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A NONLINEAR PROGRAMMING APPROACH FOR THE
SWING-UP CONTROL PROBLEM

Ahmet YAZICI', Abdurrahman KARAMANCIOGLU?

ABSTRACT: A nonlinear programming approach for the inverted pendulum swing-up control
is presented. Even though it is an energy-based method, it uses fundamentally different
mathematical tools to achieve the swing-up goal. The control problem translated into nonlinear
programming model with appropriate objective function and constraints. While the objective
function provides energy increase in the system, physical restrictions of the system are handled
in the constraints of the nonlinear programming model. It is also shown that this model is
intrinsically suitable for embedding any nonlinear system constraints. Simulation results for
illustrative cases are included to validate the design method.

Keywords: Swing-up control problem,; Inverted pendulum; Underactuated systems; Nonlinear
programming; Energy based methods.

TERS SARKAC YUKARI KALDIRMA KONTROL PROBLEMI ICIN
DOGRUSAL OLMAYAN PROGRAMLAMA YAKLASIMI

OZET: Ters sarka¢ yukar: kaldirma kontrol problemi icin dogrusal olmayan programlama
yaklasimi sunulmugtur. Onerilen yontem her ne kadar enerji tabanli olsa da, havaya kaldirma
probleminde temelde farkli matematiksel araglar kullanmaktadir. Kontrol problemi uygun amag
ve kasit fonksiyonlart kullanilarak dogrusal olmayan programlama modeline doniistiiriilmiistiir.
Dogrusal olmayan programlama modelinde amag fonksiyonu enerjinin artirimini hedeflerken,
sisteme ait fiziksel simirlamalar kisitlar ile modellenmistir. Onerilen modelin herhangi bir
dogrusal olmayan kisit tarifinde de kullamlabilecegi gosterilmistiv. Tasarlanan modelin
dogrulugunu gostermek iizere ornek durumlar icin benzetim sonuglari eklenmistir.

Anahtar Kelimeler: Havaya kaldirma kontrol problemi; Ters sarkag, yetersiz uyarimll
sistemler; Dogrusal olmayan programlama,; Enerji tabanl yontemler.
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1. INTRODUCTION

In this paper, we introduce a nonlinear programming method for the swing-up control of an
inverted pendulum system. It is a typical example for nonlinear underactuated systems in which
pendulum angle and cart position are controlled by a single force input applied to the cart. The
inverted pendulum’s rich and nonlinear dynamics is useful in testing new control strategies. The
control objective is to swing-up pendulum from the stable (hang-down) equilibrium point to the
unstable (upright) equilibrium point and to stabilize it in its upright position. This control
problem, in general, comes with various constraints such as with a limited track length and a
limit on the size of the controlling force. These constraints are handled using nonlinear
programming approach keeping the control objective. The method we propose is conceptually
simple and can be generalizable to more complicated design requirements.

The swing-up problem has been studied extensively in the literature. A popular approach in
designing swing-up controllers is based on controlling its energy. The logic behind this
approach is injecting energy to the pendulum by applying appropriate control force to the cart.
In [1], a bang-bang control is used to raise the energy of the pendulum towards a value equal to
its steady state value at the upright position. In [2], a variable structure system version of
energy-speed-gradient method is treated in a rigorous manner to show that attractivity of the
upright equilibrium can be achieved by applying a control of arbitrary small magnitude. In [3],
the sign condition in the derivative of the energy is exploited. In this paper a servo system
having a low pass property is used for the swing-up. This servo system uses a sinusoidal
reference input generated from the pendulum trajectory. In another significant energy-based
work [4], the swing-up and stabilization of an inverted pendulum system with a restricted cart
track length is achieved by using an energy-well built within the cart track. It is constructed in
such a way that the cart experiences a repulsive force as it approaches the boundaries in the
neighborhood of the limitations. They control the velocity similarly by using a velocity well. In
the energy-based works, the stabilization phase is carried out, generally, by using controllers
designed for the linearized model of the inverted pendulum. In [5], energy-based swinging
strategies are compared with a fuzzy swing-up algorithm. In [6], a Lyapunov function is
obtained by using the total energy of the system, and the convergence analysis carried out using

the LaSalle's invariance principle. In fuzzy logic approaches, the states of the inverted pendulum
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system are used as inputs. For example, in [7], the fuzzy logic method is used in both swing-up
and stabilization phases. Each state of the inverted pendulum is assigned with a single input rule
module (SIRM) and a dynamic importance degree. Besides, a reader may also refer this paper
for a very good review of other fuzzy logic works in the literature.

Our paper may be classified in energy-based methods. Even though we exploit the energy of
the inverted pendulum system, we use fundamentally different mathematical tools in order to
generate the control signal. Differing from the literature, we transform a problem that is mainly
in the differential equation domain, into the domain of nonlinear programming: an algebraic
domain. This also allows us to embed a variety of design specifications like system constraints
in the problem in a conceptually simple way.

The outline of this paper is as follows. In the next section we present an equation of motion for
the inverted pendulum system. Following this the energy of the pendulum is expressed in terms
of its states. In the third section, problem specifications and its solution method using a
nonlinear programming approach is presented. Prior to the concluding section we illustrate

validity of our method by various simulation graphics.

I1l. PRELIMINARIES

Inverted pendulum attached to a moving cart (Figure 1) is widely used as benchmark for testing
control algorithms. The pendulum and cart movements are restricted to a plane. The upside
down equilibrium state of the pendulum is unstable, that is, the pendulum may fall over at any
time in any direction within the plane of motion. Hence, an appropriate force input # has to be

generated to drive and keep the pendulum up-straight.



112 Ahmet Yazici, Abdurrahman Karamancioglu

x=0

Figure 1. The inverted pendulum system

The nonlinear differential equation representing dynamics of an inverted pendulum shown in

Figure 1 can be obtained using principles of the Newtonian mechanics [8]:

X=X
T bx, +ml sin(x,)x; —mg sin(x,) cos(x,) +u
2 M +m—mcos(x,)’ 0
X =X,
4 (bx, —u —ml sin(x,)x; ) cos(x,) + (M +m)g sin(x;)
! I(M +m—mcos(x;)*)

where u denotes the control input and the components x,,...,x, of the system state vector X
are defined by x, :=x, x, =x, x;:=6, x, = @ . Table 1 shows definitions of the symbols

used in (1) and typical values that we use in the simulations.

Table 1. Definitions and typical values for the inverted pendulum

Parameters Symbol | Value | Unit
Mass of the Cart M 3 kg
Mass of the inverted pendulum m 0.5 |kg
Length of the inverted pendulum / 0.5 |m
Friction Constant b 2 kg/s
Gravitational force g 9.81 |mys’
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The sum of the rotational kinetic energy of the pendulum and its potential energy, denoted by

V,is[4]
V= %in +mgl(cosx; +1) ()

where J is the moment of inertia of the pendulum about the hinge. Expression (2) reveals that
for zero initial velocity, the energy of the pendulum at the hanging down position is zero, and it
is V. (=4.9 Joules) at the vertically upright position. If the energy of the pendulum is less
than its energy at vertically upright position, the swinging up requires increasing the energy of
the pendulum. Increasing the energy is equivalent to making the sign of d V/ dt positive. In
other words,

V =—mli,x, cosx, >0 (3)
must be satisfied. By using the pendulum system dynamics, expression (3) can be written as

—bx, +mlsin(x, )x; —mgsin(x, )cos(x,) +u

V =—mlx, cos “
1 costes) M +m—mcos(x,)’

In the next section we design a nonlinear programming based controller that maximizes

14 during the swing-up phase, and satisfy the constraints on the track length and maximum input

size.

I111. THE NONLINEAR PROGRAMMING MODEL OF THE SWING-UP
CONTROL PROBLEM

The control objective in inverted pendulum swing-up problem is to drive the pendulum to
vertically upright position from its pendant initial conditions, and keep it in that position

thereafter. This problem is solved in two phases: swing-up phase, stabilization phase.

III.1 The swing-up phase
In the swing-up phase pendulum is driven into a certain neighborhood of the vertically upright
position. The swing-up phase of the control problem is modeled as a nonlinear programming

problem. The nonlinear programming problem determines the control input u that maximizes
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the increase in pendulum energy while obeying certain constraints, such as limited track length

and limited input size. In the swing-up phase we update the control input u at the beginning of
every time interval [kAt, (k+ I)At], k =0,1,..., where the updating interval length Af has a

fixed value whose upper bound is determined by the smallest time constant of the inverted
pendulum system. The updating is carried out by measuring the system state X and computing
the control input # by solving a nonlinear programming problem at the beginning of every
updating interval. The updated value of u is applied to the cart throughout the updating

interval. For simplicity, we use linear feedback control inputs of the form u# = KX to form the
control input, where K = [k1 k, k, k4]e R* denotes the feedback coefficient matrix. For

the nonlinear programming problem, we next present the objective function and mathematical

model of the constraints below:

a. The objective function: Our objective is to select a feedback coefficient matrix to form the
control input which maximizes the energy of the pendulum. This can be done efficiently by
maximizing the derivative of the pendulum energy (4). Therefore, the objective function below
is chosen as derivative of (4) evaluated at the values given in Table 1. It is seen in the sequel
that this maximization together with the design constraints generate a control input function that

achieves the swing-up successfully. The objective function can be written as

—2x, +0.25sin(x; )x; —4.9sin(x, ) cost, ) +u
3.5-0.5cos(,)’

m%x —0.25x, cosf;) (5)

This maximization is subject to the constraints presented below.

b. Constraints: Inverted pendulum system has some restriction on the track length and input
size. Beside, the energy level can also be restricted for control purpose. The details of the

constraints are given below.



A Nonlinear Programming Approach For The Swing Up Control Problem 115

1. Limited Track Length Constraints

Let the track length be 2x and let the position of the cart within this track be represented by

max 2

the x values in [— X v s X ] In order for the cart to stay within the track, corresponding to

every cart position x we assign admissible cart velocities (Figure 2).

max

9()=0

-

x<0 w==0

Figure 2. Admissible velocities as a function of cart position

In Figure 2, the admissible velocities are represented by the shaded regions. Notice that,

forx > 0, the admissible velocities must be below the line g(x) = 0. Likewise, for x <0, the
admissible velocities must be above the line g(x) = 0. The region of admissible cart velocities

guarantees that the cart does not go beyond the ends of the track. For instance, whenx = x

max °
positive cart velocities are not allowed. This means the cart cannot go in the positive x direction
any more. The y value is the maximum admissible velocity in the positive x direction at the
centre of the track, and can be determined experimentally by using the maximum speed of the
pendulum in its free fall from the vertically upright position. We show in the section of the

simulations that any y selected from a large range of y values works successfully. The
admissible region of velocities is represented by

sign(x)[x — g(x)]<0 (6)
where

g(x) =—L x+sign(x)y )

max
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and

1 for x>0

-1 forx <0

sign(x) = {

We next associate X with the cart acceleration X , which is expressed in terms of the control
input u# in (1). Corresponding to every admissible velocity interval, we assign an admissible X

interval. Knowing the cart position, say x = x,, corresponding admissible velocities satisfy the

inequality (6), i.e., sign(x, )[x— g(x, )]SO. Regarding this, for everyx, , we form the

a’
corresponding admissible X values as in Figure 3. For a givenx,, we let the horizontal axis
represent the admissible velocities, which are less than g(x, )whenx, > 0; and greater than

g(x,) when x, <0. We then associate admissible velocities with the admissible

accelerations. The functions representing the boundaries of the shaded region can be

constructed by using a similar reasoning in the construction of g . One can notice the important
feature of this region that the admissible X values do not let X values occur outside
sign(x, )[x— g(x, )] <0 interval. Considering Figures 2 and 3 together, what we have done

is associating every cart position x with corresponding admissible cart acceleration £ . In the

nonlinear programming formulation (that will appear in this section), this works as a constraint.

= %
*,
B
30x,) .
X
FLEW
<k
w=0 x==0

Figure 3. Admissible acceleration values as a function of an admissible velocity interval
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We can write the track constraints to be satisfied by the input as

B
g(x,)

sign(x, )| X+ x—sign(x,)p <0 (8)

2. Energy Constraints

In the swing-up phase we select the control input to increase the energy of the pendulum to an
energy level in the neighborhood of the vertically upright position. The stabilization phase
starts, when the pendulum reaches to this neighborhood. In order to reach this neighborhood and
transfer the control to the stabilization phase, we associate pendulum energy values with

corresponding admissible pendulum energy derivatives. We represent this by the graphics
depicted by Figure 4. In other words, the shaded region in the figure denotes the admissible 14
values versus V. For instance, when the pendulum is close to the vertically upright position, its

energy is close to V.

max ?

the energy of the pendulum at the vertically upright position, and

admissible rates of increase in energy is restricted. Particularly, at ' =V, no nonzero Vs

X

allowed. For simplicity in algebraic manipulation, we select the energy of the pendulum as a

parabolic function of V.Of course, there are other valid selections.

MmE

Figure 4. Pendulum energy derivative as a function of pendulum

max

. . 14 .
We can write the energy constraint algebraically as V — (=V > + V2 )(=5%) <0 where V' can
V

max

be expressed in terms of the state variables by (4).
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3. Input Size Constraints
Controlling a system by using a physical control input requires limited input sizes. Let the
maximum input allowed be & . Then the input size constraint can be written as
KX|<a
For use in the swing-up algorithm, we label the nonlinear programming problem by (P) and

write it in terms of the state variables as:

Problem (P)
—2x, +0.25sin(x; )x; —4.9sin(, ) cost, ) +u
3.5-0.5cosk;,)’

sigr(x, ){mi K —sigi(x, )ﬂ:|£0
|g(x1)|

subject to V—(V*+V2 )(ﬁ) —5<0

As

rr}<ax —-0.25x, cosfx;)

)

max.

max

where A is a positive penalty parameter that is well-known in nonlinear programming theory

for its weighting effect of the slack variable s. By the nature of such formulation, any large
positive number, for instance, 10’7, works for an acceptable outcome of (9). The
terms X(= X,), V and V are given in terms of the state variables by (1), (2), and (3)

respectively. The slack variable s is intended for avoiding infeasibility arising from this soft
constraint. It has negative contribution to the objective function, therefore, its value is close to
zero in vast majority of cases.

Of course, there is variety of ways in selecting the constraints in the swing up problem. In this
paper we show only one which works and is simple in presentation. A reader may refer to [9]
for a self contained descriptions and solutions of the nonlinear programming problems in the

form of Problem (P).
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3.2 Stabilization phase

The stabilization phase starts when the trajectory reaches a prespecified neighborhood of the
vertically upright position (typically characterized by |6| <10). In the stabilization phase the,

the control strategy to keep the pendulum at the vertically upright position. In general, the
stabilization phase is carried out by linear controllers by considering the model of inverted
pendulum linearized at the vertically upright position. Even though our work reveals that the
stabilization phase can be carried out by a nonlinear based controller by choosing appropriate
objective function and constraints, for simplicity in presentation, we use a linear quadratic
controller for the stabilization. Considering the typical pendulum system parameters given in

Table 1, we use the linear quadratic controller  coefficient  matrix

K= [1 5.82 2246 1504 36.09] obtained by using lqr.m command of MATLAB.

3.3 The overall algorithm

Let ¢,and Af denote the initial time and the control coefficient matrix updating time interval

respectively. Then the overall swing-up algorithm can be written as follows:

Loop Start: For i=0,1,..., update K at time ¢, +iA¢ as follows:

_ | Solution of problem (P), if |0|>10
|[15.82 2246 1504 36.09] if ||<10

Use the K obtained above in the time interval [to +iAt ¢, +(i+1 )At]. Go to Loop Start.

Noting that the more interesting distinct features of the control strategies appear in the swing-up
phase, we model the swing-up phase as a nonlinear programming problem. Using this model, it
is shown that the system configuration constraints and the desired performance constraints on
the swing-up problem can easily be embedded to the problem. Also, using the formulation of
this paper, initial conditions for the problem can be extended to a larger set. Particularly,
releasing the pendulum from any angular position, the nonlinear programming formulation

achieves the swing-up phase successfully.
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3.4 The convergence

In this subsection we show existence of control input u# that increases the energy of the inverted
pendulum monotonically at every updating interval provided that the & is not less than some
threshold value. Expression (3) reveals that the derivative of the energy, 14 depends on the states

X,,X; andx,. In order to illustrate convergence of the pendulum to the upright equilibrium
state, we showx,,x;, x, values for which it is possible to find energy-increasingu . For
simplicity in presentation, we superpose x, vs. X, graphics for sufficiently many sampled
values of x; such that |x3| >10°. For @ =15and a = 20, Figures 5 and 6 respectively show
superposed x, vs. x, graphics. The nonshaded region in each graphics represents the states
for which energy increase is possible for the corresponding ¢ value. It will be illustrated in the
simulations section that whena > 15, the nonlinear programming problems of the overall

algorithm yield u values that monotonically increase the pendulum energy. It will appear that

this threshold value of ¢ (or higher) is sufficient for a convergent trajectory.
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1V. THE SIMULATION

In this section, we illustrate performance of the nonlinear programming approach by presenting
the simulation outputs corresponding to various input constraints and design parameters. The
simulations are performed by using the ordinary differential equation solver ode23.m and
nonlinear programming solver fmincon.m of MATLAB. For all subsequent simulations we use
control input updating time interval Af =0.01 sec., and the penalty parameter value A =10°.
Figure 7 presents graphical outputs corresponding to the hang-down initial condition with the

design parameters o =15, y =1, f#=5. It can be observed that the swing-up is achieved
successfully in three swings. It also shows projection of the corresponding trajectory on the x, -

x, plane. This illustrates that the algorithm yields a trajectory whose states at each updating

instant allows monotonic increase in the pendulum energy. In Figure 8 the simulations are

repeated forar = 20 .
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In Figure 9 we present performance of the controller for the & =15 constraint with the doubled

design parameters, y =2, f#=10. The swing-up is achieved successfully with the only



A Nonlinear Programming Approach For The Swing Up Control Problem 123

significant change in the x -trajectory. This illustrates that achieving the swing-up goal is not

sensitive to a significant amount of changes in ¥ and £
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Figure 9. State vs. time graphics and x, vs. x, trajectory witha =15, doubled y and 3.

V. CONCLUSIONS

We presented a nonlinear programming based controller for the swing-up control of an inverted
pendulum. We showed that the design is conceptually simple and capable of incorporating
constraints such as a limited track length and a limited input size into the control problem.
Although our approach is energy-based approach, due to the types of the constraints it handles,
it differs from the literature. Also, the nonlinear programming modeling used in this work is
suitable to be generalized to a larger class of dynamic systems including various control
benchmark problems. This is an open research field which we consider to resolve in our
emerging studies. In the simulation section we validated our method for various input bounds

and design parameters.



124

Ahmet Yazici, Abdurrahman Karamancioglu

V1. REFERENCES

(1]

2]

[3]

[4]

[5]

[6]

[7]

8]

9]

K.J. Astrom and K. Furuta, “Brief Paper Swinging up a pendulum by energy control”,

Automatica, vol.36, pp. 287-295, 2000.

A.S. Shiriaev, O. Egeland, H. Ludvigsen, and A.L. Fradkov, “VSS-version of energy-based
control for swinging up a pendulum”, Systems and Control Letters, vol. 44, pp. 45-56,
2001.

K. Yoshida, “Swing-up control of an inverted pendulum by energy-based Methods”,
Proceedings of American Control Conference, pp. 4045-4047, 1999.

D. Chatterjee, A. Patra, and H. K. Joglekar, “Swing-up and stabilization of a cart-
pendulum system under restricted cart track length", Systems and Control Letters, vol. 47,

pp. 355-364, 2002.

N. Muskinja, and B. Tovornik, “Swinging up and stabilization of a real inverted

pendulum”, IEEE Transactions on Industrial Electronics, vol. 53, pp. 631-639, 2006.

R. Lozano, I. Fantoni, and D. J. Block, “Stabilization of the inverted pendulum around its

homoclinic orbit", Systems and Control Letters, vol. 40, pp.197-204, 2000.

J. Yi, N. Yubazaki, and K. Hirota, “Upswing and stabilization control of inverted
pendulum system based on the SIRMs dynamically connected fuzzy inference model”,

Fuzzy Sets and Systems, vol. 122, pp. 139-152, 2001.
K. Ogata, Modern Control Engineering, Prentice-Hall Inc, 1990.

M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, “Nonlinear Programming: Theory and
Algoritms”, John Wiley and Sons, 1993.



