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STATIC ANALYSIS OF VISCOELASTIC BEAMS THROUGH
FINITE ELEMENT METHOD
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ABSTRACT: This study focuses on straight beams by taking viscoelastic behavior of material.
Time-dependent behavior of the material is stated with the help of Prony series. A constant
poisson ratio has been used. Constitution equations for beam are combined in one function with
Hamilton Principle, and Laplace transformation is used to free it from time parameter. Finite
element formulation is formed with linear shape functions. While integral operation of
equations with a shear effect is executed with reduced integration method, integral operations
of others are executed with full integration method. Following these analyses, results are
obtained by using Reverse Laplace Transformation method developed by Honig and Hirdes.
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VISKOELASTIK KIRISLERIN SONLU ELEMANLAR
YONTEMIYLE STATIK ANALIZI

OZET: Bu ¢alismada malzeme icin viskoelastik davranis kabulleri yapilarak, dogru eksenli
kirisin analizi yapilmistir. Malzemenin zamana bagli davranisi Prony serisi yardimiyla ifade
edilmistir. Poisson orani sabit olarak alimnmigtir. Kiris icin elde edilen biinye denklemleri
Hamilton Prensibi yardimiyla bir fonksiyonelde toplanmuis, Laplace doniisiimii kullanilarak
zaman parametresinden bagimsiz hale getirilmistir. Lineer olarak segilen sekil fonksiyonlari
yardimiyla sonlu elemanlar formiilasyonu olusturulmustur. Bu asamada kayma etkisinin
bulundugu ifadelerin integral islemi indirgenmis integral (Reduce Integration) yontemiyle,
diger ifadelerin integral iglemleri ise tam integral yontemiyle yapilmistir. Bu ¢oziimlemelerden
sonra Honig ve Hirdes’in gelistirdigi Ters Laplace Doniisiim metodu kullanilmak suretiyle
sonuclar elde edilmistir.
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1. INTRODUCTION

The importance of constructions (nuclear centrals, space structures...) is continuously
increasing because of developing technology. Materials are generally accepted as elastic in
engineering constructions due to calculation simplicity. But, used materials actually demonstrate
a viscoelastic behavior. So, models which give the actual behavior of material with more time
consuming computing capacity should be used for more precise determination of behavior of
materials used in constructions. This requires viscoelastic material assumptions instead of the
use of elastic material assumptions under normal conditions. The behavior of viscoelastic
material under axial load can be explained with superposition of elastic and viscose elements.
While elastic behavior is modeled by means of a simple spring (Hooke model), viscose behavior
is modeled by means of a dashpot (Newton model). While constitution equations for elastic
behavior are a function of stress and deformations, time function is included besides stress and
deformations for viscoelastic behavior. In other words, deformation is now not dependent on
only loading, but also loading speed and time. While stress-deformation is in a linear
relationship, and independent from time for Hooke model, stress-deformation is a function of

time for Newton model [1].

1l. BEHAVIOR EQUATIONS OF VISCOELASTIC BEAMS

The cross section of a straight beam made from a viscoelastic material and positive direction of

forces are given in Figure 1.
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Figure 1. Coordinate system and cross section of a beam element
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u; being the displacement for vibrating objects, the acceleration is . Accordingly, motion

ot
equation in Euler coordinates;
o’u,

ot*

ty, v F,=p (1)

Here p represents the density of material, and £, body force (volume force). Let’s consider ou,

virtual displacement, but take a vibrating body instead of a statistically balanced body [2].

Virtual work of volume and surface forces can be stated as;

W, = J.Fl.é‘uivar IIVZ ou,ds (2)

v
As T, du, expression in the last integral, Gauss Theorem, t; tensor is symmetrical and using

the Eq. 1 the following statement;

v o’u,

[T, ouds = [, ,Sudv+[t,6u, dv=] ( p—iF jdv+ [t,0e,dv (3)
can be derived. Here the equation variation of motion is obtained as W deformation energy
function.

Ide = _[tl_./.éei/.dv = I F-p azzi ou,dv + IYVZ ou,ds 4)

v v v at s

If total deformation energy U is defined as;

U= j Wdv (5)
the total works of deformation energy and internal forces are equal in a moving body. The work
of internal forces for systems with only moment and shear forces can be stated as;

MM TéTj dx ©

U:J.tl.jé‘e,-jd\/:u;:l( EI +K‘AG
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Here if expression is written as;

EI dx, KkAG dx,

Eq. 6 looks like;

do dw
= wo{ g2 ro{ o 52 o N

R 1

As a result the right side of equation (4) can be stated as;

2
u

0
ot’

U= J‘Fl.é'uidv—jp : pul.dv+J‘7v} pu.ds 9)

If we convert volume integrals in the equation to linear integrals, and the expression Eq. 9 takes

its place in the Eq. 3, it looks like;

o’w o’y dy aw
A ow+ pl oW+Mo| — [+TS| w+— |- fAdow— pow |dx, =0 10
ﬂp o7 WPl o {dxl del JASw— pow |dx, (10)

Here, R represents defined area on the beam towards x,, f volume forces, and p represents

surface forces. Time variable 7 is eliminated by Laplace Transformation of the equation.

j{pA{Ssz/—sw(O,xl)—%—V:(O,xl)}é'w

R

+pl[szl/7—sy/(0,xl)—%—l/t/(0,xl)}5y7+]\_15[a—wj (11)

xl
—[_ dw _ _
+T5[1//+d—j—fA5w—p5w}dxl =0
xl

M and T values in the equation respectively;

M:(]EO_FZIE_HSJCZW—(S) (12)

s+a, ) dx

S el
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If we rewrite the Eq. 13 with matrix notation it becomes;

dl//(s)

{?}z[% ;j y/(s)j)@ (14)

dx,

D, and terms in Eq. 14 are coefficients of viscoelastic materials which are independent from

time parameter. D, stands for bending rigidity in elastic materials, and D, stands for shear

rigidity. Terms in the Eq. 11 should be written in matrix notation to be able to use finite

elements. For this reason [N ]: As the Shape Function defined like;

=[Nk o =[N (8= 1Y)
If we rewrite and rearrange the Eq. 11 by using definitions;
S {ota” (oAl [ 91~ on(0.5) - 208) 0. [21f
+ D, [BJT[N]{m—a{wﬂzvrﬂ—a{wf[N]Tz»jdxl
(15)
()] PNT W] 7)o 00) - 0o [0, [T 815

+ [Dl [B]T[B]JFD2 [N]T [Nﬂ{lp}jdxl}:o

equation can be derived. Re in this equation represents the define area on beam elements

towards x, axis, and Ne defines the number of elements. If this equation is written in matrix

form for discretionarily selected & {W} and 0 {17 } values, it looks like;

PMI[]IQ[?”] [Mz[ﬁz[inﬂ{%}:{{Vlh{{é?{])}} a6

and here;

[M,]=[ pA[N] [N]s’dx,  [M,]=[ pI[N] [N]s'dx,

Re Re
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J. D,[ Bldx, J‘D Nldrx,

jD I'[Blx,  [K.]=] {Dl (8] [B]+ D.[N] [N]fe

Re

ow

= palw [N][SW(O 5)-2 (O,xl)}dxl

b= LotV ] (05) - 05 i 70

(F}=[INY Fad,  (P}=[[N]

Re Re

Finally, equation set can be written in matrix notation;

Klig}=17}+{Fi+{P) (18)
Here, [K ] is defined as global stiffness matrix, {(7} is defined as Laplace Transformation of
point displacement vector, {V} is defined as Laplace Transformation of global point load vector,

{F }is defined as Laplace transformation of volume forces, and{P}is defined as Laplace

Transformation of global outer forces [1, 3, 4].
Because the system is a beam in our problem, chosen elements are one dimensional and limit

conditions change linearly.

11.1 Shape Functions

Coordinate transformation for shape functions is shown Figure 2.

1e «2 1. !_,5 .2
=0 §=1

Figure 2. Coordinate transformation
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L
Remembering dx, = —d¢& , and depending on &, shape functions can be defined as:

1 _ 1
N, :5(1—5), N, = 2(1+§) (19)

According to these shape functions, displacement function can be written in matrix notation as;

w@- e wie) 2 |- o

w2

Here, W expression is Laplace Transformed state of displacement function [5, 6]. Similarly,

spin functions are:

7o) w2 |- o

v,

Here, J expression is Laplace Transformed state of spin function. If Eq. 19 expression is

written in its place in the Eq. 17a-j before integral operation, and necessary arrangements it

looks like;

L T LR
-7 -2 ]

O I O

1 L1 1
[K22]:DIZ+D2 Z_l J (22)
And, if we write these given matrix terms to their places in [K ] matrix given inEq. 18;
2 1 I -1 -1 -1
s L[2 1,0 D,
6|1 2 L|-1 1 L1 1
[K] ) D, -1 1 L|2 1 1 L|1 1 23)
—2 pls* = +D,—+D,~
L|-11 6|1 2 L 411 1

can be derived [7].
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Solved problem examples in the literature are used to compare this developed solution.
Presented solutions are compared to solve problems with the same material specifications,
loading and geometric conditions. Material properties are formulated with the help of Prony
Series. Integral expressions in the calculation of stiffness matrix elements are integrated by the
means of two different methods for Timoshenko beam. Integral operations of terms which
express bending rigidity are executed with full integration method, and reduced integration
method is used for terms of shear rigidity. The purpose is the elimination of shear rigidity
dominancy in the solution, and avoid from divergence called locking during the solution. If the
behavior of the beam is investigated according to different L/h ratio, the aforementioned locking
can occur. Reduced integration is used with Gauss-Legendre Rule method to overcome that
problem.

Matrix manipulation operations are executed with Mathematica 4.0 program, mentioned above,
and numerical method developed by Honig and Hirdes is used for Reverse Laplace

Transformation [8-11].

III. NUMERICAL EXAMPLE

A simple support beam which is 10 m long, 2 m wide and has a 0.5 m thickness has been loaded
with a uniform load of q = 10 N/m as shown in Figure 3. Material specifications are exactly the
same as in the literature. All three material models represented by a spring-dashpot model are
illustrated in Figure 4. Linear shape function has been chosen, and the beam has been divided
into eight pieces for coherence with executed studies. Obtained solutions are compared to final
solutions on graphs. Because Poisson ratio of the material varies within a small space, the

function of time is assumed as constant [10, 12].

g =10 N/m A=1mn’
vy v v 3 Y [20,020833 m
L=10m v=023

Figure 3. Loading condition of simple support beam
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Figure 4. Viscoelastic models:(a) Maxwell model (b) Kelvin model (c) Three-parameter model

Data for Maxwell model:

E =98x10"N/m’, E, =2.744x10° Ns/m’, v=0.3 and relaxation module obtained by
Prony series; E(1)=9.8x10"e"" N /m’; 1, =28s

Data for Kelvin model:

E =9.8x10'N/m*, E, =2.744x10° Ns/m*, v =0.3
Data for three parameter model:

E =98x10'N/m*, E, =2.45x10' N /m*, E, =2.744x10° Ns /m*, v =0.3 and
relaxation module obtained by Prony series;

E(t)=1.96x10"+7.84x10"e"" N /m*; t, = 2.24s

Analytic solution of the system according to this information is as follows.

Displacement value at the middle point for Timoshenko beam:

5qL l+v(hY
w(t)= I+1.6——| — | |J(t 24
( ) 3841 { K [Lj } ( ) @4
Displacement value at the middle point for traditional (Bernoulli) beam:
S5qL*
w(t)= J(t 25
( ) 3841 ( ) )

J (t) expression in equations (24) and (25) is defined as the creep function of materials, and

J (t) values for given materials are presented Table 1[13].
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Table 1. Viscoelastic material models used in our study and their mechanical properties.

Maxwell Model Kelvin Model Three Parameter Model

1 E

.‘E’ J(t)=—exp{——1t}+

= 1 1 1 E, E, E,

S J(t)=—+—t J(t)=—(1—exp| ——1

[=" El Ev El Ev l E

] —| 1—exp| ——L¢

C-) 1 Ev

v

Y(t)=E exp{—%f} Y(f):El(l_eXp{_%tD ( E
! v E,exp l—eXP[——‘fD

|4

Y(t) =FE, exp{—%t}+

Relaxation
relation

oy

Obtained solution for Maxwell model as shown in Figure 5 is very close to exact solution. A
sudden displacement occurred on Maxwell model with load application, and increased linearly
depending on time. Displacement on Kelvin model with load application started from zero, and
took its final position in a very short time period as shown in Figure 6. A sudden displacement
occurred on three parameter model with load application, and then displacement continued with
down scaling as shown Figure 7. This model maintains good properties of both Maxwell and
Kelvin models. The comparisons of the Maxwell model, Kelvin model and tree parameter
model are listed in Figure 8 shows that the time dependent displacements at the center of beam
for all material models. Figure 9 illustrate time-dependent displacement change on Maxwell
model. As Figure 9, displacement increases on Maxwell model as the time increases. It does no
converge to any value. As Figure 10 on, the displacement demonstrated a convergence on
Kelvin model, and the displacement did not increase although time had increased. Three
parameter model also demonstrated a graph which is similar to Kelvin model Figure 11
Displacement increase scaled down, and converged to a value. As a result, three parameter
model, within these three models, is the closest model to the actual behavior of materials. Other

models will fail to express actual behavior of materials, or even will be mistaken. These models
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are studied to understand the theory easily, but different models which can express actual

behavior can be applied, too.
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Figure 5. The time-dependent displacement at the mid-span of the beam for Maxwell model
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Figure 6. The time-dependent displacement at the mid-span of the beam for Kelvin model
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Figure 7. The time-dependent displacement at the mid-span of the beam for

three-parameter model
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Figure 8. The time-dependent displacement at the center of the beam

for all three material models
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Figure 9. Displacement variation on Maxwell model along beam axis
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Figure 10. Displacement variation on Kelvin model along beam axis
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Figure 11. Displacement variation on three-parameter model along beam axis

1V. CONCLUSION

The actual behavior of engineering materials is determined more realistically with the use of
viscoelastic materials. Some solutions have been reached in this study by using some basic
viscoelastic materials through a developed theory. The relaxation function of the material has
been expressed with the help of a specially chosen Prony series. This simplified the Reverse
Laplace Transformation of emerging equations during the course. Finite element operations and
consequent Reverse Transformation operations are executed with Mathematica 4.0 program.
Obtained results are compared to the literature, and targeted approximation has been achieved.

When the deformation of Maxwell and Kelvin models from the time of force application is
considered, these models are apparently far from representing the actual behavior of the
material. The most appropriate one within given models is the three parameter model. A
deformation which is decreasing in time following a sudden deformation at the beginning has
been revealed. More complex models than ones mentioned above can be chosen practically.

Because of the simplicity of operations in theory and comprehensibility, the simplest models of



Static Analysis Of Viscoelastic Beams Through Finite Element Method 99

viscoelasticity have been used. Viscoelastic models can be improved with experiments on

materials.

Shape functions have been chosen linearly in finite elements method. While high level shape

functions do not change the sensitivity a lot, they reduce the computing capability. Instead,

choosing shape function linearly, and the execution of operations on divided elements, as

happened in that study, is more convenient.
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