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ABSTRACT : Registration errors are well-known problems in super-resolution restoration 

applications. Local outliers are caused by the registration errors and objects in motion. Instead 

of blind rejection of local outliers, we favor for the detected edges. For that, pre-estimated high-

resolution image is searched for some specified edge and corner patterns. Outlier rejection is 

performed based on the pattern found. The method is shown to reduce over-blurring caused by 

the regularization that is common in iterative super-resolution restoration algorithms.  
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UYARLANABİLİR AYKIRI DEĞER AYIKLAMA YÖNTEMİYLE 

KENAR KORUMALI YÜKSEK ÇÖZÜNÜRLÜK 

 

ÖZET : İmge çakıştırma hataları yüksek çözünürlük uygulamalarında önemli bir problem 

oluşturmaktadır. Yerel aykırı değerler sahne içindeki hareketli nesneler ve çakıştırma 

hatalarından kaynaklanmaktadır. Bu çalışmada, aykırı değerler bir dayanak olmadan atılmak 

yerine, resimler içinde belirlenen kenarlar ve köşeler gözönüne alınarak ve bulunan yerel 

yapıya göre işlem dışında tutulmaktadır. Önerilen yöntemin yinelemeli yüksek çözünürlük 

algorimalarında sıklıkla kullanılan düzenleyicilerden doğan aşırı bulanmayı azalttığı deneysel 

olarak gösterilmiştir. 

 

ANAHTAR KELIMELER : Yüksek çözünürlük, aykırı değer ayıklama, görüntü iyileştirme
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I. INTRODUCTION 

 
Reconstructing a higher resolution image using multiple images obtained from different views 

of the same scene has long been an attractive research area. Several techniques and algorithms 

with well established theoretical support are already in the daily use. The demand for higher 

quality images continues to feed interest in the related research area that seems to expand due to 

inevitable usage in HD and 3D imaging.  

Multiframe image restoration can be split into two main steps, namely, registration and 

synthesis, although there are approaches that combine these in one loop [1]. In order to be able 

to talk about achieving higher resolution (HR), registration parameters must be found in sub-

pixel accuracy. HR or higher quality can only be obtained for image areas where additional 

information is available. Additional information usually comes from other images of the same 

region. There must be sub-pixel level translations between images or they can only be used to 

reduce uncorrelated noise. A simplified observation model is illustrated in Fig.1 where 

geometric transformations for LR images are shown to be different whereas defocus and spatial 

sampling blurs are common. In practice, one of the LR images is selected as reference according 

to which the transformation parameters of other images are estimated. In Fig.1, k
th
  NM  LR 

image, nmYk , , is generated by  

nmNXHfHnmY kHcommonsensork ,****,           (1) 

where the function (.)kf  represents the geometric transformations on the original image,  is 

2D convolution,  is sampling and kN  is the noise term. commonH  and sensorH  are the blurs 

caused by the defocus and the photon summation on the sensor cells respectively. Equation-1 is 

usually simplified to summarize the relation between the desired HR ( rNrM ) image and LR 

images as KkNXHY kkk ,...,1  where r  is the enlargement factor. Here, kY  is a 

1MN  column matrix constructed from the columns of nmYk ,  image, X  is a 12MNr  

similarly constructed matrix from desired HR image pixels and kH  is a MNrMNr 22
 square 

matrix representing geometric transformations and blurs. Equations for all LR images can be 

combined to have one large system as NHXY . 
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One can generate an image with any desired number of pixels from any number and density of 

input pixels using an interpolation schema like cubic-splines [2]. 

 

 

 

Figure 1. A simplified imaging model. Trk's are rigid rotation and translations. 

 

Restoration of HR images from LR images, however, is not just an increment in the number of 

pixels. In fact, the term HR should be used to signify more information and higher accuracy in 

representing the original. This fact is evaluated by Tsai and Huang [3]. They recovered aliased 

higher frequency components in LR images using the fact that the information contained in LR 

images is independent. This approach implies that the more aliased components the higher the 

resolution we can get provided that enough number of independent LR images exist. The 

motion model used by Irani and Peleg [4] included small rigid rotations. They first estimated an 

initial HR image from which synthetic-LR images are obtained by employing pre-estimated 

motion and blur parameters. The difference between synthetic and original LR images is used as 

a metric to update the parameters, an iterative approach summarized in Fig.2. Forward path in 

Fig-2 is quite clear, however the methodology implied by 'update estimate' and 'update 

parameters' makes the difference in terms of final estimate and convergence. One may observe 

that the iterative approach depicted in Fig.2 is equivalent to the algorithmic iterative 

minimization implementation of the problem  
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p

p
HX

YHXArgMinX
,

ˆ  or, in least squares 
2

2
ˆ YHXArgMinX

X

 or 

YHXYHXArgMinX
T

X

ˆ . Size of the system is a problem and it requires a-priori 

constraints and/or regularization techniques like 

 

)(ˆ 2

2
XYHXArgMinX

X

  (2) 

 

where )(X  is the regularization term which keeps the system stable and is usually composed 

of pixel-wise differences in images so that they are penalized. 

 

 
 

Figure 2. A typical iterative correction algorithm. 

 

 

Regularization, while preventing instability, causes overly-smoothed SR results. Several 

researchers attempted to overcome smoothing problem in image restoration algorithms. Hong, 

Paik, Kim and Lee [5] first prototyped expected edge classes and performed adaptive 

interpolation accordingly for zooming in images. Battiato, Gallo and Stanco [6] too, employed 

an edge aware interpolation technique when enlarging images.  One of the earliest attempts for 

deblurring restoration using MAP estimation with generalized Gauss-Markov Random Field 
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prior has been demonstrated by Bouman and Souer [7]. Method had limited application to 

super-resolution problems and shortage of efficient algorithms with MAP estimators. Tebaul et 

al [8] compared some candidate regularization functionals for edge-preserving restoration but 

offered no method for super-resolution problems. With another single image restoration 

algorithm, Belge, Kilmer and Miller [9] claimed that discontinuities like edges are detected 

easily in wavelet domain allowing better adaptation to local features. Existing edge preserving 

regularization techniques have been summarized and the mathematical foundations of super-

resolution are evaluated by Ng and Boze [10]. New approaches like Pan and Reeves' [11], in 

which MAP estimation technique under Gauss-Markov field assumption and with Huber 

optimization criterion improved by composing shift variant and shift invariant solutions into 

one, continue to emerge. The proposed technique is yet to be implemented in super-resolution 

research, however. 

The case of differently blurred noisy samples is studied by Ward [12]. Elad and Feuer [13] have 

shown that super-resolution restoration is possible when LR images are differently blurred even 

if there is no relative motion between them. Another iterative algorithm based on projections 

onto convex sets (POCS) is employed for multiframe restoration by Özkan, Tekalp and Sezan 

[14], with the claim that the algorithm can easily handle space-varying blur. Later in 1997, Patti, 

Sezan and Tekalp included the restoration of motion blur using POCS [15]. Elad and Feuer [13], 

attempted to unify ML and MAP estimators and POCS for super-resolution restoration (SR).  

Borman and Stevenson [16] and Park, Park and Kang [17] provided comprehensive reviews on 

SR restoration algorithms and detailed coverage on SR mechanics. 

The limits of SR in conventional algorithms are analyzed by Baker and Kanade [18].  They 

stated that, given the noise characteristics, increasing the number of LR images in an attempt to 

insert additional information does not limitlessly improve HR image.  They suggested a 

recognition-like technique which they call “hallucination” in order to overcome the limits. Lin 

and Shum [19] formulated the limits of the reconstruction-based SR algorithms using 

perturbation theory to and gave the number of LR images to reach that limit without mentioning 

the preferred SR algorithm. The importance of sub-pixel image registration is obvious as 

stressed by Baker and Kanade [17] and Lin and Shum [19]. It is widely accepted that accurate 

estimation of image formation model and its employment in the reconstruction algorithm are 
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crucial for successful SR implementations. The most valuable contributions to super-resolution 

research would be the ones that improve subpixel registration accuracy, as proposed by Seke 

and Özkan [20] where common sensor geometry of array of square sensors has been exploited 

to refine subpixel registration results. 

Assuming that the registration parameters are accurate enough, we, in this paper, also 

"hallucinate" on what the SR outputs should be and pick LR samples accordingly using a 

process of outlier rejection. That is, outlier rejection and edge preservation processes are 

combined in the interpolation phase of an iterative algorithm in an attempt to create an 

intelligent fusion instead of blind employment of individual techniques. Although the literature 

on handling the outliers in SR and sub-pixel registration is sparse, it is possible to find some 

research on methods of determining and rejecting outliers. Trimeche and Yrjänäinen [21], and 

later Trimeche, Bilcu and Yrjänäinen [22] proposed an adaptive method for excluding image 

regions where the confidence on the estimated motion parameters is low. Zomet, Rav-Acha and 

S. Peleg [23] used median estimator in order to avoid outliers. Median estimators may be very 

effective for visually pleasing outcomes but as argued by Farsiu et al. [24], may prove 

ineffective for some cases. Legitimacy of median operators in outlier rejection should further be 

discussed. On the other hand, Farsiu, Robinson, Elad and Milanfar, in another work [25], first 

calculated bilateral correlations on the fused images, penalized the blocks with low bilateral 

correlation, and used median estimator and block variances as an outlier removal decision 

metric.  

The situation for synthesis from the registered pixels of LR images is illustrated in Fig-3. The 

job, here, is to estimate the intensity values at the locations of HR image pixels (shown as small 

dots) from a number of nearest LR image pixels (example has 3 LR images) which are virtually 

randomly distributed. It should be kept in mind that for regular images these LR pixels are not 

point samples but values resulting from the photon summation on the sensor cells with have 

finite surface areas. Therefore, possibilities for model assumptions and interpolation techniques 

are unlimited. As the same technique can be used in both forward and feedback path of the 

system given in Fig.2, one may chose to employ two different interpolation methods in two 

places.  
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In a simple approach, HR pixel values would be calculated using a Gaussian interpolation 

kernel nijj NQPdistw /)2/),(exp( 22
 in a weighted sum formulation 

R

i

iij wqp
1

. 

The function (.)dist  is the distance between HR and LR pixel coordinates denoted by capital 

letters as opposed to lowercase letters that represent respective pixel values. nN  is a 

normalization value making jw s add up to 1. For the smallest applicable , operation 

resembles nearest neighbor pick method. With unnecessarily large , distant LR samples 

become effective, causing over-blurring. One may perform bilinear, bicubic or other 

interpolation techniques for HR point [26], keeping in mind that selection of any one of them 

over others has little basis. On the other hand, the question of how to handle outliers caused by 

the noisy data is still not answered.  

 

 
 

Figure 3. Illustration of LR and HR image pixel locations. 

 

 
II. EDGES AND OUTLIER HANDLING 

 

In many iterative SR implementations where registration and blur parameters known a priori, 

HR estimate is updated at each iteration step according to the differences between synthetic and 

actual LR images for all synthetic-actual LR image pairs using 

 

: pixels of LR image 1 

: pixels of LR image 2 

: pixels of LR image 3 

: pixels of HR image 



Kemal ÖZKAN,  Erol SEKE 

 
42 

)(1 k

BP

kk HXYHXX  (3) 

where k  is iteration step, BPH  is a back propagation matrix (feedback) and  is feedback gain 

constant dictating the speed of convergence. BPH  is initially selected to be the same as forward 

point spread function H  without a strong justification. Differences between actual LR images 

Y  and synthetically generated LR images 
kHX  are penalized. The solution is non-unique and 

noise, outliers, registration errors, intensity differences, etc. may prevent convergence. Most 

implementations tend to settle for a blurred solution in order to suppress the effects of noise. It 

is also difficult to penalize the blur since smoothing an image has little effect on SNR [19]. It is 

possible, however, to adapt the algorithm in favor of known or detected edge-like features and 

still sustain convergence. 

Use of median operators against outliers are suggested [24, 27] although many researchers claim 

that median operator is not locally optimal [22] in case of richly textured images with Gaussian 

noise. In this paper, we propose a method for adaptively handling outliers by first checking the 

existence of such structures. A draft HR estimate is obtained first by interpolating LR pixel field 

using simple weighted averaging. A sharp  of 0.5 is reasonable for the purpose, assigning 

very low importance to the samples other than very close ones. Initial HR estimate can be 

generated using any popular fast algorithms like "shift & add" [25]. Resulting HR estimate is 

searched for the patterns given in Fig.4, and their rotated versions. In Fig.4, the value difference 

of the darker HR pixel and the center HR pixel is less than a given b , whereas the values of 

white areas are higher or lower than this band ( b in our experiments is empirically selected to 

be 4-5% of the maximum possible intensity in image). Assumption here is that the majority of 

LR pixels in the vicinity are not outliers; hence do not affect the local pattern. The simple 

patterns given in Fig-4 cover most of the edges, corners and flat areas. Other possible patterns 

are not analyzed in our work and simply left as calculated using weighted average.  
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Figure 4. Patterns searched in initial HR estimate. 

 

 

Once a pattern is detected, the value of HR pixel at the center of the pattern is updated 

accordingly. For example, in the case of inclined edge as given in fourth pattern in first row of 

Fig.4, the value of center HR pixel is calculated using only the samples in HR areas within the 

same band, excluding LR samples within three HR areas located in the upper-right region from 

the interpolation process altogether. Whether they result from additive noise, spatio-temporal 

object motion in a series of frames or simply registration errors, LR pixels determined to be 

outliers within the same band are also penalized using an exponential penalty function. That is, 

for the example, brighter and darker samples are incorporated into the calculation with lower 

weight using bbjij Nqpb /)2/||exp( 22'
. BPH  can be separated into two as 

EOBP HHH  where EH  is calculated once and corresponds to the distance weighted 

inclusions of LR pixels and OH  is outlier weight matrix updated at every iteration. Values in 

EH  can be expressed as 
otherwise

SPNQPdist
h jiddji

j
,0

,/)2/),(exp( 22

 for the j th
 HR 

pixel and i th
 LR sample. jS  is the region which j th

 HR pixel belongs and is one of the regions 

shown in Fig-4. Since this value is negligible for distances greater than 3 for the selected d , 

the iteration Equation 3 is arranged for BPH  matrix with 9 columns. The values dN  and bN  
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are again normalization values.  is selected to be 0.1 in our experiments giving a reasonable 

rate of convergence. 

 

III. CASE TESTS 

 

Intuition suggests that an edge-preserving SR algorithm would be most successful on images 

with full of edges and similar sharp features where other SR algorithms would generate an 

overly smoothed images. Outlier treatment puts additional pressure on edges. So the test images 

are selected to have different edginess that we measure using vh  where  

 

1

0

1

1 1,, ||
)1(

1 M

r

N

c crcrh xx
NM

 (4) 

and 

1

0

1

1 ,1, ||
)1(

1 N

c

M

r crcrv xx
NM

, (5) 

 

Equation’s (4) and (5) are simply average absolute differences between neighboring pixels in 

horizontal and vertical directions respectively.  

LR test images are generated from HR versions by applying different translations and 

downsampling by at least 5 so that continuous light-field is closely simulated. Five LR image 

sets, each consisting of 30 translated images, are generated using the sub-pixel translations 

given in Table 1 and 2.  Similar sets are formed using inexact translation parameters and/or with 

AWG noise of 40dB. As translation-only parameters suffice for the purpose, no other geometric 

transformation is applied. 
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Table 1. Translations assigned per LR image set 
 

Img dx dy Img dx dy Img dx dy 

1 0.00   0.00 11 0.80   0.35 21 0.85   0.15 

2 0.15   0.00 12 0.40   0.00 22 0.45   0.90 

3 0.85   0.65 13 0.85   0.40 23 0.80   0.55 

4 0.20   0.65 14 0.70   0.75 24 0.45   0.60 

5 0.60   0.95 15 0.65   0.75 25 0.45   0.20 

6 0.95   0.55 16 0.30   0.90 26 0.45   0.50 

7 0.65   0.40 17 0.15   0.80 27 0.40   0.90 

8 0.85   0.15 18 0.15   0.35 28 0.90   0.30 

9 0.00   0.60 19 0.15   0.60 29 0.00   0.65 

10 0.10   0.70 20 0.40   0.70 30 0.25   0.35 

 

Table 2. Translations with added registration errors 
 

LR Imgs dx+εx dy+εy dx+εx dy+εy dx+εx dy+εy 

1, 11, 21 0.00000 0.00000 0.86925 0.29681 0.86936 0.06589 

2, 12, 22 0.16498 0.00076 0.37073 -.02726 0.48173 0.99549 

3, 13, 23 0.74373 0.63747 0.89446 0.31725 0.74795 0.46805 

4, 14, 24 0.14015 0.68229 0.60669 0.70736 0.43699 0.52614 

5, 15, 25 0.50802 0.88546 0.69118 0.84030 0.43778 0.24770 

6, 16, 26 1.04080 0.48835 0.36186 0.82807 0.51670 0.50873 

7, 17, 27 0.60176 0.34086 0.21684 0.75355 0.36899 0.99348 

8, 18, 28 0.93621 0.15431 0.18273 0.36945 0.99136 0.32555 

9, 19, 29 -.04158 0.55675 0.09571 0.57037 0.05184 0.61079 

10,20,30 0.14718 0.75267 0.47744 0.72241 0.29104 0.36287 

 

LR samples from five test sets with  values of 17.6705 (leaves), 13.6313 (map), 12.4796 

(tree), 7.6013 (constr) and 6.2204 (window) are given in Fig-5. PSNR values obtained by 13 

different SR algorithms along with the proposed "IBP with edge preservation" algorithm are 

given in Tables 3,  4 and  5 for the 3. MDSP software kindly provided by Milanfar and Farsiu 

[28] is used for other 12 algorithms. In order for a fair comparison, exact translations listed in 

Table 1 and 2 are used for all algorithms. It is clear from PSNR values that the proposed 

handling of edges and outliers is superior in all test cases. The values in last rows are the 

improvements achieved by the proposed algorithm over the best PSNR among other methods. It 

is noticeable that the highest improvements are obtained on image sets with high edginess. As 

edge processing with predetermined patterns is effective only around edges, possible 

improvement in flat areas may result from outlier rejection only. 
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Figure 5. Sub-pixel translated LR test images are obtained from HR counterparts  

                         using the translation parameters given in Tables 1 and 2. 

 

Table 3. Resulting PSNRs on images with no added noise 

SR Method leaves map tree constr window 

S&A 27.4843 29.3176 27.2318 29.6035 32.9934 

Bilateral S&A 26.7799 28.6017 26.5292 29.2337 32.7251 

S&A w, iterative deblurring 26.4158 28.5663 26.5696 28.4146 30.5839 

Bilateral S&A w, iter, deblur, 26.6046 28.7296 26.3108 28.6335 30.0819 

Median S&A 27.4642 29.3003 27.2147 29.5789 32.9733 

Median S&A w, iter, deblur 26.3442 28.3968 26.4323 28.3162 30.3959 

Iterative norm 2 29.1334 31.0326 28.6600 30.6516 34.5938 

Iterative norm 1 28.1437 29.4875 27.3996 29.5086 33.8005 

Norm 2 data with L1 regul, 28.0274 30.3508 27.9121 29.9297 33.9323 

Robust L2 regularization 21.0803 - 25.9064 21.9974 14.5059 

Robust L1 regularization 26.3006 27.0368 26.1096 29.4958 31.3686 

Cubic interpolation 28.1634 29.8024 27.6868 29.8826 33.5038 

IBP with edge preservation 30.9299 32.8076 29.9544 31.1369 35.1614 

Improvements (see text) 1.7965 1.7750 1.2944 0.4853 0.5676 

 

Table 4. Resulting PSNRs on images with 40dB AWG noise 

SR Method leaves map tree constr window 

S&A 27.4531 29.2572 27.1649 29.5671 32.8326 

Bilateral S&A 26.6670 28.5445 26.7272 29.1880 32.2739 

S&A w, iterative deblurring 26.3478 28.5455 26.4763 28.3229 30.4712 

Bilateral S&A w, iter, deblur, 26.3936 28.7605 26.2327 28.5416 30.3197 

Median S&A 27.4341 29.2387 27.1495 29.5468 32.8150 

Median S&A w, iter, deblur, 26.3465 28.4909 26.4094 28.2379 30.4831 

Iterative norm 2 29.1114 30.9800 28.6061 30.6255 34.4578 

Iterative norm 1 28.1041 29.4077 27.2806 29.4383 33.6808 

Norm 2 data with L1 regul, 27.9839 30.3001 27.8354 29.9127 33.8428 

Robust L2 regularization 21.2941 - 26.2884 22.2083 15.1047 

Robust L1 regularization 26.2540 26.9132 25.9799 29.4423 31.1863 

Cubic interpolation 28.1183 29.7284 27.5977 29.8390 33.2843 

IBP with edge preservation 30.4970 32.3319 29.3952 30.9816 34.9966 

Improvements 1.3856 1.3519 0.7891 0.3561 0.5388 
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Table 5. Resulting PSNRs on images with 40dB noise plus registration errors 

 

SR Method leaves map tree constr window 

S&A 27.0025 28.8306 26.7937 29.4158 32.5678 

Bilateral S&A 26.5748 28.5308 26.5856 29.3175 32.2114 

S&A w, iterative deblurring 26.6540 28.4257 26.3054 28.7099 31.2032 

Bilateral S&A w, iter deblur, 26.4789 27.9912 26.6839 28.6885 30.8345 

Median S&A 26.9773 28.8187 26.7860 29.3994 32.5013 

Median S&A w, iter, deblur, 26.6255 28.3702 26.7661 28.6649 31.0066 

Iterative norm 2 28.7764 30.6411 28.3306 30.4986 34.2444 

Iterative norm 1 27.7669 29.0676 27.0446 29.3509 33.2787 

Norm 2 data with L1 regul, 27.4842 30.0023 27.5973 29.8600 33.1889 

Robust L2 regularization 21.1054 - 25.5723 22.0551 14.5712 

Robust L1 regularization 26.7193 26.6395 26.5259 29.8561 31.9080 

Cubic interpolation 27.8888 29.6037 27.4977 29.7817 33.2953 

IBP with edge preservation 29.8652 32.0119 29.2363 30.9192 34.9388 

Improvements 1.0888 1.3708 0.9057 0.4206 0.6944 

 

In Fig.6, zoomed in sections of the SR images generated by "iterative norm 2" and the proposed 

method indicate that, although the PSNR values are not very different, sharpness is clearly 

improved by the latter. Distortions seen on the long horizontal edge in the upper region of the 

SR images is a sign of registration errors and sub-optimal feedback matrix. 

Fig.7 shows SR results for a LR image set (also used by Farsiu et al. [25]) where original high-

resolution image is not available. For the fairness count again, the translations calculated by 

MDSP program is used for "IBP with edge preservation" algorithm too as no actual translations 

were available. Proposed algorithm managed to improve edges even though the rest of the SR 

image is almost identical with the best-looking result among other algorithms. 

 

 
 

Figure 6. A magnified edge region in a) downsampled original. b) SR with "iterative norm 2".          

                c) SR with proposed algorithm (IBP with edge preservation). 
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Figure 7. a) LR image. b) Iterative norm 2. c) IBP with edge preservation. 

 

 

IV. CONCLUSION 

 

Limitations of SR algorithms with classical information accumulation approach are pointed out 

by Baker and Kanade [18] and later by Lin and Shum [19]. Obviously, by gathering more 

information from more images would help to improve the result within limitations enforced by 

noise and registration errors. One can make intelligent assumptions during the fusion step and 

"break the limits", that is, improve the image in both visually and quantitatively. Such an 

improvement is generally not possible by additional enhancement processes performed on the 

final images. Denoising algorithms introduce blur whereas sharpening for edge improvement 

also amplifies noise. By analyzing the local structure, the proposed evaluation method is able to 

enhance edges and remove outlier samples while retaining detail.  
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