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ABSTRACT:  

The concept of a conformable derivative on time scales is a relatively new development in the 

field of fractional calculus. Traditional fractional calculus deals with derivatives and integrals of 

non-integer order on continuous time domains. However, time scale calculus extends these 

concepts to more general time domains that include both continuous and discrete points. The 

conformable derivative on time scales has several properties that make it advantageous in certain 

applications. For example, it satisfies a chain rule and has a simple relationship with the 

conformable integral, which facilitates the development of differential equations involving 

fractional order dynamics. It also allows for the analysis of systems with both continuous and 

discrete data points, making it suitable for modeling and control applications in various fields, 

including physics, engineering, and finance. In this study, the Sturm-Liouville problem and its 

properties are examined on an arbitrary time scale using the proportional derivative, a more 

general form of the fractional derivative. Important spectral properties such as self-adjointness, 

Green formula, Lagrange identity, Abel formula, and orthogonality of eigenfunctions for this 

problem are expressed in proportional derivatives on an arbitrary time scale. 
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INTRODUCTION 

Fractional computation means the differentiation and integration of an integer order. Although it 

lacks several characteristics offered for fractional derivatives (Ortigueira and Machado, 2015), the 

conformable derivative was initially known as the conformable fractional derivative (Katugampola, 

2014; Khalil et al., 2014; Abdeljewad, 2015). It is advisable to think about the proportional derivative 

on its own, free of the fractional derivative theory, even if the more broad definition of the proportional 

derivative provided in definition 1 below satisfies some of the features of the fractional derivative. The 

conformable derivative is a specific case of the proportional derivative. 

Conformable fractional derivatives have different meanings depending on the time scale (Gulsen 

et al., 2017; Gülşen et al., 2018; Yilmaz et al., 2022). It's interesting to note that the conformable 

fractional derivative operator 𝑇𝛼 in (Benkhettou et al., 2016) is defined as 𝛼 ∈ (0, 1] in the form of  

|[𝑓(𝜎(𝑡) − 𝑓(𝑠)]𝑡1−𝛼 − 𝑇𝛼𝑓(𝑡)[𝜎(𝑡) − 𝑠]| ≤ 휀  |𝜎(𝑡) − 𝑠|; 

whereas in (Benkhettou et al., 2015) it is specified as  

|[𝑓(𝜎(𝑡) − 𝑓(𝑠)] − 𝑇𝛼(𝑓𝛥)(𝑡)[𝜎(𝑡)𝛼 − 𝑠𝛼]| ≤ 휀 |𝜎(𝑡)𝛼 − 𝑠𝛼|. 

The truth that 𝑇0(𝑓) ≠ 𝑓 and 𝑇𝛼 is not proportional in accordance with definition 1 is evident from both 

definitions. As a consequence, a new conformable derivative was discovered under the name of the 

proportional derivative described in (Anderson and Ulness, 2015), and a prospective definition for the 

proportional derivative on a time scale was discovered in (Segi Rahmat, 2019). When 𝛼 = 1, the Hilger 

derivative replaces the proportional derivative of a function of order 𝛼 ∈ [0,1] defined on a time scale.    

In this research will be used the proportional derivative to analyze the Sturm-Liouville dynamic problem 

(23). Section 2 contains some basic concepts and notations regarding time scales and proportional 

derivatives on time scales. We demonstrate a number of spectral features for the problem (23) in Section 

3 using various approaches, including self-adjointness, the Green Formula, Lagrange identity, the Abel 

formula, and orthogonality of eigenfunctions. 

MATERIALS AND METHODS  

We review the terms and ideas related to the time-scale proportional calculi that are required since they 

are utilized in the next section.  

Definition 1 (Anderson and Ulness, 2015) Let 𝛼 ∈ [0,1]. The differential operatör �̅�𝛼 is only referred 

to as a proportional derivative if  �̅�0 is the unit operator and  �̅�1 is the conventional differential operator. 

Particularly, the operator   �̅�𝛼 is referred to as being proportional for the derivative function 𝑓=𝑓(𝑡), for 

which only   

�̅�0𝑓(𝑡)=𝑓(𝑡) and �̅�1𝑓(𝑡)=
𝑑

𝑑𝑡
𝑓(𝑡)=𝑓′(𝑡).               (1) 

Remark 2 (Anderson and Ulness, 2015) Based on the employment of a proportional-derivative 

controller with an controller output 𝑢 at time 𝑡, the fundamental idea of proportional derivative is 

established. This controller, 𝑢(𝑡), has an algorithm (Li et al., 2006)  

𝑢(𝑡)=𝜅𝑝𝐸(𝑡) + 𝜅𝑑

𝑑

𝑑𝑡
𝐸(𝑡). 
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In this case, 𝐸 represents the error between the state variable and the process variable, while 𝜅𝑝 and 

𝜅𝑑   represent the proportional and derivative gains, respectively. 

Definition 3 (Anderson and Ulness, 2015) Assume that 𝛼 ∈ [0,1],  𝜅0, 𝜅1: [0,1] × ℝ  → ℝ0
+ are 

continuous functions and that  

{

lim
𝛼→0+

 𝜅0(𝛼, 𝑡) = 0,        lim
𝛼→0+

 𝜅1(𝛼, 𝑡) = 1,

lim
𝛼→1−

 𝜅0(𝛼, 𝑡) = 1, lim
𝛼→1−

 𝜅1(𝛼, 𝑡) = 0,

𝜅0(𝛼, 𝑡) ≠ 0, 𝛼 ∈ (0,1],   𝜅1(𝛼,  𝑡) ≠ 0, 𝛼 ∈ [0,1),

             (2) 

are true. In this situation, if the function 𝑓 is differentiable at 𝑡 and 𝑓′=
𝑑

𝑑𝑡
𝑓, then the differential operator 

�̅�𝛼 defined by  

�̅�𝛼𝑓(𝑡)=𝜅1(𝛼, 𝑡)𝑓(𝑡) + 𝜅0(𝛼, 𝑡)𝑓′(𝑡),               (3) 

is said to be proportional. Here, 𝜅1 is a type of proportional gain 𝜅𝑝, 𝜅0 is a type of derivative gain 𝜅𝑑, 

𝑓 is the error, and 𝑢=�̅�𝛼𝑓 is the controller output.  

We must remember some basic concepts about time scales in order to get the basic findings for (23).The 

time scale 𝕋 is a closed, non-empty subset of ℝ in the standard topology of ℝ. The definitions of the 

forward and backward jump operators 𝜎 , 𝜌: 𝕋 → 𝕋, for 𝑡 ∈ 𝕋 are as follows: 

𝜎(𝑡)=inf {𝑠 ∈ 𝕋 : 𝑠 > 𝑡},               𝜌(𝑡)=sup {𝑠 ∈ 𝕋 : 𝑠 < 𝑡}. 

This definition states that inf∅ =sup𝕋 and sup∅=inf𝕋. If  𝜎(𝑡) > 𝑡, 𝜌(𝑡) < 𝑡, 𝜌(𝑡) < 𝑡 < 𝜎 (𝑡), 𝑡 is  a 

right-scattered point, a left-scattered point, an isolated (discrete) point, respectively. On the other hand, 

if 𝑡 < sup𝕋 and 𝜎(𝑡)=𝑡, 𝑡 is referred to as right-dense, and if 𝑡 > inf𝕋 and 𝜌(𝑡)=𝑡, 𝑡 is left-dense, and 

𝜌(𝑡)=𝑡=𝜎(𝑡), then 𝑡 is the dense point. The definition of the graininess function 𝜇: 𝕋 → [0, ∞) is 

𝜇(𝑡)=𝜎(𝑡) − 𝑡. 𝕋𝑘=𝕋 − {𝑚} if there is a maximum point 𝑚 of 𝕋; else, 𝕋𝑘=𝕋. The function 𝑓 : 𝕋 → ℝ  

is called rd- continuously, provided that 𝕋 has a left-sided limit at its right-dense points and at its left- 

scattered points and  𝐶𝑟𝑑(𝕋) will be used to denote the collection of rd-continuous functions 𝑓: 𝕋 → ℝ. 

Let 𝑡 ∈ 𝕋𝑘 and 𝑓 : 𝕋 → ℝ be a function. ∀휀 > 0, and for every 𝑠 in a neighborhood 𝑈 of point 𝑡, if there 

is a real number 𝑓𝛥(𝑡), such that  

|[𝑓(𝜎(𝑡)) − 𝑓(𝑠)] − 𝑓𝛥(𝑡)[𝜎(𝑡) − 𝑠]| ≤ 휀 |𝜎(𝑡) − 𝑠|, ∀𝑠 ∈ 𝑈, 

𝑓𝛥(𝑡) is called the delta derivative of 𝑓 at point 𝑡. If 𝑡 is right-scattered and the function 𝑓: 𝕋 → ℝ  is 

continuous at 𝑡, then  

𝑓𝛥(𝑡)=
𝑓(𝜎(𝑡)) − 𝑓(𝑡)

𝜇(𝑡)
,                  (4) 

and if  𝑡 is right-dense,  

𝑓𝛥(𝑡)= lim
𝑠→𝑡

𝑓(𝑡) − 𝑓(𝑠)

𝑡 − 𝑠
.                  (5) 

Let's assume that 𝑓, 𝑔: 𝕋 → ℝ is differentiable in 𝑡 ∈ 𝕋𝑘. Each rd- continuous function has an inverse 

derivative 𝐹, i.e. 𝐹𝛥= 𝑓(𝑡). For 𝑠 ∈ 𝕋,  

𝐹(𝑡)= ∫ 𝑓(𝜏) 𝛥𝜏
𝑡

𝑠
, ∀𝑡 ∈ 𝕋, 



Tuba GÜLŞEN & Mehmet ACAR 13(4), 2945-2957, 2023 

Self-Adjoint Sturm-Liouville Dynamic Problem via Proportional Derivative 

 

2948 

is an antiderivative of 𝑓, i.e.  

(∫ 𝑓(𝜏) 𝛥𝜏
𝑡

𝑠
)

𝛥
=𝑓(𝑡),                  (6) 

and also 

∫ 𝑓(𝑡) 𝛥𝑡
𝜎(𝑡)

𝑡
= 𝜇(𝑡) 𝑓(𝑡).                 (7) 

(Aulbach and Hilger, 1990; Agarwal et al., 2002; Bohner and Peterson, 2001, 2004; Bohner and Svetlin, 

2016; Hilger, 1990) provide comprehensive information on the time scale. 

The proportional delta derivative of the function 𝑓 : 𝕋 → ℝ of order 𝛼 ∈ [0, 1] at point 𝑡 ∈ 𝕋𝑘 will 

now be defined.  

Definition 4 (Segi Rahmat, 2019) Let 𝑓 : 𝕋 → ℝ be a function, 𝑡 ∈ 𝕋𝑘, and 𝜅0 and 𝜅1 be continuous 

functions that fulfill  the conditions (2). ∀휀 > 0, and for every 𝑠 in a neighborhood 𝑈 of point 𝑡, if there 

is a real number 𝐷𝛼𝑓(𝑡),  𝛼 ∈ [0, 1],  such that  

|𝜅1(𝛼, 𝑡)𝑓(𝑡)[𝜎(𝑡) − 𝑠] + 𝜅0(𝛼, 𝑡)[𝑓(𝜎(𝑡)) − 𝑓(𝑠)] − (𝐷𝛼𝑓)(𝑡)[𝜎(𝑡) − 𝑠 ]| ≤ 휀 [𝜎(𝑡) − 𝑠],        (8) 

that number is known as the 𝛼 −th order proportional delta derivative of 𝑓 at point 𝑡. 

Let's define  

𝔍(𝕋)={ 𝑓 : 𝕋 → ℝ  :  𝐷𝛼𝑓(𝑡) exists and is finite for all 𝑡 ∈ 𝕋𝑘}, 

as the collection of all proportional delta differentiable functions (Segi Rahmat, 2019). 

Theorem 5 (Segi Rahmat, 2019) Assuming that 𝕋 is a time scale,  𝑓 : 𝕋 → ℝ  and 𝑡 ∈ 𝕋𝑘.  

(i)  If 𝑓 ∈ 𝔍(𝕋), then 𝑓 is continuous at 𝑡.    

(ii) If 𝑓 is continuous at 𝑡, 𝑡 is right-scattered, and  

𝑓𝛥(𝑡)=
𝑓(𝜎(𝑡))  −  𝑓(𝑡)

𝜎(𝑡)  −  𝑡
, 

exists, then 𝑓 ∈ 𝔍(𝕋). In this case 

𝐷𝛼𝑓(𝑡)=𝜅0(𝛼, 𝑡) 𝑓𝛥(𝑡) + 𝜅1(𝛼, 𝑡) 𝑓(𝑡).             (9) 

(iii) If 𝑡 is right-dense, and 

lim
𝑡→𝑠

𝑓(𝑡) − 𝑓(𝑠)

𝑡 − 𝑠
=𝑓′(𝑡), 

exists as a finite number, then 𝑓 ∈ 𝔍(𝕋), and so 

𝐷𝛼𝑓(𝑡) = 𝜅0(𝛼, 𝑡)𝑓′(𝑡) + 𝜅1(𝛼, 𝑡)𝑓(𝑡).             (10) 

Lemma 6 (Segi Rahmat, 2019) If 𝑓, 𝑔 : 𝕋 → ℝ are proportional delta differentiable at the point 𝑡 ∈ 𝕋𝑘 

and 𝜅0 and 𝜅1 satisfy the conditions (2) and are continuous functions, then the following properties are 

provided: 

(i)   𝐷𝛼[𝜌𝑓 + 𝜍𝑔]=𝜌𝐷𝛼[𝑓] + 𝜍𝐷𝛼[𝑔],  all 𝜌, 𝜍 ∈ ℝ; 

(ii)  𝐷𝛼[𝑓𝑔]= 𝑓𝜎𝐷𝛼[𝑔] + 𝐷𝛼[𝑓]𝑔 − 𝑓𝜎𝑔𝜅1(𝛼, . ); 

(iii) 𝐷𝛼 [
1

𝑔
] = −

𝐷𝛼[𝑔]

𝑔.𝑔𝜎 + (
1

𝑔
+

1

𝑔𝜎) 𝜅1,    𝑔𝑔𝜎 ≠ 0; 

(iv) 𝐷𝛼 [
𝑓

𝑔
] =

𝐷𝛼[𝑓]𝑔𝜎− 𝑓.𝐷𝛼[𝑔]

𝑔.𝑔𝜎 +
𝑓𝜎

𝑔𝜎 𝜅1(𝛼, . ),     𝑔𝑔𝜎 ≠ 0. 
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Definition 7 (Segi Rahmat, 2019) Let 𝛼 ∈ [0, 1] and 𝜅0, 𝜅1 : [0, 1] × 𝕋 → ℝ0
+ be continuous functions 

that fulfill (2). 𝑝: 𝕋 → ℝ is regarded as being 𝛼-regressive if the requirement 

1 +
𝑝(𝜏) − 𝜅1(𝛼, 𝜏)

𝜅0(𝛼, 𝜏)
𝜇(𝜏) ≠ 0, all 𝜏 ∈ 𝕋𝑘, 

is hold. ℜ𝛼=ℜ𝛼(𝕋) is used to represent the collection of all rd-continuous and 𝛼-regressive functions 

on 𝕋. 

Definition 8 (Segi Rahmat, 2019) Let 𝛼 ∈ (0, 1] and 𝑝 ∈ ℜ𝛼. Assume that 𝜅0, 𝜅1  are continuous 

functions and 𝑝 𝜅0,⁄   𝜅1 𝜅0⁄  delta integrable functions on 𝕋, and that (2) is satisfied.  

�̃�𝑝(𝑡, 𝑠)=exp [∫
1

𝜇(𝜏)
𝐿𝑜𝑔 (1 +

𝑝(𝜏) − 𝜅1(𝛼, 𝜏)

𝜅0(𝛼, 𝜏)
𝜇(𝜏) )

𝑡

𝑠

𝛥𝜏],           (11) 

�̃�0(𝑡, 𝑠)=exp [∫
1

𝜇(𝜏)
𝐿𝑜𝑔 (1 −

 𝜅1(𝛼, 𝜏)

𝜅0(𝛼, 𝜏)
𝜇(𝜏))

𝑡

𝑠

𝛥𝜏],  𝑠, 𝑡 ∈ 𝕋,  

defines the proportional exponential function on 𝕋 for operator 𝐷𝛼, where Log is the fundamental 

logarithm function. For 𝜇(𝑡)  =  0,      

�̃�𝑝(𝑡, 𝑠)=exp [∫ ( 
𝑝(𝜏) − 𝜅1(𝛼, 𝜏)

𝜅0(𝛼, 𝜏)
 )

𝑡

𝑠

𝛥𝜏],  �̃�0(𝑡, 𝑠)=exp [− ∫   
 𝜅1(𝛼, 𝜏)

𝜅0(𝛼, 𝜏)

𝑡

𝑠

𝛥𝜏].         (12) 

Definition 9 (Segi Rahmat, 2019) Let 𝑝  :  𝕋  → ℝ and 𝛼 ∈ (0, 1]. Let's use  ℜ𝛼
+ to define all positive 

𝛼 −regressive components of ℜ𝛼, that is,  

 ℜ𝛼
+ = { 𝑝 ∈ ℜ𝛼  :  1 +

𝑝(𝜏) − 𝜅1(𝛼, 𝜏)

𝜅0(𝛼, 𝜏)
𝜇(𝜏) > 0, all  𝑡 ∈ 𝕋}. 

Lemma 10 (Segi Rahmat, 2019) Assume that   𝑝 ∈ ℝ, 𝛼 ∈ (0, 1]  and  𝑡0 ∈ 𝕋. If  𝑝 ∈ ℜ𝛼
+, then 

�̃�𝑝(𝑡, 𝑡0) > 0, 𝑡 ∈ 𝕋. 

Theorem 11 (Segi Rahmat, 2019) If 𝑝 ∈ ℜ𝛼
+ and 𝛼 ∈ (0, 1], the following properties are true: 

(i)  �̃�𝑝(𝜎(𝑡), 𝑠)= ( 1 +
𝑝(𝑡) − 𝜅1(𝛼, 𝑡)

𝜅0(𝛼, 𝑡)
 𝜇(𝑡)) �̃�𝑝(𝑡, 𝑠); 

(ii)  �̃�𝑝(𝑡, 𝑠)=
1

�̃�𝑝(𝑠, 𝑡)
; 

(iii)  �̃�𝑝(𝑡, 𝑠)�̃�𝑝(𝑠, 𝑟)=�̃�𝑝(𝑡, 𝑟); 

(iv)  �̃�𝑝
𝛥(𝑡, 𝑠)= ( 

𝑝(𝑡) − 𝜅1(𝛼, 𝑡)

𝜅0(𝛼, 𝑡)
)  �̃�𝑝(𝑡, 𝑠); 

(v)  (
1

�̃�𝑝(𝑡, 𝑠)
)

𝛥

= − ( 
𝑝(𝑡) − 𝜅1(𝛼, 𝑡)

𝜅0(𝛼, 𝑡)
)

1

�̃�𝑝(𝜎(𝑡), 𝑠)
. 

Lemma 12 (Segi Rahmat, 2019) Let 𝛼 ∈ (0, 1]  and 𝑝 ∈ ℜ𝛼. For fixed 𝑠 ∈ 𝕋, 

𝐷𝛼[�̃�𝑝(. , 𝑠)] = 𝑝(𝑡)�̃�𝑝(. , 𝑠), 

and for the  proportional exponential function �̃�0, 

𝐷𝛼 [  ∫
 𝑓(𝜏)�̃�0(𝑡, 𝜎(𝜏))

𝜅0(𝛼, 𝜏)

𝑡

𝑎

 𝛥𝜏] =𝑓(𝑡).              (13) 

Definition 13 (Segi Rahmat, 2019) Assume that  𝑓 ∈ 𝐶𝑟𝑑(ℝ), 𝛼 ∈ (0, 1],  and 𝑡0 ∈ 𝕋. The indefinite 

proportional integral (anti derivative) is defined as 



Tuba GÜLŞEN & Mehmet ACAR 13(4), 2945-2957, 2023 

Self-Adjoint Sturm-Liouville Dynamic Problem via Proportional Derivative 

 

2950 

∫  𝐷𝛼𝑓(𝑡)𝛥𝛼𝜏 = 𝑓(𝑡) + 𝑐�̃�0(𝑡, 𝑡0), ∀𝑡 ∈ 𝕋 , 𝑐 ∈ ℝ, 

with respect to (12), Lemma 12. 

∫  𝑓(𝜏)�̃�0(𝑡, 𝜎(𝜏)) 𝛥𝛼𝜏 = ∫  
𝑓(𝜏)�̃�0(𝑡, 𝜎(𝜏))

𝜅0(𝛼, 𝜏)
 𝛥𝜏,

𝑡

𝑎

𝑡

𝑎

 𝛥𝛼𝜏=
1

𝜅0(𝛼, 𝜏)
 𝛥𝜏,         (14) 

describes the definite proportional integral of 𝑓 on [𝑎, 𝑏]𝕋. 

Lemma 14 (Segi Rahmat, 2019) Let 𝛼 ∈ (0, 1], 𝑓, 𝑔 ∈ 𝐶𝑟𝑑(ℝ), and 𝜅0, 𝜅1 be continuous functions and 

satisfy (2). Then, 

𝐷𝛼 [∫  𝑓(𝜏)�̃�0(𝑡, 𝜎(𝜏)) 𝛥𝛼𝜏
𝑡

𝑎
] = 𝑓(𝑡).             (15) 

Lemma 15 (Segi Rahmat, 2019)  If 𝑓, 𝑔 ∈ 𝔍(𝕋),  

(i)  ∫  𝐷𝛼  [𝑔(𝜏)]
𝑡

𝑎
 �̃�0(𝑡, 𝜎(𝜏)) 𝛥𝛼𝜏 = [𝑔(𝜏) �̃�0(𝑡, 𝜎(𝜏))]𝜏=𝑎

𝑡  . 

(ii)  ∫ 𝑓(𝑡) 𝐷𝛼[𝑔(𝑡)] �̃�0(𝑏, 𝜎(𝑡)) 𝛥𝛼𝑡
𝑏

𝑎
= [𝑓(𝑡)𝑔(𝑡) �̃�0(𝑏, 𝜎(𝑡))]

𝑡=𝑎

𝑏
 

∫  𝑔𝜎(𝑡){𝐷𝛼  [𝑓(𝑡)] − 𝜅1(𝛼, 𝑡)𝑓(𝑡)}�̃�0(𝑏, 𝜎(𝑡)) 𝛥𝛼𝑡

𝑏

𝑎

. 

Lemma 16 (Segi Rahmat, 2019) Suppose that 𝛼 ∈ (0, 1], the function 𝑓 : 𝕋2 → ℝ is rd-continuous, 𝜅0 

and 𝜅1 fulfill (2) and are continuous. In this instance,  

𝐷𝛼   [  ∫  𝑓(𝑡, 𝜏) �̃�0(𝑡, 𝜎(𝜏)) 𝛥𝛼𝜏
𝑡

𝑎
] = ∫  [𝐷𝑡

𝛼𝑓(𝑡, 𝜏) − 𝜅1(𝛼, 𝑡)𝑓(𝑡, 𝜏)]�̃�0(𝑡, 𝜎(𝜏)) 𝛥𝛼𝜏 + 𝑓(𝜎(𝑡), 𝑡)
𝑡

𝑎
, (16)  

or 

𝐷𝛼   [  ∫  𝑓(𝑡, 𝜏) 𝛥𝛼𝜏
𝑡

𝑎
] = ∫  𝐷𝑡

𝛼  𝑓(𝑡, 𝜏) 𝛥𝛼𝜏 + 𝑓(𝜎(𝑡), 𝑡).
𝑡

𝑎
           (17) 

Take a look at equation  

(𝐷𝛼)2𝑦 + 𝑎(𝑡)𝐷𝛼𝑦 + 𝑏(𝑡)𝑦=0, 𝑡 ∈ 𝕋𝑘2
,             (18) 

where 𝑎, 𝑏 ∈ 𝐶𝑟𝑑(𝕋).    

Definition 17 (Anderson and Georgiev, 2020) The function 𝑦 ∈ 𝐶𝑟𝑑
2 (𝕋)  satisfying equation (18) is 

referred to as the solution of the equation.  

Theorem 18 (Anderson and Georgiev, 2020) Make 𝑦1 and 𝑦2 the results of solving equation (18). Then, 

𝑝𝑦1 + 𝑞𝑦2 is a solution to equation (18) for 𝑝, 𝑞 ∈ ℝ. 

Definition 19 (Anderson and Georgiev, 2020) Any two functions 𝑦1, 𝑦2 ∈ 𝐶𝑟𝑑
1 (𝕋) have a proportional 

Wronskian defined as 

𝑊(𝑦1, 𝑦2)=det (
𝑦1 𝑦2

𝐷𝛼𝑦1 𝐷𝛼𝑦2
). 

Definition 20 (Anderson and Georgiev, 2020) If for any 𝑡 ∈ 𝕋𝑘   the condition  
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𝑊(𝑦1, 𝑦2)(𝑡) ≠ 0, 

 is hold,  the solutions 𝑦1 and 𝑦2 of (18)  are said that  forms the basic solution set for (18).  

Remark 21 (Anderson and Georgiev, 2020) With ℘𝑐
+, the collection of functions 𝑓: 𝕋 → ℝ that provide 

for the condition 

𝜅0 + 𝜇(𝑓 − 𝜅1) > 0,      𝜅0 − 𝜇𝜅1 ≠ 0, 

will be shown.  

Definition 22 (Bohner and Peterson, 2001) Let 𝑡 ∈ 𝕋𝑘 and 𝑓: 𝕋 → ℝ be a function. ∀휀 > 0, and for 

every 𝑠 in a neighborhood 𝑈 of point 𝑡, if there is a real number 𝑓𝛻(𝑡), such that  

|𝑓(𝜌(𝑡)) − 𝑓(𝑠) − 𝑓𝛻(𝑡)[𝜌(𝑡) − 𝑠]|  ≤  휀 |𝜌(𝑡) − 𝑠| ,       ∀𝑠 ∈ 𝑈, 

𝑓𝛻(𝑡) is referred to as the nabla derivative of 𝑓 at point 𝑡. 

Definition 23 (Anderson and Georgiev, 2020) Assume that 𝜅0  and 𝜅1 provide for (2). On the time scale 

𝕋, the derivative �̂�𝛼 defined by  

�̂�𝛼𝑓(𝑡)=𝜅1(𝛼, 𝑡)𝑓(𝑡) + 𝜅0(𝛼, 𝑡)𝑓𝛻(𝑡),    𝑡 ∈ 𝕋𝑘,            (19) 

is known as the proportional nabla derivative.  

Definition 24 (Anderson and Georgiev, 2020) Suppose that 𝜅0  and 𝜅1 provide for (2). When  

𝜅0(𝛼, 𝑡) − 𝜈(𝑡)(𝑓(𝑡) − 𝜅1(𝛼, 𝑡)) ≠ 0,             (20) 

where 𝜈(𝑡) = 𝑡 − 𝜌(𝑡) is the graininess function, the function 𝑓: 𝕋 → ℝ  is said to be proportional 

𝜈  −regressive for any 𝛼 ∈ (0, 1] and any 𝑡 ∈ 𝕋. ℜ̂𝑐 will stand for the collection of every proportional 

𝜈  −regressive function on 𝕋. 

Definition 25 (Anderson and Georgiev, 2020) If 𝛼 ∈ (0, 1], 𝑠, 𝑡 ∈ 𝕋 ve 𝑝 ∈ ℜ̂𝑐  , then   

�̂�𝑝(𝑡, 𝑠)=�̌�𝑝−𝜅1
𝜅0

(𝑡, 𝑠),                  (21) 

defines the proportional nabla exponential function with regard to �̂�𝛼 . In this situation, the relationship  

�̂�𝛼�̂�𝑝(𝑡, 𝑠)=𝑝(𝑡)�̂�𝑝(𝑡, 𝑠),    𝑡 ∈ 𝕋𝑘,   𝑠 ∈ 𝕋,              (22) 

 is true and �̌� represents the exponential function of nabla derivative on the time scale. 

RESULTS AND DISCUSSION  

Think about the Sturm-Liouville problem for  

{
𝐿𝛼𝑦 ≡ 𝐷𝛼𝐷𝛼𝑦(𝑡)  +  𝑞(𝑡)𝑦 (𝑡)=𝜆𝑦(𝑡) ,         𝛼 ∈ (0,1],    𝑡 ∈  [𝑎, 𝑏] ∩ 𝕋𝑘,

𝜂𝑦(𝑎) + 𝛽𝐷𝛼𝑦(𝑎)=0,

𝛿𝑦(𝑏) + 𝛾𝐷𝛼𝑦(𝑏)=0,

                              (23) 

where 𝜆 is a spectral parameter, 𝑞 is a continuous function, 𝜂, 𝛽, 𝛿, 𝛾 are constant values, and  

𝜂2 + 𝛽2 ≠ 0,  𝛿2 + 𝛾2 ≠ 0.  
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Theorem 26 For 𝐿𝛼 and 𝛼 ∈ (0,1]  given in (23), suppose that  

𝜅0
𝜎(𝛼, 𝑡) + 𝜇(𝑡)𝜅1

𝜎(𝛼, 𝑡) ≠ 0,       𝑡 ∈ 𝕋𝑘. 

If 𝑥, 𝑦 ∈ 𝔻, we get 

𝑥(𝐿𝛼𝑦) − 𝑦(𝐿𝛼𝑥)= (
𝜅0

𝜎 +𝜇𝜅1
𝜎

𝜅0
𝜎 ) 𝐷𝛼[𝑊(𝑥, 𝑦)] +

𝜅1
𝜎(𝜅0 − 𝜇𝜅1)

𝜅0
𝜎 𝑊(𝑥, 𝑦), 𝑡 ∈ 𝕋𝑘.        (24) 

Consequently, we obtain Lagrange identity 

�̂̃�0(𝑡, 𝑏)𝐷𝛼 [
𝑊(𝑥, 𝑦)(𝑡)

�̃�0(𝑡, 𝑏)
] =𝑥(𝐿𝛼𝑦) − 𝑦(𝐿𝛼𝑥)                (25) 

for 𝑡, 𝑏 ∈ 𝕋𝑘. 

Proof Assume that 𝑥, 𝑦 ∈ 𝔻 that indicating that 𝐷𝛼𝑥, and especially  𝑥𝛥 is continuous. The proportional 

delta derivative's product rule on 𝕋𝑘 allows us to determine that  

𝐷𝛼(𝑊(𝑥, 𝑦))=𝑥𝐷𝛼(𝐷𝛼𝑦) + 𝐷𝛼𝑥(𝐷𝛼𝑦)𝜎 −  𝜅1𝑥(𝐷𝛼𝑦)𝜎 − 𝑦𝐷𝛼(𝐷𝛼𝑥) − 𝐷𝛼𝑦(𝐷𝛼𝑥)𝜎 + 𝜅1𝑦(𝐷𝛼𝑥)𝜎 

= 𝜅0[𝑥𝛥(𝐷𝛼𝑦)𝜎   −  𝑦𝛥(𝐷𝛼𝑥)𝜎]  +  𝑦(𝐿𝛼𝑥)  −  𝑥(𝐿𝛼𝑦) 

=𝜅0𝜅1
𝜎(𝑥𝛥𝑦  −  𝑦𝛥𝑥)𝜎 + 𝑦(𝐿𝛼𝑥) − 𝑥(𝐿𝛼𝑦) 

=𝜅0𝜅1
𝜎 [(

𝐷𝛼𝑥  −  𝜅1𝑥

𝜅0
) 𝑦 − (

𝐷𝛼𝑦  −  𝜅1𝑦

𝜅0
) 𝑥]

𝜎

+ 𝑦(𝐿𝛼𝑥) − 𝑥(𝐿𝛼𝑦) 

=
𝜅0𝜅1

𝜎

𝜅0
𝜎

[(𝐷𝛼𝑥)𝑦 − (𝐷𝛼𝑦)𝑥]𝜎 + 𝑦(𝐿𝛼𝑥) − 𝑥(𝐿𝛼𝑦) 

⇒ 𝐷𝛼(𝑊(𝑥, 𝑦))=𝑦(𝐿𝛼𝑥) − 𝑥(𝐿𝛼𝑦) − (
𝜅1

𝜅0
)

𝜎
𝜅0𝑊(𝑥, 𝑦)𝜎 .      

𝜅0𝑓𝜎=(𝜅0 − 𝜅1𝜇)𝑓 + 𝜇𝐷𝛼𝑓, 

is discovered for any delta differentiable function 𝑓. Indeed, 

𝜅0𝑓𝜎=𝜅0(𝜇𝑓𝛥 + 𝑓) 

         = 𝜅0𝜇 (
𝐷𝛼𝑓 − 𝜅1𝑓

𝜅0
) + 𝜅0𝑓 

         =(𝜅0 −  𝜅1𝜇)𝑓 + 𝜇𝐷𝛼𝑓. 

Therefore, we follow 

𝐷𝛼(𝑊(𝑥, 𝑦))=𝑦(𝐿𝛼𝑥) − 𝑥(𝐿𝛼𝑦) − (
𝜅1

𝜅0
)

𝜎

[(𝜅0 − 𝜅1𝜇)𝑊(𝑥, 𝑦) + 𝜇𝐷𝛼(𝑊(𝑥, 𝑦))] 

⇒ 𝐷𝛼(𝑊(𝑥, 𝑦))=
𝜅0

𝜎

𝜅0
𝜎 + 𝜇𝜅1

𝜎 [𝑦(𝐿𝛼𝑥) − 𝑥(𝐿𝛼𝑦)] −
𝜅1

𝜎(𝜅0 − 𝜅1𝜇)

𝜅0
𝜎 + 𝜇𝜅1

𝜎 𝑊(𝑥, 𝑦).         (26) 

Let 

𝜉(𝑡)=𝜅1 −
𝜅1

𝜎𝜅0

𝜅0
𝜎 + 𝜇𝜅1

𝜎 .                (27) 
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Knowing that �̃�0 =�̂̃�𝜉  

�̃�𝜉
𝜎  = (1 +

(𝜉  −  𝜅1)

𝜅0
𝜇) �̃�𝜉 

      = [1 −
𝜇𝜅1

𝜎

𝜅0
𝜎   +  𝜇𝜅1

𝜎] �̃�𝜉   

⇒   
�̃�𝜉

�̃�𝜉
𝜎 =

𝜅0
𝜎 + 𝜇𝜅1

𝜎

𝜅0
𝜎 . 

Additionally, based on the quotient rule 

�̃�𝜉𝐷𝛼 (
𝑊

�̃�𝜉
) =�̃�𝜉 [

(𝐷𝛼𝑊)�̃�𝜉 − 𝑊(𝐷𝛼�̃�𝜉)

�̃�𝜉�̃�𝜉
𝜎 + 𝜅1

𝑊

�̃�𝜉
] 

⇒ �̃�𝜉𝐷𝛼 (
𝑊

�̃�𝜉
) =

�̃�𝜉

�̃�𝜉
𝜎 (𝐷𝛼𝑊 − 𝑊𝜉) + 𝜅1𝑊.             (28) 

 (26), replacing it with (28), in our case, 

�̃�𝜉𝐷𝛼 (
𝑊

�̃�𝜉
) =

�̃�𝜉

�̃�𝜉
𝜎 [

𝜅0
𝜎

𝜅0
𝜎 + 𝜇𝜅1

𝜎 (𝑦(𝐿𝛼𝑥) − 𝑥(𝐿𝛼𝑦)) − (
𝜅1

𝜎(𝜅0 − 𝜅1𝜇)

𝜅0
𝜎 + 𝜇𝜅1

𝜎 ) 𝑊 − (𝜅1 −
𝜅1

𝜎𝜅0

𝜅0
𝜎 + 𝜇𝜅1

𝜎) 𝑊] + 𝜅1𝑊   

                   = 𝑦(𝐿𝛼𝑥) − 𝑥(𝐿𝛼𝑦) + (
𝜅0

𝜎   + 𝜇𝜅1
𝜎

𝜅0
𝜎 ) 𝑊 [−

𝜅1
𝜎(𝜅0  −  𝜅1𝜇)

𝜅0
𝜎   +  𝜇𝜅1

𝜎 − (𝜅1 −
𝜅1

𝜎𝜅0

𝜅0
𝜎   +  𝜇𝜅1

𝜎)] + 𝜅1𝑊, 

and, from here 

�̃�𝜉𝐷𝛼 (
𝑊

�̃�𝜉
) =𝑦(𝐿𝛼𝑥) − 𝑥(𝐿𝛼𝑦). 

Definition 27 Assume that 𝛼 ∈ (0, 1] and the condition 𝜅0
𝜎(𝛼, 𝑡) + 𝜇(𝑡)𝜅1

𝜎(𝛼, 𝑡) ≠ 0 are satisfied where 

𝜉 is defined with (27).The formula for the inner product of 𝑓, 𝑔 ∈ 𝐶𝑟𝑑(𝕋𝑘) on  [𝑎, 𝑏]𝕋 ⊆ 𝕋𝑘 

〈𝑓, 𝑔〉= ∫
𝑓(𝑡)𝑔(𝑡)�̃�0(𝑏, 𝜎(𝑡))

�̃�𝜉(𝑡, 𝑏)𝜅0(𝛼, 𝑡)
𝛥𝑡

𝑏

𝑎

= ∫
𝑓(𝑡)𝑔(𝑡)

�̃�𝜉(𝑡, 𝑏)
𝛥𝑎,𝑏𝑡

𝑏

𝑎

,       𝛥𝑎,𝑏𝑡=
�̃�0(𝑏, 𝜎(𝑡))𝛥𝑡

𝜅0(𝛼, 𝑡)
.         (29) 

Lemma 28 Assuming 𝛼 ∈ (0, 1] and  

𝜅0
𝜎(𝛼, 𝑡) + 𝜇(𝑡)𝜅1

𝜎(𝛼, 𝑡) ≠ 0,     𝑡 ∈ 𝕋𝑘, 

let 𝐿𝛼 be supplied as in (23). For 𝑥, 𝑦 ∈ 𝔻, Green's formula  

〈𝐿𝛼𝑥, 𝑦〉 − 〈𝑥, 𝐿𝛼𝑦〉=𝑊(𝑥, 𝑦)(𝑏) −
𝑊(𝑥, 𝑦)(𝑎)

�̃�𝜉(𝑎, 𝑏)
�̃�0(𝑏, 𝑎),           (30) 

is provided. Additionally, if 𝑥, 𝑦 ∈ 𝔻, and 𝑥, 𝑦 fulfill the self-adjoint boundary conditions  

𝑊(𝑥, 𝑦)(𝑏)=
𝑊(𝑥, 𝑦)(𝑎)

�̃�0(𝑎, 𝑏)�̂̃�0(𝑎, 𝑏)
               (31) 

Operator 𝐿𝛼 is only self-adjoint via inner product (29), i.e. 

〈𝑥, 𝐿𝛼𝑦〉=〈𝐿𝛼𝑥, 𝑦〉 .                (32)  
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Proof From Theorem 26 the Lagrangian identity (25) given by  

�̃�𝜉𝐷𝛼 (
𝑊

�̃�𝜉
) =𝑦(𝐿𝛼𝑥) − 𝑥(𝐿𝛼𝑦), 

is true.  

∫ 𝐷𝛼 (
𝑊

�̃�𝜉
) 𝛥𝑎,𝑏𝑡

𝑏

𝑎

= ∫
[𝑦(𝐿𝛼𝑥)  −  𝑥(𝐿𝛼𝑦)]

�̃�𝜉(𝑡, 𝑏)
𝛥𝑎,𝑏𝑡

𝑏

𝑎

, 

is determined by multiplying both sides of this identity by 𝜉, then by  
�̃�0(𝑏, 𝜎(𝑡))

�̃�𝜉(𝑡, 𝑏)𝜅0(𝛼, 𝑡)
, and then by 

integrating from 𝑎 to 𝑏. Based  

𝑊(𝑥, 𝑦)(𝑏)

�̃�𝜉(𝑏, 𝑏)
−

𝑊(𝑥, 𝑦)(𝑎)

�̃�𝜉(𝑎, 𝑏)
�̃�0(𝑏, 𝑎)=〈𝐿𝛼𝑥, 𝑦〉  −  〈𝑥, 𝐿𝛼𝑦〉, 

from Lemma 15, we arrive to Green's formula (30). From this, if 𝑥, 𝑦 ∈ 𝔻 coincide the criteria (31), it 

could easily deduced the self-adjointness, i.e. 〈𝑥, 𝐿𝛼𝑦〉=〈𝐿𝛼𝑥, 𝑦〉. 

Lemma 29 (Abel Formula) Assume that 𝛼 ∈ (0, 1],  

𝜅0
𝜎(𝛼, 𝑡) + 𝜇(𝑡)𝜅1

𝜎(𝛼, 𝑡) ≠ 0,     𝑡 ∈ 𝕋𝑘, 

and 𝐿𝛼 is supplied by (23). If 𝑥, 𝑦 ∈ 𝔻 are solution of 𝐿𝛼𝑥=0, then the Wronskian is 

𝑊(𝑥, 𝑦)(𝑡)=
𝑊(𝑥, 𝑦)(𝑏)

�̃�0(𝑏, 𝑡)�̂̃�0(𝑏, 𝑡)
=

𝑊(𝑥, 𝑦)(𝑎)

�̃�0(𝑎, 𝑡)�̂̃�0(𝑎, 𝑡)
,   𝑡 ∈ 𝕋𝑘,            (33) 

for the constant 𝑎 ∈ 𝕋𝑘. 

Proof Similar to (25) and the demonstration of Lemma 26, for 𝑥, 𝑦 ∈ 𝔻   

�̃�0(𝑡, 𝑏)𝐷𝛼 [
𝑊(𝑥, 𝑦)(𝑡)

�̃�0(𝑡, 𝑏)
] =𝑥(𝐿𝛼𝑦) − 𝑦(𝐿𝛼𝑥). 

If 𝑥, 𝑦 are solutions of (23) on 𝕋𝑘, then 𝐿𝛼𝑥= 0=𝐿𝛼𝑦 and   

�̃�𝜉𝐷𝛼 (
𝑊

�̃�𝜉
) = 0 ⇒ 𝐷𝛼 (

𝑊

�̃�𝜉
) = 0    (�̃�𝜉 ≠ 0), 

⇒ �̃�0(𝑡, 𝑏)𝐷𝛼 [
𝑊(𝑥, 𝑦)(𝑡)

�̃�0(𝑡, 𝑏)
] = 0, 

thus, 

𝐷𝛼 [
𝑊(𝑥, 𝑦)(𝑡)

�̃�0(𝑡, 𝑏)
] = 0,   

and 

 
𝑊(𝑥, 𝑦)(𝑡)

�̃�0(𝑡, 𝑎)
=𝑐 �̂̃�0(𝑡, 𝑏)�̂̃�0(𝑎, 𝑡), 

where 𝑐= 𝑊(𝑥, 𝑦)(𝑏). According to (33) 
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𝑊(𝑥, 𝑦)(𝑡)= �̃�0(𝑡, 𝑎)�̂̃�0(𝑡, 𝑎)𝑊(𝑥, 𝑦)(𝑎). 

Theorem 30 Self-adjointness exists in the proportional Sturm-Liouville problem (23). 

Proof According to Green formula (30) 

〈𝐿𝛼𝑥, 𝑦〉= 
𝑊(𝑥, 𝑦)(𝑏)

�̃�𝜉(𝑏, 𝑏)
−

𝑊(𝑥, 𝑦)(𝑎)

�̃�𝜉(𝑎, 𝑏)
�̃�0(𝑏, 𝑎) + 〈𝑥, 𝐿𝛼𝑦〉 

= 𝑥(𝑏)𝐷𝛼𝑦(𝑏) − 𝑦(𝑏)𝐷𝛼𝑥(𝑏) −
𝑥(𝑎)𝐷𝛼𝑦(𝑎)  −  𝑦(𝑎)𝐷𝛼𝑥(𝑎)

�̃�0(𝑎, 𝑏)�̂̃�0(𝑎, 𝑏)
+ 〈𝑥, 𝐿𝛼𝑦〉 

=  〈𝑥, 𝐿𝛼𝑦〉, 

thereby concluding the proof. 

Theorem 31 Eigenfunctions 𝑥(𝑡) and 𝑦(𝑡) corresponding to different  eigenvalues 𝜆1, 𝜆2 of the 

proportional Sturm-Liouville problem (23) are orthogonal, i.e.  

∫
𝑥(𝑡)𝑦(𝑡)

�̃�𝜉(𝑡, 𝑏)
𝛥𝑎,𝑏𝑡

𝑏

𝑎

= 0.                (34) 

Proof From the Green formula (30)  

𝑊(𝑥, 𝑦)(𝑏) −
𝑊(𝑥, 𝑦)(𝑎)

�̃�𝜉(𝑎, 𝑏)
�̃�0(𝑏, 𝑎)= 〈𝐿𝛼𝑥, 𝑦〉 − 〈𝑥, 𝐿𝛼𝑦〉, 

and the conditions 𝑊(𝑥, 𝑦)(𝑎)= 0 and 𝑊(𝑥, 𝑦)(𝑏)= 0 are considered 

  〈𝐿𝛼𝑥, 𝑦〉 − 〈𝑥, 𝐿𝛼𝑦〉= 0, 

  〈𝜆1𝑥, 𝑦〉 − 〈𝑥, 𝜆2𝑦〉= 0, 

∫
𝜆1𝑥(𝑡)𝑦(𝑡)

�̃�𝜉(𝑡, 𝑏)
𝛥𝑎,𝑏𝑡

𝑏

𝑎

− ∫
𝜆2𝑥(𝑡)𝑦(𝑡)

�̃�𝜉(𝑡, 𝑏)
𝛥𝑎,𝑏𝑡

𝑏

𝑎

= 0, 

(𝜆1 − 𝜆2) ∫
𝑥(𝑡)𝑦(𝑡)

�̃�𝜉(𝑡, 𝑏)
𝛥𝑎,𝑏𝑡

𝑏

𝑎

= 0, 

since 𝜆1 ≠ 𝜆2, (34) is found. 

Theorem 32 Any two solutions to the proportional Sturm-Liouville problem (23) are linearly dependent 

if and only if 𝑊= 0. 

Proof  If any two solutions of the proportional Sturm-Liouville problem (23) are linearly dependent, 

then 𝑦(𝑥)= 𝑐𝑧(𝑥), and from here 

𝑊(𝑦, 𝑧)(𝑥)= det (
𝑦(𝑥) 𝑧(𝑥)

𝐷𝛼𝑦(𝑥) 𝐷𝛼𝑧(𝑥)
) = det (

𝑐𝑧(𝑥) 𝑧(𝑥)

𝑐𝐷𝛼𝑧(𝑥) 𝐷𝛼𝑧(𝑥)
) = 0, 

and then 

𝐷𝛼𝑦= 𝐷𝛼(𝑐𝑧)= 𝜅1(𝑐𝑧) + 𝜅0(𝑐𝑧)𝛥= (𝜅1  +  𝜅0𝑧𝛥)𝑐 ⇒ 𝐷𝛼𝑦=𝑐𝐷𝛼𝑧. 
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CONCLUSION 

As a generic instance of a conformable derivative, the proportional derivative was used to analyze 

the Sturm-Liouville dynamic problem. Several spectrum properties were proven for this problem 

utilizing a variety of techniques, such as self-adjointness, the Green Formula, Lagrange identity, the 

Abel formula, and orthogonality of eigenfunctions. 
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