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ABSTRACT: A nonlinear programming approach for the inverted pendulum swing-up control 

is presented. Even though it is an energy-based method, it uses fundamentally different 

mathematical tools to achieve the swing-up goal. The control problem translated into nonlinear 

programming model with appropriate objective function and constraints. While the objective 

function provides energy increase in the system, physical restrictions of the system are handled 

in the constraints of the nonlinear programming model. It is also shown that this model is 

intrinsically suitable for embedding any nonlinear system constraints. Simulation results for 

illustrative cases are included to validate the design method.  

Keywords: Swing-up control problem; Inverted pendulum; Underactuated systems; Nonlinear 

programming; Energy based methods. 

 

TERS SARKAÇ YUKARI KALDIRMA KONTROL PROBLEMĐ ĐÇĐN 

DOĞRUSAL OLMAYAN PROGRAMLAMA YAKLAŞIMI 

 
ÖZET: Ters sarkaç yukarı kaldırma kontrol problemi için doğrusal olmayan programlama 

yaklaşımı sunulmuştur. Önerilen yöntem her ne kadar enerji tabanlı olsa da, havaya kaldırma 

probleminde temelde farklı matematiksel araçlar kullanmaktadır. Kontrol problemi uygun amaç 

ve kısıt fonksiyonları kullanılarak doğrusal olmayan programlama modeline dönüştürülmüştür. 

Doğrusal olmayan programlama modelinde amaç fonksiyonu enerjinin artırımını hedeflerken, 

sisteme ait fiziksel sınırlamalar kısıtlar ile modellenmiştir. Önerilen modelin herhangi bir 

doğrusal olmayan kısıt tarifinde de kullanılabileceği gösterilmiştir. Tasarlanan modelin 

doğruluğunu göstermek üzere örnek durumlar için benzetim sonuçları eklenmiştir. 

Anahtar Kelimeler: Havaya kaldırma kontrol problemi; Ters sarkaç; yetersiz uyarımlı 

sistemler; Doğrusal olmayan programlama; Enerji tabanlı yöntemler. 
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I. INTRODUCTION 
 

In this paper, we introduce a nonlinear programming method for the swing-up control of an 

inverted pendulum system. It is a typical example for nonlinear underactuated systems in which 

pendulum angle and cart position are controlled by a single force input applied to the cart. The 

inverted pendulum’s rich and nonlinear dynamics is useful in testing new control strategies. The 

control objective is to swing-up pendulum from the stable (hang-down) equilibrium point to the 

unstable (upright) equilibrium point and to stabilize it in its upright position. This control 

problem, in general, comes with various constraints such as with a limited track length and a 

limit on the size of the controlling force. These constraints are handled using nonlinear 

programming approach keeping the control objective. The method we propose is conceptually 

simple and can be generalizable to more complicated design requirements. 

The swing-up problem has been studied extensively in the literature.  A popular approach in 

designing swing-up controllers is based on controlling its energy. The logic behind this 

approach is injecting energy to the pendulum by applying appropriate control force to the cart. 

In [1], a bang-bang control is used to raise the energy of the pendulum towards a value equal to 

its steady state value at the upright position. In [2], a variable structure system version of 

energy-speed-gradient method is treated in a rigorous manner to show that attractivity of the 

upright equilibrium can be achieved by applying a control of arbitrary small magnitude. In [3], 

the sign condition in the derivative of the energy is exploited. In this paper a servo system 

having a low pass property is used for the swing-up. This servo system uses a sinusoidal 

reference input generated from the pendulum trajectory. In another significant energy-based 

work [4], the swing-up and stabilization of an inverted pendulum system with a restricted cart 

track length is achieved by using an energy-well built within the cart track. It is constructed in 

such a way that the cart experiences a repulsive force as it approaches the boundaries in the 

neighborhood of the limitations. They control the velocity similarly by using a velocity well. In 

the energy-based works, the stabilization phase is carried out, generally, by using controllers 

designed for the linearized model of the inverted pendulum. In [5], energy-based swinging 

strategies are compared with a fuzzy swing-up algorithm. In [6], a Lyapunov function is 

obtained by using the total energy of the system, and the convergence analysis carried out using 

the LaSalle's invariance principle. In fuzzy logic approaches, the states of the inverted pendulum 
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system are used as inputs. For example, in [7], the fuzzy logic method is used in both swing-up 

and stabilization phases. Each state of the inverted pendulum is assigned with a single input rule 

module (SIRM) and a dynamic importance degree. Besides, a reader may also refer this paper 

for a very good review of other fuzzy logic works in the literature. 

Our paper may be classified in energy-based methods.  Even though we exploit the energy of 

the inverted pendulum system, we use fundamentally different mathematical tools in order to 

generate the control signal. Differing from the literature, we transform a problem that is mainly 

in the differential equation domain, into the domain of nonlinear programming: an algebraic 

domain.  This also allows us to embed a variety of design specifications like system constraints 

in the problem in a conceptually simple way. 

The outline of this paper is as follows. In the next section we present an equation of motion for 

the inverted pendulum system. Following this the energy of the pendulum is expressed in terms 

of its states. In the third section, problem specifications and its solution method using a 

nonlinear programming approach is presented. Prior to the concluding section we illustrate 

validity of our method by various simulation graphics. 

 

II. PRELIMINARIES 

 

Inverted pendulum attached to a moving cart (Figure 1) is widely used as benchmark for testing 

control algorithms. The pendulum and cart movements are restricted to a plane. The upside 

down equilibrium state of the pendulum is unstable, that is, the pendulum may fall over at any 

time in any direction within the plane of motion. Hence, an appropriate force input u  has to be 

generated to drive and keep the pendulum up-straight. 
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Figure 1. The inverted pendulum system 

 

The nonlinear differential equation representing dynamics of an inverted pendulum shown in 

Figure 1 can be obtained using principles of the Newtonian mechanics [8]: 
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where u denotes the control input and the components 41 ,, xx K  of the system state vector X  

are defined by xx =:1 , xx &=:2 , θ=:3x , θ&=:4x . Table 1 shows definitions of the symbols 

used in (1) and typical values that we use in the simulations.  

 

Table 1. Definitions and typical values for the inverted pendulum 

Parameters Symbol Value Unit 

Mass of the Cart M 3 kg 

Mass of the inverted pendulum m 0.5 kg 

Length of the inverted pendulum l 0.5 m 

Friction Constant b 2 kg/s 

Gravitational force g 9.81 m/s
2
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The sum of the rotational kinetic energy of the pendulum and its potential energy, denoted by 

V , is [4]  

)1(cos
2
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where J  is the moment of inertia of the pendulum about the hinge. Expression (2) reveals that 

for zero initial velocity, the energy of the pendulum at the hanging down position is zero, and it 

is )Joules9.4(max ≈V  at the vertically upright position. If the energy of the pendulum is less 

than its energy at vertically upright position, the swinging up requires increasing the energy of 

the pendulum. Increasing the energy is equivalent to making the sign of dtdV  positive. In 

other words, 

0cos 342 ≥−= xxxmlV &
&                (3) 

must be satisfied. By using the pendulum system dynamics, expression (3) can be written as 
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In the next section we design a nonlinear programming based controller that maximizes 

V& during the swing-up phase, and satisfy the constraints on the track length and maximum input 

size. 

 

III.  THE NONLINEAR PROGRAMMING MODEL OF THE SWING-UP 

CONTROL PROBLEM 

 

The control objective in inverted pendulum swing-up problem is to drive the pendulum to 

vertically upright position from its pendant initial conditions, and keep it in that position 

thereafter. This problem is solved in two phases: swing-up phase, stabilization phase. 

 

III.1 The swing-up phase 

In the swing-up phase pendulum is driven into a certain neighborhood of the vertically upright 

position. The swing-up phase of the control problem is modeled as a nonlinear programming 

problem. The nonlinear programming problem determines the control input u that maximizes 
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the increase in pendulum energy while obeying certain constraints, such as limited track length 

and limited input size. In the swing-up phase we update the control input u at the beginning of 

every time interval [ ]tktk ∆+∆ )1(, , ,,1,0 K=k  where the updating interval length t∆  has a 

fixed value whose upper bound is determined by the smallest time constant of the inverted 

pendulum system. The updating is carried out by measuring the system state X  and computing 

the control input u  by solving a nonlinear programming problem at the beginning of every 

updating interval. The updated value of u  is applied to the cart throughout the updating 

interval. For simplicity, we use linear feedback control inputs of the form KXu =  to form the 

control input, where [ ] 4

4321 RkkkkK ∈= denotes the feedback coefficient matrix. For 

the nonlinear programming problem, we next present the objective function and mathematical 

model of the constraints below: 

 

a. The objective function: Our objective is to select a feedback coefficient matrix to form the 

control input which maximizes the energy of the pendulum. This can be done efficiently by 

maximizing the derivative of the pendulum energy (4). Therefore, the objective function below 

is chosen as derivative of (4) evaluated at the values given in Table 1. It is seen in the sequel 

that this maximization together with the design constraints generate a control input function that 

achieves the swing-up successfully. The objective function can be written as 

 

2

3

33

2

432

34
)cos(5.05.3

)cos()sin(9.4)sin(25.02
)cos(25.0max

x

uxxxxx
xx

K −

+−+−
−    (5) 

 

This maximization is subject to the constraints presented below. 

 

b. Constraints: Inverted pendulum system has some restriction on the track length and input 

size. Beside, the energy level can also be restricted for control purpose. The details of the 

constraints are given below. 
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1. Limited Track Length Constraints 

Let the track length be max2x , and let the position of the cart within this track be represented by 

the x  values in [ ]maxmax , xx− . In order for the cart to stay within the track, corresponding to 

every cart position x  we assign admissible cart velocities (Figure 2). 

 

Figure 2. Admissible velocities as a function of cart position 

 

In Figure 2, the admissible velocities are represented by the shaded regions. Notice that, 

for 0≥x , the admissible velocities must be below the line 0g(x) = . Likewise, for 0 x < , the 

admissible velocities must be above the line 0g(x) = . The region of admissible cart velocities 

guarantees that the cart does not go beyond the ends of the track. For instance, when maxxx = , 

positive cart velocities are not allowed. This means the cart cannot go in the positive x direction 

any more. The γ  value is the maximum admissible velocity in the positive x  direction at the 

centre of the track, and can be determined experimentally by using the maximum speed of the 

pendulum in its free fall from the vertically upright position. We show in the section of the 

simulations that any γ  selected from a large range of γ  values works successfully. The 

admissible region of velocities is represented by 

[ ] 0)()(sign ≤− xgxx &                 (6) 
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We next associate x&   with the cart acceleration x&& , which is expressed in terms of the control 

input u  in (1).  Corresponding to every admissible velocity interval, we assign an admissible x&&  

interval. Knowing the cart position, say axx = , corresponding admissible velocities satisfy the 

inequality (6), i.e., [ ] 0sign ≤− )x(gx)x( aa & . Regarding this, for every ax , we form the 

corresponding admissible x&&  values as in Figure 3. For a given ax , we let the horizontal axis 

represent the admissible velocities, which are less than )x(g a when 0≥ax ; and greater than 

)x(g a  when 0<ax . We then associate admissible velocities with the admissible 

accelerations.  The functions representing the boundaries of the shaded region can be 

constructed by using a similar reasoning in the construction of g . One can notice the important 

feature of this region that the admissible x&&  values do not let x& values occur outside 

[ ] 0sign ≤− )x(gx)x( aa &  interval. Considering Figures 2 and 3 together, what we have done 

is associating every cart position x  with corresponding admissible cart acceleration β .  In the 

nonlinear programming formulation (that will appear in this section), this works as a constraint. 

 

Figure 3. Admissible acceleration values as a function of an admissible velocity interval 
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We can write the track constraints to be satisfied by the input as 
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2. Energy Constraints 

In the swing-up phase we select the control input to increase the energy of the pendulum to an 

energy level in the neighborhood of the vertically upright position. The stabilization phase 

starts, when the pendulum reaches to this neighborhood. In order to reach this neighborhood and 

transfer the control to the stabilization phase, we associate pendulum energy values with 

corresponding admissible pendulum energy derivatives. We represent this by the graphics 

depicted by Figure 4. In other words, the shaded region in the figure denotes the admissible V&  

values versus V .  For instance, when the pendulum is close to the vertically upright position, its 

energy is close to maxV , the energy of the pendulum at the vertically upright position, and 

admissible rates of increase in energy is restricted. Particularly, at maxVV =  no nonzero V&  is 

allowed. For simplicity in algebraic manipulation, we select the energy of the pendulum as a 

parabolic function of V& . Of course, there are other valid selections. 

 

Figure 4. Pendulum energy derivative as a function of pendulum 

We can write the energy constraint algebraically as 0))((
2

max

max2

max

2 ≤+−−
V

V
VVV

&

&&  where V&  can 

be expressed in terms of the state variables by (4). 
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3. Input Size Constraints 

Controlling a system by using a physical control input requires limited input sizes. Let the 

maximum input allowed beα . Then the input size constraint can be written as 

α≤KX  

For use in the swing-up algorithm, we label the nonlinear programming problem by (P) and 

write it in terms of the state variables as: 

 

Problem (P) 
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where λ  is a positive penalty parameter that is well-known in nonlinear programming theory 

for its weighting effect of the slack variable s . By the nature of such formulation, any large 

positive number, for instance, 
710 ,  works for an acceptable outcome of (9). The 

terms )( 2xx &&& = , V and V&  are given in terms of the state variables by (1), (2), and (3) 

respectively. The slack variable s  is intended for avoiding infeasibility arising from this soft 

constraint. It has negative contribution to the objective function, therefore, its value is close to 

zero in vast majority of cases. 

Of course, there is variety of ways in selecting the constraints in the swing up problem. In this 

paper we show only one which works and is simple in presentation. A reader may refer to [9] 

for a self contained descriptions and solutions of the nonlinear programming problems in the 

form of Problem (P). 
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3.2 Stabilization phase 

The stabilization phase starts when the trajectory reaches a prespecified neighborhood of the 

vertically upright position (typically  characterized by 10≤θ ). In the stabilization phase the, 

the control strategy to keep the pendulum at the vertically upright position. In general, the 

stabilization phase is carried out by linear controllers by considering the model of inverted 

pendulum linearized at the vertically upright position. Even though our work reveals that the 

stabilization phase can be carried out by a nonlinear based controller by choosing appropriate 

objective function and constraints, for simplicity in presentation, we use a linear quadratic 

controller for the stabilization. Considering the typical pendulum system parameters given in 

Table 1, we use the linear quadratic controller coefficient matrix  

[ ] 09.364.15046.2282.15=K obtained by using lqr.m command of MATLAB. 

 

3.3 The overall algorithm 

Let 0t and t∆  denote the initial time and the control coefficient matrix updating time interval 

respectively. Then the overall swing-up algorithm can be written as follows: 

Loop Start: For i=0,1,…, update K at time tit ∆+0  as follows: 

[ ]



≤

>
=

10 if    09.364.15046.2282.15

10 if             (P), problem ofSolution 

θ 

θ 
K  

Use the K  obtained above in the time interval [ ]t)i(t,tit ∆++∆+ 100 . Go to Loop Start. 

Noting that the more interesting distinct features of the control strategies appear in the swing-up 

phase, we model the swing-up phase as a nonlinear programming problem. Using this model, it 

is shown that the system configuration constraints and the desired performance constraints on 

the swing-up problem can easily be embedded to the problem. Also, using the formulation of 

this paper, initial conditions for the problem can be extended to a larger set. Particularly, 

releasing the pendulum from any angular position, the nonlinear programming formulation 

achieves the swing-up phase successfully. 
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3.4 The convergence 

In this subsection we show existence of control input u  that increases the energy of the inverted 

pendulum monotonically at every updating interval provided that the α  is not less than some 

threshold value. Expression (3) reveals that the derivative of the energy, V& depends on the states 

32 , xx  and 4x . In order to illustrate convergence of the pendulum to the upright equilibrium 

state, we show 32 , xx , 4x  values for which it is possible to find energy-increasingu .  For 

simplicity in presentation, we superpose 2x  vs. 4x  graphics for sufficiently many sampled 

values of 3x   such that 0

3 10≥x . For 15=α and 20=α , Figures 5 and 6 respectively show 

superposed 2x  vs. 4x   graphics. The nonshaded region in each graphics represents the states 

for which energy increase is possible for the corresponding α  value. It will be illustrated in the 

simulations section that when 15≥α , the nonlinear programming problems of the overall 

algorithm yield u  values that monotonically increase the pendulum energy. It will appear that 

this threshold value of α  (or higher) is sufficient for a convergent trajectory. 

 

Figure 5. Region where energy increasing control inputs exist for 15=α  
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Figure 6. Region where energy increasing control inputs exist for 20=α  

 

IV. THE SIMULATION 

 

In this section, we illustrate performance of the nonlinear programming approach by presenting 

the simulation outputs corresponding to various input constraints and design parameters. The 

simulations are performed by using the ordinary differential equation solver ode23.m and 

nonlinear programming solver fmincon.m of MATLAB. For all subsequent simulations we use 

control input updating time interval 01.0=∆t  sec., and the penalty parameter value
510=λ . 

Figure 7 presents graphical outputs corresponding to the hang-down initial condition with the 

design parameters 15=α , ,1=γ 5=β . It can be observed that the swing-up is achieved 

successfully in three swings. It also shows projection of the corresponding trajectory on the 2x -

4x  plane. This illustrates that the algorithm yields a trajectory whose states at each updating 

instant allows monotonic increase in the pendulum energy. In Figure 8 the simulations are 

repeated for 20=α . 
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Figure 7. State vs. time graphics and 2x  vs. 4x   trajectory when 15=α  

 

 

Figure 8. State vs. time graphics and 2x  vs. 4x   trajectory when 20=α  

 

In Figure 9 we present performance of the controller for the 15=α constraint with the doubled 

design parameters, ,2=γ 10=β . The swing-up is achieved successfully with the only 
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significant change in the x -trajectory. This illustrates that achieving the swing-up goal is not 

sensitive to a significant amount of changes in γ  andβ . 

 

Figure 9. State vs. time graphics and 2x  vs. 4x   trajectory with 15=α , doubled  γ  andβ . 

 

V. CONCLUSIONS 

 

We presented a nonlinear programming based controller for the swing-up control of an inverted 

pendulum. We showed that the design is conceptually simple and capable of incorporating 

constraints such as a limited track length and a limited input size into the control problem. 

Although our approach is energy-based approach, due to the types of the constraints it handles, 

it differs from the literature. Also, the nonlinear programming modeling used in this work is 

suitable to be generalized to a larger class of dynamic systems including various control 

benchmark problems. This is an open research field which we consider to resolve in our 

emerging studies. In the simulation section we validated our method for various input bounds 

and design parameters. 
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