =
(Θ′ − ρ)(1 − z)

[∑2
j=1 pj((1 − fj) + fjB∗

j (λ − λz))B∗
j (λ − λz))

]
(Θ′ + Θz)[∑2

j=1 pj((1 − fj) + fjB∗
j (λ − λz))B∗

j (λ − λz))(Θ′ + Θz) − z
] ,

(4.7)
where,

ρ = p1λ(1 + f1)β(1)
1 + p2λ(1 + f2)β(1)

2 .

5. Cost analysis
Cost analysis is the most important fact in any practical situation at every stage. It

is quite natural that the management of the system desires to minimize the total average
cost. In this Section, the cost model for the proposed queueing system is developed and
the total expected cost per unit of time is given by

TC = ChMq + C0

(
ρ

Θ′

)
+ CS

( 1
µbc

)
where,
Ch is the holding costs per unit time for each customer present in the system,
C0 is the cost per unit time for keeping the server on and in operations,
CS is the setup cost per busy cycle.
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Mq is the average queue size under steady state which is available in Theorem 3.1, where

Mq =

2f1p1λ2β
(2)
1 + (1 − f1)p1

[
λ2β

(2)
1 + λβ

(1)
1

]
+ 2f2p2λ2β

(2)
2 + (1 − f2)p2

[
λ2β

(2)
2 + λβ

(1)
2

]
2
[
1 − Θ − p1λβ

(1)
1 (1 + f1) − p2λβ

(1)
2 (1 + f2)

] .

( ρ
Θ′
)

is the stability condition necessary for the steady state solution exists, where

ρ = p1λ(1 + f1)β(1)
1 + p2λ(1 + f2)β(1)

2 .

And, µbc is the mean busy cycle, i.e.,

Mean busy cycle (µbc) = Mean busy period (µbp) + Mean idle period (µip),
where,

Mean busy period (µbp) =
β

(1)
2 + f2β

(1)
2 + p1

(
(β(1)

1 − β
(1)
2 ) − (f2β

(1)
2 − f1β

(1)
1 )
)

Θ′ − λ
(

β
(1)
2 + f2β

(1)
2 + p1

(
(β(1)

1 − β
(1)
2 ) − (f2β

(1)
2 − f1β

(1)
1 )
)) ,

Mean idle period(µip) = 1
λ

.

Moreover, we can examine numerically the behavior of the expected cost function under
different values of the parameters of the model under study. The default values of the
different cost elements are considered as: Ch = 10, C0 = 150, CS = 1000 and giving the
suitable values to the other following parameters satisfies the stability condition. The
numerical results displayed in Tables 1 - 3 are obtained for the fixed parameters: p1 =
0.6, p2 = 0.4 and considering that the service time (Bj) follows exponential distribution
with parameter µj , j = 1, 2. The obtained results in Tables 1 - 3 show the effects of the
parameters of the system on the total cost (TC).

From Tables 1 - 3, we notice that for fixed arrival rate (λ), µ1, µ2 and Θ, when probability
of repeated service increases then TC decreases. This happens because when the same
customer remain in his position in queue and take more time for completion of his/her
service, then some of the customer which are staying in the queue may departs from the
system (impatient due to balking).

Table 1. Effects of different parametric values on the total expected cost (TC)
when µ1 = µ2 = 5.

µ1 = µ2 = 5
Θ = 0.4 Θ = 0.5 Θ = 0.6

λ f1 = 0.2 f1 = 0.3 f1 = 0.4 f1 = 0.2 f1 = 0.3 f1 = 0.4 f1 = 0.2 f1 = 0.3 f1 = 0.4
f2 = 0.4 f2 = 0.5 f2 = 0.6 f2 = 0.4 f2 = 0.5 f2 = 0.6 f2 = 0.4 f2 = 0.5 f2 = 0.6

0.2 196.03 195.67 195.30 195.25 194.81 194.37 194.07 193.52 192.98
0.4 358.08 354.69 351.30 349.73 345.66 341.59 337.24 332.16 327.08
0.6 486.18 477.11 468.04 463.54 452.67 441.79 429.70 416.14 402.56
0.8 580.42 563.04 545.66 536.82 516.00 495.18 471.83 445.94 420.07
0.9 614.88 592.36 569.84 558.34 531.40 504.46 474.27 440.88 407.59
1.0 640.92 612.62 584.33 569.85 536.03 502.25 464.56 422.95 381.69

Also, from Tables 1 - 3, we observe that for fixed µ1, µ2, f1, f2 and λ values when the
probability of Bernoulli feedback Θ increases then, the expected total cost (TC) decreases.
Because when after taking the service if the dis-satisfied customer increases then obviously
some of the customer in the queue which are waiting for taking service may departs from
the system and therefore TC decreases, which generates a negative impact in the economy.
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Table 2. Effects of different parametric values on the total expected cost (TC)
when µ1 = µ2 = 10.

µ1 = µ2 = 10
Θ = 0.4 Θ = 0.5 Θ = 0.6

λ f1 = 0.2 f1 = 0.3 f1 = 0.4 f1 = 0.2 f1 = 0.3 f1 = 0.4 f1 = 0.2 f1 = 0.3 f1 = 0.4
f2 = 0.4 f2 = 0.5 f2 = 0.6 f2 = 0.4 f2 = 0.5 f2 = 0.6 f2 = 0.4 f2 = 0.5 f2 = 0.6

0.2 198.00 197.82 197.64 197.60 197.38 197.16 197.01 196.73 196.46
0.4 378.97 377.27 375.57 374.77 372.73 370.69 368.47 365.92 363.38
0.6 542.90 538.36 533.81 531.50 526.05 520.59 514.41 507.59 500.77
0.8 689.81 681.09 672.36 667.81 657.34 646.87 634.84 621.76 608.68
0.9 756.88 745.57 734.26 728.31 714.74 701.17 685.50 668.54 651.58
1.0 819.70 805.47 791.24 783.71 766.64 749.56 729.79 708.46 687.12

Table 3. Effects of different parametric values on the total expected cost (TC)
when µ1 = µ2 = 20.

µ1 = µ2 = 20
Θ = 0.4 Θ = 0.5 Θ = 0.6

λ f1 = 0.2 f1 = 0.3 f1 = 0.4 f1 = 0.2 f1 = 0.3 f1 = 0.4 f1 = 0.2 f1 = 0.3 f1 = 0.4
f2 = 0.4 f2 = 0.5 f2 = 0.6 f2 = 0.4 f2 = 0.5 f2 = 0.6 f2 = 0.4 f2 = 0.5 f2 = 0.6

0.2 198.10 198.91 198.81 198.80 198.69 198.58 198.50 198.36 198.22
0.4 389.47 388.62 387.77 387.36 386.34 385.32 384.21 382.93 381.66
0.6 571.41 569.14 566.86 565.70 562.97 560.24 557.13 553.72 550.31
0.8 744.83 740.47 736.10 733.81 728.57 723.33 717.27 710.72 704.18
0.9 828.35 822.69 817.03 814.03 807.23 800.44 792.55 784.06 775.57
1.0 909.73 902.61 895.48 891.69 883.14 874.59 864.63 853.95 843.26

Upon examining from Tables 1 - 3 we observe that as the values of µ1 and µ2 increase,
the total expected cost (TC) also increases if the other parametric values are fixed.

On the other hand, from Table 1 we notice that the minimum total incurred cost is
192.98 for the optimal parameters (Θ = 0.6, f1 = 0.4, f2 = 0.6, µ1 = µ2 = 5, λ = 0.2),
from Table 2 we observe that the minimum total incurred cost is 196.46 for the optimal
parameters (Θ = 0.6, f1 = 0.4, f2 = 0.6, µ1 = µ2 = 10, λ = 0.2), and from Table 3
we notice that the minimum total incurred cost is 198.22 for the optimal parameters
(Θ = 0.6, f1 = 0.4, f2 = 0.6, µ1 = µ2 = 20, λ = 0.2).

Therefore, from the above numerical analysis we observed that the influence of param-
eters on the total cost (TC) in the system coincides with the practical situations.

6. Simulation study
In this Section, we show how different parameters affect the system performance by

means of some graphical results. In Figure 2 - Figure 5, we assume that the service time
distribution follows exponential distribution with parameter µj , j = 1, 2 and we consider
the following four cases:

case 1: µ1 = µ2 = 3,
case 2: µ1 = µ2 = 10,
case 3: µ1 = 3 < µ2 = 10,
case 4: µ1 = 10 > µ2 = 3.

The other parametric values for Figure 2 are p1 = 0.2, p2 = 0.8, f1 = 0.1, f2 = 0.2, Θ =
0.3. We notice from Figure 2 that for each case, the average queue size under steady state
is seen to be increased as the customer’s arrival rate increases. But in the lower arrival
rate mean queue size under steady state is insensitive to each case. For fix and higher
arrival rate the mean queue size under steady state is maximum as the condition of case 1
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is noticed and minimum as the condition of case 2 is fulfilled. We have also noticed from
Figure 2 that in case 4 for fixed and higher arrival rate the mean queue size under steady
state is higher as compared to case 3.
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Figure 2. Impact of λ on Mq for different service rates.

The parametric values of Figure 3 are λ = 0.3, f1 = 0.1, f2 = 0.2, Θ = 0.3 and observe
that for fixed and lower p1 the average queue size under steady state is maximum as the
condition of case 1 is fulfilled and minimum as the condition of case 2 is noticed. So we
may conclude that for equal and lower µ1, µ2 value gives maximum Mq and equal and
higher µ1, µ2 value gives minimum Mq for increasing value of p1. In case 3 the average
queue size under steady state increases as p1 increases, in case 4 Mq behaves downward
for increasing value of p1.
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Figure 3. Impact of p1 on Mq for different service rates.

In Figure 4 the parametric values are p1 = 0.2, p2 = 0.8, f1 = 0.1, f2 = 0.2, Θ = 0.3 and
notice that for all the four cases the effect of arrival rate on Wq is similar as that of Mq in
Figure 2. Moreover, in Figure 5 the parametric values are λ = 0.4, f1 = 0.6, f2 = 0.8, Θ =
0.6 and observe that the effect of p1 on Wq is similar as that of Mq in Figure 3.
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Figure 6. Effects of λ on L+ for different f1 and f2.

In Figure 6, the general service time and repeated service time follow exponential dis-
tribution as Bj ∼ Exp(75) and Fj ∼ Exp(50), respectively, and the other parametric
values are p1 = 0.6, p2 = 0.4, Θ = 0.2. We observe the mean queue size at departure
epoch (L+) with customer’s arrival rate for considering the three situations of repeated
probability f1 = 0.2, f2 = 0.2; f1 = 0.2, f2 = 0.8; and f1 = 0.8, f2 = 0.8. From Figure
6 we have noticed that for all these above mentioned three situations the mean queue
size at departure epoch is increases as arrival rate increases, but L+ is insensitive to the
above three situations as the arrival rate is lower. For fixed and higher λ, L+ is maxi-
mum when f1 = 0.8, f2 = 0.8, but L+ is minimum when f1 = 0.2, f2 = 0.2 and when
f1 = 0.2, f2 = 0.8, L+ seems moderate as compared to other two situations.
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Table 4 shows the effect of general service and re-service on the system state proba-
bilities. The general service time follows exponential distribution with parameter µj ,i.e.
Bj ∼ Exp(µj) so β

(1)
j = 1

µj
, β

(2)
j = 2

µ2
j
, j = 1, 2 and consider the two situations: µ1 = µ2 =

20 and µ1 = 30, µ2 = 35.

Table 4. Effect of different parameters on the system state probabilities.

λ = 5, Θ = 0.4, µ1 = µ2 = 20
p1 PB1 PB2 f1 f2 ρ PF1 PF2

0.0000 0.0000 0.4167 0.0100 1.0000 0.5000 0.0000 0.4167
0.1000 0.0417 0.3750 0.1100 0.9000 0.4553 0.0046 0.3375
0.3000 0.1250 0.2917 0.3100 0.7000 0.3957 0.0387 0.2042
0.4000 0.1667 0.2500 0.4100 0.6000 0.3810 0.0683 0.1500
0.5000 0.2083 0.2083 0.5100 0.5000 0.3762 0.1062 0.1042
0.6000 0.2500 0.1667 0.6100 0.4000 0.3815 0.1525 0.0667
0.7000 0.2917 0.1250 0.7100 0.3000 0.3967 0.2071 0.0375

λ = 5, Θ = 0.4, µ1 = 30, µ2 = 35
p1 PB1 PB2 f1 f2 ρ PF1 PF2

0.0000 0.0000 0.2381 0.0100 1.0000 0.2857 0.0000 0.2381
0.1000 0.0278 0.2143 0.1100 0.9000 0.2628 0.0030 0.1928
0.2000 0.0555 0.1905 0.2100 0.8000 0.2460 0.0117 0.1524
0.3000 0.0833 0.1667 0.3100 0.7000 0.2355 0.0258 0.1167
0.4000 0.1111 0.1428 0.4100 0.6000 0.2311 0.0455 0.0857
0.5000 0.1389 0.1190 0.5100 0.5000 0.2330 0.0708 0.0595
0.6000 0.1667 0.0952 0.6100 0.4000 0.2410 0.1017 0.0381
0.7000 0.1944 0.0714 0.7100 0.3000 0.2552 0.1380 0.0214

One can observe from Table 4 that for µ1 = µ2 = 20, PB1 is increasing and PB2 is
decreasing with p1 since PB1 and PB2 are proportional to p1 and p2 = (1−p1), respectively.
Further, since PF1 is proportional to p1 and f1, thus PF1 is increasing with p1 and f1.
Moreover, as PF2 is proportional to p2 = (1 − p1) and f2, thus PF2 is decreasing with
the increment in p1 and decrement in f2. Now for µ1 = 30, µ2 = 35 similar behavior of
PB1 , PB2 , PF1 , and PF2 are observed. However, the probabilities are lower as compared
to µ1 = µ2 = 20.

Table 5. Effect of arrival rate and feedback probability on mean response time

ρ ↓ λ ↓ Θ → 0.2667 0.3556 0.4444 0.5333 0.6222 0.7111 0.8000
0.0190 0.0500 0.5194 0.5932 0.6915 0.8287 1.0341 1.3746 2.0497
0.0359 0.0944 0.5205 0.5965 0.6985 0.8427 1.0617 1.4348 2.2119
0.0528 0.1389 0.5216 0.6000 0.7061 0.8577 1.0923 1.5036 2.4114
0.0697 0.1833 0.5229 0.6037 0.7142 0.8741 1.1262 1.5829 2.6625
0.0866 0.2278 0.5241 0.6077 0.7228 0.8919 1.1641 1.6755 2.9883
0.1034 0.2722 0.5255 0.6119 0.7321 0.9113 1.2066 1.7850 3.4282
0.1203 0.3167 0.5269 0.6163 0.7422 0.9327 1.2547 1.9163 4.0546
0.1372 0.3611 0.5286 0.6211 0.7530 0.9562 1.3095 2.0770 5.0180
0.1541 0.4056 0.5301 0.6261 0.7648 0.9823 1.3727 2.2780 6.6905
0.1710 0.4500 0.5317 0.6316 0.7776 1.0113 1.4461 2.5365 10.3110

Table 5 shows the variation of the mean response time with arrival rate and feedback
probability for exponentially distributed service time with parameter µj , j = 1, 2. One
can observe from the Table 5 that for fixed ρ and λ, the mean response time increases
with the increment in the value of Θ. Further, for any fixed value of Θ, the mean response
time also increases with the increment in ρ and λ. This variation seems prevalent with the
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increasing value of Θ and λ, the numbers of customers and feedback customers become
larger as such the mean response time increases rapidly. Further, the effect of re-service
on the mean response time is shown in Table 6.

Table 6. Effect of re-service on the mean response time.

µ1 = µ2 = 3 µ1 = µ2 = 10
Θ f1 = 0.1 f1 = 0.6 f1 = 0.8 f1 = 0.1 f1 = 0.6 f1 = 0.8

f2 = 0.3 f2 = 0.2 f2 = 1.0 f2 = 0.3 f2 = 0.2 f2 = 1.0
0.00000 0.43992 0.44732 0.69990 0.12771 0.12977 0.19990
0.08333 0.48287 0.49104 0.77114 0.13957 0.14182 0.21867
0.16667 0.53510 0.54423 0.85853 0.15385 0.15634 0.24135

λ = 0.15 0.25000 0.60001 0.61034 0.96826 0.17138 0.17417 0.26924
p1 = 0.2 0.33333 0.68284 0.69473 1.11015 0.19343 0.19659 0.30445

0.41667 0.79220 0.80621 1.30077 0.22199 0.22562 0.35025
0.50000 0.94326 0.96031 1.57041 0.26044 0.26473 0.41228
0.58333 1.16552 1.18722 1.98109 0.31500 0.32023 0.50099
0.66667 1.52481 1.55455 2.68261 0.39849 0.40519 0.63836
0.75000 2.20431 2.25104 4.1533 0.54218 0.55148 0.87950

µ1 = 3, µ2 = 10 µ1 = 10, µ2 = 3
Θ f1 = 0.1 f1 = 0.6 f1 = 0.8 f1 = 0.1 f1 = 0.6 f1 = 0.8

f2 = 0.3 f2 = 0.2 f2 = 1.0 f2 = 0.3 f2 = 0.2 f2 = 1.0
0.00000 0.17657 0.20509 0.28585 0.39099 0.37177 0.61327
0.08333 0.19310 0.22437 0.31308 0.42882 0.40763 0.67474
0.16667 0.21304 0.24766 0.34604 0.47475 0.45115 0.74992

λ = 0.15 0.25000 0.23759 0.27634 0.38678 0.53170 0.50508 0.84395
p1 = 0.2 0.33333 0.26852 0.31253 0.43838 0.60418 0.57364 0.96495

0.41667 0.30871 0.35963 0.50586 0.69953 0.66374 1.12644
0.50000 0.36305 0.42345 0.59790 0.83061 0.78744 1.35285
0.58333 0.44062 0.51481 0.73089 1.02215 0.96778 1.69317
0.66667 0.56032 0.65642 0.93995 1.32852 1.25526 2.26227
0.75000 0.76934 0.90552 1.31654 1.89714 1.78571 3.40761

Now, we present some numerical computations to show the effect of different parameters
on the mean response time, see Figures 7 - 10.

Figure 7. λ = 0.15, p1 = 0.2, f1 = 0.1, f2 = 0.3.
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Figure 8. λ = 0.15, p1 = 0.2, f1 = 0.8, f2 = 1.0.

Figure 9. λ = 0.55, p1 = 0.4, f1 = 0.1, f2 = 0.3.

Figure 10. λ = 0.55, p1 = 0.8, f1 = 0.1, f2 = 0.3.

For this, we have chosen for Figures 7-10 that the service time distribution follows the
exponential distribution with parameter µj , j = 1, 2. For the numerical observation, we
have also considered the following cases under ρ

Θ′ < 1, that is,



872 S. Mahanta, N. Kumar, and G. Choudhury

case 1: µ1 = µ2 = 3,
case 2: µ1 = µ2 = 10,
case 3: µ1 = 3 < µ2 = 10,
case 4: µ1 = 10 > µ2 = 3.

and observe from Figures 7 - Figure 10 that the mean response time is highest for case 1
and lowest for case 2, under the condition that the other parameters are fixed. Therefore
it is clear that in the situation of µ1 = µ2 the mean response time decreases when µi’s are
increases.

In Figure 11, we consider the parametric values as p1 = 0.2, f1 = 0.6, p2 = 0.8,
f2 = 0.4, ρ = 0.2, Θ = 0.2, µ1 = 5, µ2 = 7 to exhibit the behavior of mean response time
of an arbitrary customer on the arrival rate for different service time distributions: hyper-
exponential, exponential and 2-stage Erlang distribution with parameter µj , j = 1, 2.
From the Figure 11, we see that for higher arrival rate, the mean response time is larger
when service time follows hyper-exponential distribution as compared to 2-stage Erlang
and exponentially distributed service time.
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Figure 11. Effects of λ on E(R).

From Figures 12 - 15 we consider that the service time distribution follows exponential,
hyper-exponential and 2-stage Erlang with parameter µj , j = 1, 2.
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Figure 12. Effects of p1 on E(R).

The other parameters for Figure 12 are λ = 3, f1 = 0.6, f2 = 0.4, Θ = 0.2, µ1 = 0.8, µ2 =
2.0 and notice that mean response time increases as p1 increases. For fixed p1, mean
response time is higher when the service time distribution follows 2-stage Erlang whereas it
provides the lower mean response time for exponential distribution. The customers’ mean
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response time for hyper-exponential service time distribution stays in between exponential
and 2-stage Erlang service time distribution. Therefore, we may conclude that as the
service time follows exponential distribution then it is favorable for a customer.

In Figure 13, presuming the model parameters as λ = 3, f1 = 0.5, f2 = 0.4, Θ = 0.2, µ1 =
0.4, µ2 = 0.8 and we observe that mean response time is higher as p2 is lower. For the
three different service time distributions it is noticed that as the value of p2 increasing the
mean response time is decreasing and like the Figure 12, Figure 13 also shows that for the
exponential service time distribution the mean response time is minimum as compared to
the other two distributions.
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Figure 13. Effects of p2 on E(R).

In Figure 14, considering the model parameters as λ = 3, p1 = 0.6, f2 = 0.4, Θ =
0.2, µ1 = 0.4, µ2 = 0.8 and we have noticed that as f1 increases mean response time behaves
in opposite direction. For the exponential service time distribution mean response time
is more less by comparing when the service time distribution follows hyper-exponential or
2-stage Erlang distribution. For fixed value of f1, mean response time goes to maximum
when the service time distribution is 2-stage Erlang.
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Figure 14. Effects of f1 on E(R).

The parameters for Figure 15 as λ = 3, p1 = 0.6, f1 = 0.4, Θ = 0.2, µ1 = 0.8, µ2 = 1.5
and we have seen that for each service time distribution mean response time is lower when
f2 is higher. For fixed f2, mean response time is the lowest when service time distribution
follows exponential distribution.
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Figure 15. Effects of f2 on E(R).

7. Application
The considered queueing model has applications in the areas of manufacturing, produc-

tion, telecommunication systems, etc. A detailed application of the considered model in
digital communication network system is presented below.

The electronic mail system, commonly known as email, is a method of sending and
receiving digital messages over the internet or a computer network. It has revolutionized
communication by providing a fast, efficient, and convenient way to exchange information.
It operates on a set of protocols that define how email messages are composed, transmitted,
and delivered. The email system operates based on specific protocols, including SMTP
(Simple Mail Transfer Protocol) for sending messages and either POP (Post Office Pro-
tocol) or IMAP (Internet Message Access Protocol) for receiving and accessing emails.
These protocols guarantee the accurate transmission and delivery of emails to their in-
tended recipients.

SMTP is a standard protocol for the transmission of email via the internet. It (SMTP)
operates on top of the Transmission Control Protocol (TCP), which is one of the core
protocols of the internet protocol suite. TCP provides reliable, connection-oriented com-
munication between two devices and it ensures that data sent over the network arrives
in the correct order and without errors. When an email client or server wants to send
an email message using SMTP, it establishes a TCP connection with the destination mail
server. The SMTP client then initiates a conversation with the server, following a specific
set of commands and responses defined in the SMTP protocol. It’s worth noting that
while port 25 is the standard port for SMTP, some email service providers use alternative
ports (e.g., 587) to enhance security and prevent spam abuse. Overall, SMTP over TCP
provides a robust and widely adopted mechanism for sending and receiving email messages
on the internet.

The Post Office Protocol (POP) is an application-layer protocol used for retrieving
email messages from a remote mail server. There are two main versions of POP: POP3
and POP2. POP3 (Post Office Protocol version 3) is the most widely used version. It
allows email clients to download messages from the mail server to a local device (such as
a computer or a mobile phone) for offline access. The protocol typically operates over
TCP/IP (Transmission Control Protocol/Internet Protocol). The POP client and POP
server communicate with each other using TCP connections. TCP guarantees that the
data exchanged between the client and server is delivered accurately and in the correct
sequence. However, IMAP (Internet Message Access Protocol) is a protocol used by email
clients to retrieve and manage email messages from a mail server. IMAP operates over
TCP/IP, which provides the underlying network communication. When an email client
connects to an IMAP server, it establishes a TCP connection to the server’s IMAP port
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(usually port 143 for non-encrypted connections or port 993 for encrypted connections
using Secure Sockets Layer (SSL) or Transport Layer Security (TLS)). The client then
communicates with the server using the IMAP commands and responses over the estab-
lished TCP connection.

Figure 16. Simple mail transfer protocol (SMTP) model.

Typically, the message handling request comes to the SMTP server follows Poisson
process, and the message may select one of the two types of service (POP or IMAP) at
the SMTP server (depending upon the choice of the sender). The message transfer agent
(MTA) may resend the message again because of the failure of the previous message.
For example, since, in an end-to-end application related to SMTP (Simple Mail Transfer
Protocol), it is important for the server to be available whenever a client transmits mail.
Since, SMTP is the standard protocol used for sending email messages over the internet,
and when a client wants to send an email, it connects to an SMTP server and submits
the message for delivery. The server then processes the email, performs necessary checks
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and validations, and attempts to deliver it to the recipient’s email server. If the server is
not available or offline, the client will not be able to transmit the mail, and the delivery
process will fail.

It’s crucial for the SMTP server to be consistently available to ensure reliable email
transmission. Organizations and email service providers typically maintain redundant
and highly available server infrastructure to minimize downtime and provide uninterrupted
email services. This ensures that clients can reliably transmit their mail at any time, and
the server can handle the delivery process efficiently. On the other hand, if the recipient’s
mail server receives an email but is not satisfied with it due to late arrival, there are a
few potential scenarios and actions that can be taken, say, bouncing the email, placing
the email in the spam folder, etc. The recipient’s mail server might reject the email and
send a bounce message to the sender indicating that the email was not delivered due to
a delay. The bounce message will typically include an explanation for the rejection, and
the sender can then take appropriate action, such as resending the email. That is, this
retry mechanism allows the SMTP server to deliver the email again. The responsibility for
handling delayed emails ultimately lies with the SMTP server and its configuration. The
representation of this mechanism aligns with the principles of Bernoulli feedback. Figure
16 shows a simple model of the components of the SMTP system.

8. Concluding remark
In this paper, we have studied on a single server with two types of general heterogeneous

service under repeated service policy and Bernoulli feedback, which can be represented as
M/
(G1

G2

)
/1 queuing system. To make the queuing system into a Markovian process, we have

introduced supplementary variables. The motivation for this model comes from wide range
of applications arising in many real time systems encountered in various fields, such as in
the manufacturing system, production system, telecommunication system etc. The queue
size distribution at departure epoch, the response time distribution, inter-departure time
distribution, and also the LST of the busy period distribution are derived. Further, this
model is also observed by using the Embedded Markov chain technique and also obtain
the PGF of the queue size distribution at departure epoch. The cost function of this model
is also derived which is the most important in practical situation. Finally, the numerical
illustration provides valuable insights into the system. In future, this analytic model can
be generalized for T and D policy and also it can be observed for server breakdown and
delayed repair as a future observation.
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