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ABSTRACT: This study focuses on straight beams by taking viscoelastic behavior of material. 

Time-dependent behavior of the material is stated with the help of Prony series. A constant 

poisson ratio has been used. Constitution equations for beam are combined in one function with 

Hamilton Principle, and Laplace transformation is used to free it from time parameter. Finite 

element formulation is formed with linear shape functions. While integral operation of 

equations with a shear effect is executed with reduced integration method, integral operations 

of others are executed with full integration method. Following these analyses, results are 

obtained by using Reverse Laplace Transformation method developed by Honig and Hirdes. 
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VĐSKOELASTĐK KĐRĐŞLERĐN SONLU ELEMANLAR  

YÖNTEMĐYLE STATĐK ANALĐZĐ 
 

ÖZET: Bu çalışmada malzeme için viskoelastik davranış kabulleri yapılarak, doğru eksenli 

kirişin analizi yapılmıştır. Malzemenin zamana bağlı davranışı Prony serisi yardımıyla ifade 

edilmiştir. Poisson oranı sabit olarak alınmıştır. Kiriş için elde edilen bünye denklemleri 

Hamilton Prensibi yardımıyla bir fonksiyonelde toplanmış, Laplace dönüşümü kullanılarak 

zaman parametresinden bağımsız hale getirilmiştir. Lineer olarak seçilen şekil fonksiyonları 

yardımıyla sonlu elemanlar formülasyonu oluşturulmuştur. Bu aşamada kayma etkisinin 

bulunduğu ifadelerin integral işlemi indirgenmiş integral (Reduce Integration) yöntemiyle, 

diğer ifadelerin integral işlemleri ise tam integral yöntemiyle yapılmıştır. Bu çözümlemelerden 

sonra Honig ve Hirdes’in geliştirdiği Ters Laplace Dönüşüm metodu kullanılmak suretiyle 

sonuçlar elde edilmiştir. 

Anahtar kelimeler: Viskoelastik kiriş, Sonlu eleman, Timoshenko kirişi, Laplace Dönüşümü 
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I. INTRODUCTION 

 

The importance of constructions (nuclear centrals, space structures…) is continuously 

increasing because of developing technology. Materials are generally accepted as elastic in 

engineering constructions due to calculation simplicity. But, used materials actually demonstrate 

a viscoelastic behavior. So, models which give the actual behavior of material with more time 

consuming computing capacity should be used for more precise determination of behavior of 

materials used in constructions. This requires viscoelastic material assumptions instead of the 

use of elastic material assumptions under normal conditions. The behavior of viscoelastic 

material under axial load can be explained with superposition of elastic and viscose elements. 

While elastic behavior is modeled by means of a simple spring (Hooke model), viscose behavior 

is modeled by means of a dashpot (Newton model). While constitution equations for elastic 

behavior are a function of stress and deformations, time function is included besides stress and 

deformations for viscoelastic behavior. In other words, deformation is now not dependent on 

only loading, but also loading speed and time. While stress-deformation is in a linear 

relationship, and independent from time for Hooke model, stress-deformation is a function of 

time for Newton model [1]. 

 

II. BEHAVIOR EQUATIONS OF VISCOELASTIC BEAMS 

 

The cross section of a straight beam made from a viscoelastic material and positive direction of 

forces are given in Figure 1. 

h

 

Figure 1. Coordinate system and cross section of a beam element 
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ui being the displacement for vibrating objects, the acceleration is
2

2

t

ui

∂

∂
. Accordingly, motion 

equation in Euler coordinates; 

 
2

2
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Ft i

ijij ∂

∂
=+ ρ  (1) 

Here ρ represents the density of material, and iF  body force (volume force). Let’s consider iuδ  

virtual displacement, but take a vibrating body instead of a statistically balanced body [2]. 

Virtual work of volume and surface forces can be stated as; 

 
v

e i i i i

v s

W F u dv T u dsδ δ= +∫ ∫   (2) 

As i

v

i uT δ  expression in the last integral, Gauss Theorem, ijt  tensor is symmetrical and using 

the Eq. 1 the following statement; 
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can be derived. Here the equation variation of motion is obtained as W deformation energy 

function. 
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If total deformation energy U is defined as; 

 
v

U Wdv= ∫   (5) 

the total works of deformation energy and internal forces are equal in a moving body.  The work 

of internal forces for systems with only moment and shear forces can be stated as; 

  

 1ij ij i
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κ
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Here if expression is written as;   
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 (7) 

Eq. 6 looks like;   
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As a result the right side of equation (4) can be stated as; 
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If we convert volume integrals in the equation to linear integrals, and the expression Eq. 9 takes 

its place in the Eq. 3, it looks like; 
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∫  (10) 

Here, R represents defined area on the beam towards 1x , f volume forces, and p represents 

surface forces. Time variable t is eliminated by Laplace Transformation of the equation. 
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M  and T  values in the equation respectively; 
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If we rewrite the Eq. 13 with matrix notation it becomes; 
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( ) ( )
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 (14) 

1D  and terms in Eq. 14 are coefficients of viscoelastic materials which are independent from 

time parameter. 1D  stands for bending rigidity in elastic materials, and 2D  stands for shear 

rigidity. Terms in the Eq. 11 should be written in matrix notation to be able to use finite 

elements. For this reason [ ]N : As the Shape Function defined like; 

 [ ]{ } [ ]{ } [ ] [ ]; ;
d N

w N w N B dxψ ψ= = =  

If we rewrite and rearrange the Eq. 11 by using definitions; 
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equation can be derived. Re in this equation represents the define area on beam elements 

towards 1x  axis, and Ne defines the number of elements. If this equation is written in matrix 

form for discretionarily selected { }wδ and { }ψδ  values, it looks like; 
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and here; 
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T

Re

P N pdx= ∫  

Finally, equation set can be written in matrix notation; 

 [ ]{ } { } { } { }PFVqK ++=   (18) 

Here, [ ]K  is defined as global stiffness matrix,{ }q  is defined as Laplace Transformation of 

point displacement vector,{ }V  is defined as Laplace Transformation of global point load vector, 

{ }F is defined as Laplace transformation of volume forces, and{ }P is defined as Laplace 

Transformation of global outer forces [1, 3, 4].  

Because the system is a beam in our problem, chosen elements are one dimensional and limit 

conditions change linearly.   

 

II.1 Shape Functions 

Coordinate transformation for shape functions is shown Figure 2.  

 

 

 

Figure 2. Coordinate transformation 
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Remembering 1 2

L
dx dξ= , and depending onξ , shape functions can be defined as: 

 ( ) ( )1 2

1 1
1 ; 1

2 2
N Nξ ξ= − = +  (19) 

According to these shape functions, displacement function can be written in matrix notation as; 
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Here, w  expression is Laplace Transformed state of displacement function [5, 6]. Similarly, 

spin functions are: 
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Here, ψ  expression is Laplace Transformed state of spin function. If Eq. 19 expression is 

written in its place in the Eq. 17a-j before integral operation, and necessary arrangements it 

looks like;   
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And, if we write these given matrix terms to their places in [ ]K  matrix given inEq. 18; 
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 (23) 

can be derived [7].   
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Solved problem examples in the literature are used to compare this developed solution. 

Presented solutions are compared to solve problems with the same material specifications, 

loading and geometric conditions. Material properties are formulated with the help of Prony 

Series. Integral expressions in the calculation of stiffness matrix elements are integrated by the 

means of two different methods for Timoshenko beam. Integral operations of terms which 

express bending rigidity are executed with full integration method, and reduced integration 

method is used for terms of shear rigidity. The purpose is the elimination of shear rigidity 

dominancy in the solution, and avoid from divergence called locking during the solution. If the 

behavior of the beam is investigated according to different L/h ratio, the aforementioned locking 

can occur. Reduced integration is used with Gauss-Legendre Rule method to overcome that 

problem.  

Matrix manipulation operations are executed with Mathematica 4.0 program, mentioned above, 

and numerical method developed by Honig and Hirdes is used for Reverse Laplace 

Transformation [8-11]. 

 

III. NUMERICAL EXAMPLE 

 

A simple support beam which is 10 m long, 2 m wide and has a 0.5 m thickness has been loaded 

with a uniform load of q = 10 N/m as shown in Figure 3. Material specifications are exactly the 

same as in the literature. All three material models represented by a spring-dashpot model are 

illustrated in Figure 4. Linear shape function has been chosen, and the beam has been divided 

into eight pieces for coherence with executed studies. Obtained solutions are compared to final 

solutions on graphs. Because Poisson ratio of the material varies within a small space, the 

function of time is assumed as constant [10, 12]. 

 A = 1 m2 

I = 0.020833 m4 

ν = 0.3 

 

Figure 3. Loading condition of simple support beam 
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Figure 4. Viscoelastic models:(a) Maxwell model (b) Kelvin model (c) Three-parameter model 

  

Data for Maxwell model: 

7 2 9 2
1 9.8 10 / , 2.744 10 / , 0.3E N m E Ns mν ν= × = × =  and relaxation module obtained by 

Prony series; ( ) 0/7 2
09.8 10 / ; 28t tE t e N m t s−= × =  

Data for Kelvin model: 

7 2 9 2
1 9.8 10 / , 2.744 10 / , 0.3E N m E Ns mν ν= × = × =   

Data for three parameter model: 

7 2 7 2 9 2
1 29.8 10 / , 2.45 10 / , 2.744 10 / , 0.3E N m E N m E Ns mν ν= × = × = × =  and 

relaxation module obtained by Prony series; 

 ( ) 0/7 7 2
01.96 10 7.84 10 / ; 2.24t tE t e N m t s−= × + × =  

Analytic solution of the system according to this information is as follows. 

Displacement value at the middle point for Timoshenko beam: 

 

 ( ) ( )
245 1

1 1.6
384

qL h
w t J t

I L

ν
κ

 +  = +  
   

 (24) 

Displacement value at the middle point for traditional (Bernoulli) beam: 

 ( ) ( )
45

384

qL
w t J t

I
=   (25) 

( )J t  expression in equations (24) and (25) is defined as the creep function of materials, and 

( )J t  values for given materials are presented Table 1[13]. 
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Table 1. Viscoelastic material models used in our study and their mechanical properties. 

 

 Maxwell Model Kelvin Model Three Parameter Model 
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p
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o
n

 

( )
1

1 1

v

J t t
E E

= +  ( ) ( 1

1

1
1 exp

E
J t t

E Eν

 
= − −     

 

( ) 1

2

1

1

1
exp

1
1 exp

E
J t t

E E

E
t

E E

ν

ν

 
= − + 

 

  
− −     

 

R
e
la
x
a
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r
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E
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E

 
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 
 ( ) ( 1

1 1 exp
E

Y t E t
Eν

 
= − −     

 

( ) 1
2

1
1

exp

exp 1 exp

E
Y t E t

E

E
E t

E

ν

ν

 
= − + 

 

  
− −     

 

 

Obtained solution for Maxwell model as shown in Figure 5 is very close to exact solution. A 

sudden displacement occurred on Maxwell model with load application, and increased linearly 

depending on time. Displacement on Kelvin model with load application started from zero, and 

took its final position in a very short time period as shown in Figure 6. A sudden displacement 

occurred on three parameter model with load application, and then displacement continued with 

down scaling as shown Figure 7. This model maintains good properties of both Maxwell and 

Kelvin models. The comparisons of the Maxwell model, Kelvin model and tree parameter 

model are listed in Figure 8 shows that the time dependent displacements at the center of beam 

for all material models. Figure 9 illustrate time-dependent displacement change on Maxwell 

model. As Figure 9, displacement increases on Maxwell model as the time increases. It does no 

converge to any value. As Figure 10 on, the displacement demonstrated a convergence on 

Kelvin model, and the displacement did not increase although time had increased. Three 

parameter model also demonstrated a graph which is similar to Kelvin model Figure 11 

Displacement increase scaled down, and converged to a value. As a result, three parameter 

model, within these three models, is the closest model to the actual behavior of materials. Other 

models will fail to express actual behavior of materials, or even will be mistaken. These models 
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are studied to understand the theory easily, but different models which can express actual 

behavior can be applied, too.  

 

Figure 5. The time-dependent displacement at the mid-span of the beam for Maxwell model 

 

 

 

Figure 6. The time-dependent displacement at the mid-span of the beam for Kelvin model 
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Figure 7. The time-dependent displacement at the mid-span of the beam for  

  three-parameter model 

 

 

 

Figure 8. The time-dependent displacement at the center of the beam 

  for all three material models 
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Figure 9. Displacement variation on Maxwell model along beam axis 

 

 

 

Figure 10. Displacement variation on Kelvin model along beam axis 
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Figure 11. Displacement variation on three-parameter model along beam axis 

 

IV. CONCLUSION 

 

The actual behavior of engineering materials is determined more realistically with the use of 

viscoelastic materials. Some solutions have been reached in this study by using some basic 

viscoelastic materials through a developed theory. The relaxation function of the material has 

been expressed with the help of a specially chosen Prony series. This simplified the Reverse 

Laplace Transformation of emerging equations during the course. Finite element operations and 

consequent Reverse Transformation operations are executed with Mathematica 4.0 program. 

Obtained results are compared to the literature, and targeted approximation has been achieved.  

When the deformation of Maxwell and Kelvin models from the time of force application is 

considered, these models are apparently far from representing the actual behavior of the 

material. The most appropriate one within given models is the three parameter model. A 

deformation which is decreasing in time following a sudden deformation at the beginning has 

been revealed. More complex models than ones mentioned above can be chosen practically. 

Because of the simplicity of operations in theory and comprehensibility, the simplest models of 
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viscoelasticity have been used. Viscoelastic models can be improved with experiments on 

materials.  

Shape functions have been chosen linearly in finite elements method. While high level shape 

functions do not change the sensitivity a lot, they reduce the computing capability. Instead, 

choosing shape function linearly, and the execution of operations on divided elements, as 

happened in that study, is more convenient. 
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