

New Banach Sequence Spaces Defined by Jordan Totient Function

Uskan Devletli¹, Merve İlkhan Kara^{2*}

Abstract

In this study, a special lower triangular matrix derived by combining Riesz matrix and Jordan totient matrix is used to construct new Banach spaces. α -, β -, γ -duals of the resulting spaces are obtained and some matrix operators are characterized.

Keywords: Matrix mappings, Sequence space, α -, β -, γ -duals **2010 AMS:** 46B45, 47B07, 47H08

¹Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce, Turkey, ORCID: 0000-0001-9857-9513 ²Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce, Turkey, ORCID: 0000-0002-0831-1474 ***Corresponding author**: merveilkhan@gmail.com

Received: 13 June 2023, Accepted: 18 December 2023, Available online: 21 December 2023

How to cite this article: U. Devletli, M. İ. Kara, New Banach Sequence Spaces Defined by Jordan Totient Function, Commun. Adv. Math. Sci., 6(4) (2023), 211-225.

1. Introduction and Background

A sequence space is a vector subspace of the space ω of all sequences with real entries. Well known classical sequence spaces are the space of *p*-absolutely summable sequences ℓ_p , the space of bounded sequences ℓ_{∞} , the space of null sequences c_0 , the space of convergent sequences *c*. Throughout the study, the notion ℓ is used instead of ℓ_1 . Also *bs*, *cs*₀ and *cs* are the most frequently encountered spaces consisting of sequences generating bounded, null and convergent series, respectively. A Banach sequence space having continuous coordinates is called a *BK* space. Examples of *BK* spaces are c_0 and *c* endowed with the supremum norm $||u||_{\infty} = \sup_i |u_i|$, where $\mathbb{N} = \{1, 2, 3, ...\}$.

By virtue of the fact that the matrix mappings between *BK*-spaces are continuous, the theory of matrix mappings plays an important role in the study of sequence spaces. Let *U* and *V* be two sequence spaces, $\Lambda = (\lambda_{ij})$ be an infinite matrix with real entries and Λ_i indicate the *i*th row of Λ . If each term of the sequence $\Lambda u = ((\Lambda u)_i) = (\sum_j \lambda_{ij} u_j)$ is convergent, this sequence is called Λ -transform of $u = (u_i)$. Further, if $\Lambda u \in V$ for every sequence $u \in U$, then the matrix Λ defines a matrix mapping from *U* into *V*. (*U*,*V*) represents the collection of all matrices defined from *U* into *V*. Additionally, B(U,V) is the set of all bounded (continuous) linear operators from *U* to *V*. A matrix $\Lambda = (\lambda_{ij})$ is called a triangle if $\lambda_{ii} \neq 0$ and $\lambda_{ij} = 0$ for j > i.

The matrix domain U_{Λ} of the matrix Λ in the space U is defined by

 $U_{\Lambda} = \{ u \in \boldsymbol{\omega} : \Lambda u \in U \}.$

Since this space is also a sequnce space, the matrix domain has a crucial role to construct new sequence spaces. Moreover given any triangle Λ and a *BK*-space *U*, the sequence space U_{Λ} gives a new *BK*-space equipped with the norm $||u||_{U_{\Lambda}} = ||\Lambda u||_{U}$. Several authors applied this technique to construct new Banach spaces with the help of special triangles. For relevant literature, the papers [1–17] can be referred. The spaces

$$U^{\alpha} = \left\{ t = (t_i) \in \boldsymbol{\omega} : \sum_i |t_i u_i| < \infty \text{ for all } u = (u_i) \in U \right\},$$
$$U^{\beta} = \left\{ t = (t_i) \in \boldsymbol{\omega} : \sum_i t_i u_i \text{ converges for all } u = (u_i) \in U \right\},$$
$$U^{\gamma} = \left\{ t = (t_i) \in \boldsymbol{\omega} : \sup_i \left| \sum_i t_i u_i \right| < \infty \text{ for all } u = (u_i) \in U \right\},$$

are called the α -, β -, γ -duals of a sequence space U, respectively.

Note that $\frac{1}{p} + \frac{1}{q} = 1$ and \sup_{i}, \sum_{i} , \lim_{i} mean $\sup_{i \in \mathbb{N}}, \sum_{i=1}^{\infty}, \lim_{i \to \infty}$, respectively.

The Euler totient matrix $\Phi = (\phi_{ij})$ is defined as in [18]

$$\phi_{ij} = \begin{cases} \frac{\varphi(j)}{i} & , & \text{if } j \mid i \\ 0 & , & \text{if } j \nmid i, \end{cases}$$

where φ is the Euler totient function. In the recent time, by using this matrix, many new sequence and series spaces are defined and studied in the papers [19–27].

For $i \in \mathbb{N}$ with $i \neq 1$, $\varphi(i)$ gives the number of positive integers less than *i* which are coprime with *i* and $\varphi(1) = 1$. Also, the equality

$$i = \sum_{j|i} \varphi(j)$$

holds for every $i \in \mathbb{N}$. For $i \in \mathbb{N}$ with $i \neq 1$, the Möbius function μ is defined as

$$\mu(i) = \begin{cases} (-1)^r & \text{if } i = p_1 p_2 \dots p_r, \text{ where } p_1, p_2, \dots, p_r \text{ are} \\ & \text{non-equivalent prime numbers} \\ 0 & \text{if } \tilde{p}^2 \mid i \text{ for some prime number } \tilde{p} \end{cases}$$

and $\mu(1) = 1$. The equality

$$\sum_{j|i} \mu(j) = 0 \tag{1.1}$$

holds except for i = 1.

The arithmetic function $J_r : \mathbb{N} \to \mathbb{N}$ with positive integer order *r* is called the Jordan totient function. This function generalizes the Euler totient function. If r = 1, it is reduced to the Euler totient function. The value $J_r(i)$ gives the number of *r*-tuples of positive integers all less than or equal to *i* that form a coprime (r+1)-tuples together with *i*.

The Jordan function J_r is multiplicative, i.e. for $n_1, n_2 \in \mathbb{N}$ with the greatest common divisor 1 the relation $J_r(n_1n_2) = J_r(n_1)J_r(n_2)$ holds.

Let $p_1^{a_1} p_2^{a_2} \dots p_k^{a_k}$ be the unique prime decomposition of $i \in \mathbb{N}$, then

$$J_r(i) = i^r (1 - \frac{1}{p_1^r})(1 - \frac{1}{p_2^r})...(1 - \frac{1}{p_k^r}).$$

Also, the following equations hold:

$$\sum_{j|i} J_r(j) = i^r$$

and

$$\sum_{j|i} \frac{\mu(j)}{j^r} = \frac{J_r(i)}{i^r}.$$

In [28], the authors have defined a new matrix $\Upsilon^r = (v_{ij}^r)$ as

$$v_{ij}^r = \begin{cases} \frac{J_r(j)}{i^r} &, & \text{if } j \mid i \\ 0 &, & \text{if } j \nmid i \end{cases}$$

for each $r \in \mathbb{N}$. It is observed that this matrix is regular; that is a limit preserving mapping *c* into *c*. By using this matrix they introduce a space consisting of sequences whose Υ^r -transforms are in the space ℓ_p for $1 \le p < \infty$. Also, in [29], new Banach spaces are obtained by the aid of matrix domain of this matrix in the spaces ℓ_{∞} , *c*, *c*₀. In [30], the authors have studied the compact operators on the resulting spaces.

The Riesz matrix $E = (e_{ij})$ is defined as

$$e_{ij} = \begin{cases} \frac{q_j}{Q_i} &, & \text{if } 0 \le j \le i \\ 0 &, & \text{if } j > i, \end{cases}$$

where (q_j) is a sequence of positive numbers and $Q_i = \sum_{j=1}^{i} q_j$ for all $i \in \mathbb{N}$.

In a recent paper [31], the authors have constructed a new matrix called Riesz Euler totient matrix and study the domain of the matrix in the space ℓ_p . The Riesz Euler totient matrix $R_{\Phi} = (r_{ij})$ is defined as

$$r_{ij} = \begin{cases} \frac{q_j \varphi(j)}{Q_i} &, & \text{if } j \mid i \\ 0 &, & \text{if } j \nmid i. \end{cases}$$

The main purpose of this study is to construct new Banach spaces $\ell_{\infty}(R_{\Upsilon}r)$, $\ell_p(R_{\Upsilon}r)$, $\ell(R_{\Upsilon}r)$. The matrix $R_{\Upsilon}r$ is obtained by combining Jordan totient matrix and Riesz matrix. After studying certain properties of the resulting spaces, α -, β - and γ -duals are computed. Finally some matrix mappings from the resulting spaces to the classical spaces are characterized.

2. The Sequence Spaces $\ell_{\infty}(R_{\Upsilon})$, $\ell_{p}(R_{\Upsilon})$, $\ell(R_{\Upsilon})$

In the present section, we introduce the sequence spaces $\ell_{\infty}(R_{\Upsilon r})$, $\ell_p(R_{\Upsilon r})$, $\ell(R_{\Upsilon r})$ by using the matrix $R_{\Upsilon r}$, where 1 .Also, we present some theorems which give inclusion relations concerning these spaces.

The matrix $R_{\Upsilon^r} = (v_{ij})$ is defined as

$$\mathbf{v}_{ij} = \begin{cases} \frac{q_j J_r(j)}{Q_i^r} &, & \text{if } j \mid i \\ 0 &, & \text{if } j \nmid i, \end{cases}$$

where $Q_i = q_1 + q_2 + ... + q_i$. We call this matrix as *Riesz Jordan totient matrix operator*.

Observe that in the special cases this matrix is reduced to the some matrices mentioned in the first section. If r = 1 and $q_j = 1$ for each j, it gives the Euler totient matrix. If r = 1, it gives the Riesz Euler totient matrix. If $q_j = 1$ for each j, it gives the Jorden totient matrix.

The inverse $R_{\Upsilon r}^{-1} = (v_{ij}^{-1})$ of the matrix $R_{\Upsilon r}$ is computed as

$$\mathbf{v}_{ij}^{-1} = \begin{cases} \frac{\mu(\frac{i}{j})}{J_r(i)} \frac{\mathcal{Q}_j^r}{q_i} &, & \text{if } j \mid i \\ 0 &, & \text{if } j \nmid i \end{cases}$$

for all $i, j \in \mathbb{N}$.

Now, we introduce the sequence spaces $\ell_{\infty}(R_{\Upsilon})$, $\ell_p(R_{\Upsilon})$, $\ell(R_{\Upsilon})$ by

$$\ell_{\infty}(R_{\Upsilon^{r}}) = \left\{ u = (u_{i}) \in \boldsymbol{\omega} : \sup_{i} \left| \frac{1}{Q_{i}^{r}} \sum_{j \mid i} q_{j} J_{r}(j) u_{j} \right| < \infty \right\},$$
$$\ell_{p}(R_{\Upsilon^{r}}) = \left\{ u = (u_{i}) \in \boldsymbol{\omega} : \sum_{i} \left| \frac{1}{Q_{i}^{r}} \sum_{j \mid i} q_{j} J_{r}(j) u_{j} \right|^{p} < \infty \right\} \quad (1 < p < \infty),$$

$$\ell(R_{\Upsilon r}) = \left\{ u = (u_i) \in \boldsymbol{\omega} : \sum_i \left| \frac{1}{Q_i^r} \sum_{j|i} q_j J_r(j) u_j \right| < \infty \right\}.$$

Unless otherwise stated, $v = (v_i)$ will be the R_{Υ} -transform of a sequence $u = (u_i)$, that is, $v_i = (R_{\Upsilon} u)_i = \frac{1}{Q_i^r} \sum_{j|i} q_j J_r(j) u_j$ for all $i \in \mathbb{N}$.

Theorem 2.1. The spaces $\ell_{\infty}(R_{\Upsilon}r)$, $\ell_p(R_{\Upsilon}r)$, $\ell(R_{\Upsilon}r)$ are Banach spaces with the norms given by

$$\begin{split} \|u\|_{\ell_{\infty}(R_{\Upsilon}r)} &= \sup_{i} \left| \frac{1}{Q_{i}^{r}} \sum_{j|i} q_{j} J_{r}(j) u_{j} \right|, \\ \|u\|_{\ell_{p}(R_{\Upsilon}r)} &= \left(\sum_{i} \left| \frac{1}{Q_{i}^{r}} \sum_{j|i} q_{j} J_{r}(j) u_{j} \right|^{p} \right)^{1/p} (1$$

Proof. We omit the proof which is straightforward.

Corollary 2.2. The spaces $\ell_{\infty}(R_{\Upsilon}r)$, $\ell_p(R_{\Upsilon}r)$, $\ell(R_{\Upsilon}r)$ are BK-spaces, where 1 .

Theorem 2.3. The space $U(R_{\Upsilon})$ is linearly isomorphic to U, where $U \in \{\ell_{\infty}, \ell_p, \ell\}$ and 1 .

Proof. Let f be a mapping defined from $U(R_{\Upsilon})$ to U such that $f(u) = R_{\Upsilon}u$ for all $u \in U(R_{\Upsilon})$. It is clear that f is linear. Also it is injective since the kernel of f consists of only zero. To prove that f is surjective consider the sequence $u = (u_i)$ whose terms are

$$u_i = \sum_{j|i} \frac{\mu(\frac{i}{j})}{J_r(i)} \frac{Q_j^r}{q_i} v_j$$

for all $i \in \mathbb{N}$, where $v = (v_i)$ is any sequence in U. It follows from (1.1) that

$$(R_{\Upsilon} u)_{i} = \frac{1}{Q_{i}^{r}} \sum_{j|i} q_{j} J_{r}(j) u_{j} = \frac{1}{Q_{i}^{r}} \sum_{j|i} q_{j} J_{r}(j) \sum_{k|j} \frac{\mu(\frac{1}{k})}{J_{r}(j)} \frac{Q_{k}^{r}}{q_{j}} v_{k}$$
$$= \frac{1}{Q_{i}^{r}} \sum_{j|i} \sum_{k|j} \mu(\frac{j}{k}) Q_{k}^{r} v_{k} = \frac{1}{Q_{i}^{r}} \sum_{j|i} \left(\sum_{k|j} \mu(k)\right) Q_{\frac{i}{j}}^{r} v_{\frac{j}{j}} = \frac{1}{Q_{i}^{r}} \mu(1) Q_{i}^{r} v_{i} = v_{i}$$

and so $u = (u_i) \in U(R_{\Upsilon})$. f preserves norms since the equality $||u||_{U(R_{\Upsilon})} = ||f(u)||_U$ holds.

Remark 2.4. The space $\ell_2(R_{\Upsilon})$ is an inner product space with the inner product defined as $\langle u, \tilde{u} \rangle_{\ell_2(R_{\Upsilon}r)} = \langle R_{\Upsilon}r u, R_{\Upsilon}r \tilde{u} \rangle_{\ell_2}$, where $\langle ., . \rangle_{\ell_2}$ is the inner product on ℓ_2 which induces $\|.\|_{\ell_2}$.

Theorem 2.5. The space $\ell_p(R_{\Upsilon^r})$ is not an inner product space for $p \neq 2$.

Proof. Consider the sequences $u = (u_i)$ and $\tilde{u} = (\tilde{u}_i)$, where

$$u_i = \begin{cases} \frac{\mu(i)}{J_r(i)} \frac{Q_1^r}{q_i} + \frac{\mu(\frac{i}{2})}{J_r(i)} \frac{Q_2^r}{q_i} & , & \text{if } i \text{ is even} \\ \frac{\mu(i)}{J_r(i)} \frac{Q_1^r}{q_i} & , & \text{if } i \text{ is odd} \end{cases}$$

and

$$\tilde{u}_{i} = \begin{cases} \frac{\mu(i)}{J_{r}(i)} \frac{Q_{1}^{r}}{q_{i}} - \frac{\mu(\frac{i}{2})}{J_{r}(i)} \frac{Q_{2}^{r}}{q_{i}} &, & \text{if } i \text{ is even} \\ \frac{\mu(i)}{J_{r}(i)} \frac{Q_{1}^{r}}{q_{i}} &, & \text{if } i \text{ is odd} \end{cases}$$

for all $i \in \mathbb{N}$. Then, we have $R_{\Upsilon} u = (1, 1, 0, ..., 0, ...) \in \ell_p$ and $R_{\Upsilon} u = (1, -1, 0, ..., 0, ...) \in \ell_p$. Hence, one can easily observe that

$$\|u+\tilde{u}\|_{\ell_{p}(R_{\Upsilon}r)}^{2}+\|u-\tilde{u}\|_{\ell_{p}(R_{\Upsilon}r)}^{2}\neq 2\left(\|u\|_{\ell_{p}(R_{\Upsilon}r)}^{2}+\|\tilde{u}\|_{\ell_{p}(R_{\Upsilon}r)}^{2}\right).$$

Theorem 2.6. The inclusion $\ell_p(R_{\Upsilon^r}) \subset \ell_q(R_{\Upsilon^r})$ strictly holds for $1 \le p < q < \infty$.

Proof. It is clear that the inclusion $\ell_p(R_{\Upsilon}) \subset \ell_q(R_{\Upsilon})$ holds since $\ell_p \subset \ell_q$ for $1 \le p < q < \infty$. Also, $\ell_p \subset \ell_q$ is strict and so there exists a sequence $z = (z_i)$ in $\ell_q \setminus \ell_p$. By defining a sequence $u = (u_i)$ as

$$u_i = \sum_{j|i} \frac{\mu(\frac{i}{j})}{J_r(i)} \frac{Q_j^r}{q_i} z_j$$

for all $i \in \mathbb{N}$, we conclude that $u \in \ell_q(R_{\Upsilon}) \setminus \ell_p(R_{\Upsilon})$. Hence, the desired inclusion is strict.

Theorem 2.7. The inclusion $\ell_p(R_{\Upsilon^r}) \subset \ell_{\infty}(R_{\Upsilon^r})$ strictly holds for $1 \leq p < \infty$.

Proof. The inclusion is obvious since $\ell_p \subset \ell_\infty$ holds for $1 \le p < \infty$. Let $u = (u_i)$ be a sequence such that $u_i = \sum_{j|i} (-1)^j \frac{\mu(\frac{i}{j})}{J_r(i)} \frac{Q_j^r}{q_i}$ for all $i \in \mathbb{N}$. We obtain that $R_{\Upsilon^r} u = \left(\frac{1}{Q_i^r} \sum_{j|i} q_j J_r(j) \sum_{k|j} (-1)^k \frac{\mu(\frac{i}{k})}{J_r(j)} \frac{Q_k^r}{q_j}\right) = ((-1)^i) \in \ell_\infty \setminus \ell_p$ which implies that $u \in \ell_\infty(R_{\Upsilon^r}) \setminus \ell_p(R_{\Upsilon^r})$ for $1 \le p < \infty$.

Lemma 2.8. [32] The necessary and sufficient conditions for $\Lambda = (\lambda_{ij}) \in (U, V)$ with $U, V \in \{\ell_{\infty}, c, c_0, \ell_p, \ell\}$ and p > 1 can be read from Table 1. Here and in what follows, \mathcal{N} denotes the family of all finite subsets of \mathbb{N} .

То	ℓ_{∞}	С	<i>c</i> ₀	ℓ_p	ℓ
From					
ℓ_{∞}	1.	4.	9.	14.	16.
С	1.	5.	10.	14.	16.
<i>c</i> ₀	1.	6.	11.	14.	16.
ℓ_p	2.	7.	12.	-	17.
ℓ	3.	8.	13.	15	18.

Table 1. The characterization of the class (U,V), where $U,V \in \{\ell_{\infty}, c, c_0, \ell_p, \ell\}$.

1.

 $\sup_{i} \sum_{j} \left| \lambda_{ij} \right| < \infty \tag{2.1}$

2.

$$\sup_{i} \sum_{j} \left| \lambda_{ij} \right|^{q} < \infty \tag{2.2}$$

3.

$$\sup_{i,j} \left| \lambda_{ij} \right| < \infty \tag{2.3}$$

4.

$$\lim_{i \to \infty} \lambda_{ij} \text{ exists for each } j \in \mathbb{N}, \tag{2.4}$$

$$\lim_{i}\sum_{j}\left|\lambda_{ij}\right|=\sum_{j}\left|\lim_{i}\lambda_{ij}\right|$$

5. (2.1), (2.4) and

$$\lim_{i} \sum_{j} \lambda_{ij} \text{ exists.}$$
6. (2.1) and (2.4)
7. (2.2) and (2.4)
8. (2.3) and (2.4)

9.

$$\lim_{i}\sum_{j}\left|\lambda_{ij}\right|=0$$

10. (2.1) and

$$\lim_{i} \lambda_{ij} = 0 \text{ for each } j \in \mathbb{N},$$

$$\lim_{i}\sum_{j}\lambda_{ij}=0$$

11. (2.1) and (2.5)

- *12.* (2.2) and (2.5)
- *13.* (2.3) *and* (2.5)

14.

$$\sup_{K\in\mathscr{N}}\sum_{i}\left|\sum_{j\in K}\lambda_{ij}\right|^{p}<\infty$$

15.

$$\sup_{j}\sum_{i}\left|\lambda_{ij}\right|^{p}<\infty$$

16.

$$\sup_{N,K\in\mathscr{N}}\left|\sum_{i\in N}\sum_{j\in K}\lambda_{ij}\right|<\infty\Leftrightarrow \sup_{N\in\mathscr{N}}\sum_{j}\left|\sum_{i\in N}\lambda_{ij}\right|<\infty\Leftrightarrow \sup_{K\in\mathscr{N}}\sum_{i}\left|\sum_{j\in K}\lambda_{ij}\right|<\infty$$

17.

$$\sup_{N\in\mathscr{N}}\sum_{j}\left|\sum_{i\in N}\lambda_{ij}
ight|^q<\infty$$

18.

$$\sup_{j}\sum_{i}\left|\lambda_{ij}
ight|<\infty$$

(2.5)

3. The α -, β - and γ -duals

In this section, we determine the α -, β - and γ -duals of the sequence spaces $\ell_{\infty}(R_{\Upsilon r})$, $\ell_p(R_{\Upsilon r})$, $\ell(R_{\Upsilon r})$, where 1 . $In the following theorem, we determine the <math>\alpha$ -duals.

Theorem 3.1. The α -duals of the spaces $\ell_{\infty}(R_{\Upsilon}^r)$, $\ell_p(R_{\Upsilon}^r)$, $\ell(R_{\Upsilon}^r)$ are as follows:

$$\begin{aligned} (\ell_{\infty}(R_{\Upsilon^{r}}))^{\alpha} &= \left\{ t = (t_{i}) \in \boldsymbol{\omega} : \sup_{N \in \mathcal{N}} \sum_{j} \left| \sum_{i \in N, j \mid i} \frac{\mu(\frac{i}{j})}{J_{r}(i)} \frac{Q_{j}^{r}}{q_{i}} t_{i} \right| < \infty \right\}, \\ (\ell_{p}(R_{\Upsilon^{r}}))^{\alpha} &= \left\{ t = (t_{i}) \in \boldsymbol{\omega} : \sup_{N \in \mathcal{N}} \sum_{j} \left| \sum_{i \in N, j \mid i} \frac{\mu(\frac{i}{j})}{J_{r}(i)} \frac{Q_{j}^{r}}{q_{i}} t_{i} \right|^{q} < \infty \right\}, \\ (\ell(R_{\Upsilon^{r}}))^{\alpha} &= \left\{ t = (t_{i}) \in \boldsymbol{\omega} : \sup_{j} \sum_{i \in \mathbb{N}, j \mid i} \left| \frac{\mu(\frac{i}{j})}{J_{r}(i)} \frac{Q_{j}^{r}}{q_{i}} t_{i} \right| < \infty \right\}. \end{aligned}$$

Proof. Consider the matrix $C = (c_{ij})$ defined by

$$c_{ij} = \begin{cases} \frac{\mu(\frac{1}{j})}{J_r(i)} \frac{Q_j^r}{q_i} t_i & , \quad j \mid i \\ 0 & , \quad j \nmid i \end{cases}$$

for any sequence $t = (t_i) \in \omega$. Let $U \in \{\ell_{\infty}, \ell_p, \ell\}$. Given any $u = (u_i) \in U(R_{\Upsilon})$, we have $t_i u_i = (Cv)_i$ for all $i \in \mathbb{N}$. This implies that $tu \in \ell$ with $u \in U(R_{\Upsilon})$ if and only if $Cv \in \ell$ with $v \in U$. It follows that $t \in (U(R_{\Upsilon}))^{\alpha}$ if and only if $C \in (U, \ell)$ which completes the proof in view of Lemma 2.8.

Lemma 3.2. [33, Theorem 3.1] Let $B = (b_{ij})$ be defined via a sequence $t = (t_k) \in \omega$ and the inverse matrix $\tilde{\Delta} = (\tilde{\delta}_{ij})$ of the triangle matrix $\Delta = (\delta_{ij})$ by

$$b_{ij} = \sum_{k=j}^{l} t_k \tilde{\delta}_{kj}$$

for all $i, j \in \mathbb{N}$. Then,

$$U_{\Delta}^{\beta} = \{t = (t_k) \in \boldsymbol{\omega} : \boldsymbol{B} \in (\boldsymbol{U}, \boldsymbol{c})\}$$

and

$$U_{\Delta}^{\gamma} = \{t = (t_k) \in \boldsymbol{\omega} : B \in (U, \ell_{\infty})\}.$$

Consequently, we have the following theorem.

Theorem 3.3. Let define the following sets:

$$A_{1} = \left\{ t = (t_{k}) \in \boldsymbol{\omega} : \lim_{i} \sum_{k=j,j|k}^{i} \frac{\mu(\frac{k}{j})}{J_{r}(k)} \frac{Q_{j}^{r}}{q_{k}} t_{k} \text{ exists for each } j \in \mathbb{N} \right\},$$

$$A_{2} = \left\{ t = (t_{k}) \in \boldsymbol{\omega} : \sup_{i} \sum_{j} \left| \sum_{k=j,j|k}^{i} \frac{\mu(\frac{k}{j})}{J_{r}(k)} \frac{Q_{j}^{r}}{q_{k}} t_{k} \right|^{q} < \infty \right\},$$

$$A_{3} = \left\{ t = (t_{k}) \in \boldsymbol{\omega} : \lim_{i} \sum_{j} \left| \sum_{k=j,j|k}^{i} \frac{\mu(\frac{k}{j})}{J_{r}(k)} \frac{Q_{j}^{r}}{q_{k}} t_{k} \right| = \sum_{j} \left| \sum_{k=j,j|k}^{\infty} \frac{\mu(\frac{k}{j})}{J_{r}(k)} \frac{Q_{j}^{r}}{q_{k}} t_{k} \right| \right\}$$

$$A_{4} = \left\{ t = (t_{k}) \in \boldsymbol{\omega} : \sup_{i,j} \left| \sum_{k=j,j|k}^{i} \frac{\mu(\frac{k}{j})}{J_{r}(k)} \frac{Q_{j}^{r}}{q_{k}} t_{k} \right| < \infty \right\}.$$

The β - and γ -duals of the spaces $\ell_{\infty}(R_{\Upsilon}^r)$, $\ell_p(R_{\Upsilon}^r)$, $\ell(R_{\Upsilon}^r)$ are as follows: $(\ell_{\infty}(R_{\Upsilon}^r))^{\beta} = A_1 \cap A_3$, $(\ell_p(R_{\Upsilon}^r))^{\beta} = A_1 \cap A_2$, $(\ell(R_{\Upsilon}^r))^{\beta} = A_1 \cap A_4$. $(\ell_{\infty}(R_{\Upsilon}^r))^{\gamma} = A_2$ with q = 1, $(\ell_p(R_{\Upsilon}^r))^{\gamma} = A_2$, $(\ell(R_{\Upsilon}^r))^{\gamma} = A_4$. *Proof.* Let $t = (t_k) \in \omega$, $U \in \{\ell_{\infty}, \ell_p, \ell\}$ and $B = (b_{ij})$ be an infinite matrix with terms

$$b_{ij} = \begin{cases} \sum_{k=j,j|k}^{i} t_k \frac{\mu(\frac{k}{j})}{J_r(k)} \frac{Q_j^r}{q_k} &, & \text{if } 1 \le j \le i \\ 0 &, & \text{if } j > i. \end{cases}$$

Hence it follows that

$$\sum_{j=1}^{i} t_{j} u_{j} = \sum_{j=1}^{j} t_{j} \left(\sum_{k|j} \frac{\mu(\frac{j}{k})}{J_{r}(j)} \frac{Q_{k}^{r}}{q_{j}} v_{k} \right) = \sum_{j=1}^{i} \left(\sum_{k=j,j|k}^{i} t_{k} \frac{\mu(\frac{k}{j})}{J_{r}(k)} \frac{Q_{j}^{r}}{q_{k}} \right) v_{j} = (Bv)_{i}$$

for any $u = (u_i) \in U(R_{\Upsilon r})$. This equality yields that $tu \in cs$ for $u \in U(R_{\Upsilon r})$ if and only if $Bv \in c$ for $v \in U$. That is, $t \in (U(R_{\Upsilon r}))^{\beta}$ if and only if $B \in (U, c)$. Hence, by Lemma 2.8, it is concluded that $(\ell_{\infty}(R_{\Upsilon r}))^{\beta} = A_1 \cap A_3, (\ell_p(R_{\Upsilon r}))^{\beta} = A_1 \cap A_2, (\ell(R_{\Upsilon r}))^{\beta} = A_1 \cap A_4.$

This equality also yields that $tu \in bs$ for $u \in U(R_{\Upsilon})$ if and only if $Bv \in \ell_{\infty}$ for $v \in U$. That is, $t \in (U(R_{\Upsilon}))^{\gamma}$ if and only if $B \in (U, \ell_{\infty})$. Hence, by Lemma 2.8, it is concluded that $(\ell_{\infty}(R_{\Upsilon}))^{\gamma} = A_2$ with q = 1, $(\ell_p(R_{\Upsilon}))^{\gamma} = A_2$, $(\ell(R_{\Upsilon}))^{\gamma} = A_4$.

4. Certain Matrix Transformations

In this section, characterization of certain classes of matrices is given. The following result is obtained from Theorem 4.1 in [34] and this result is required to characterize the classes of matrices from $\ell_{\infty}(R_{\Upsilon r})$, $\ell_{p}(R_{\Upsilon r})$, $\ell(R_{\Upsilon r})$ into $\ell_{\infty}, c, c_{0}, \ell$.

Theorem 4.1. Let $1 , <math>U \in \{\ell_{\infty}, \ell_p, \ell\}$ and $V \subset \omega$. Then, $\Lambda = (\lambda_{ij}) \in (U_{RY}, V)$ if and only if $\Theta^{(i)} = (\theta_{ij}^{(i)}) \in (U, c)$ for each fixed $i \in \mathbb{N}$ and $\Theta = (\theta_{ij}) \in (U, V)$, where

$$\boldsymbol{\theta}_{lj}^{(i)} = \begin{cases} \boldsymbol{\Sigma}_{k=j,j|k}^{l} \boldsymbol{\lambda}_{ik} \frac{\boldsymbol{\mu}(\frac{k}{j})}{J_{r}(k)} \frac{Q_{j}^{r}}{q_{k}} & , \quad 1 \leq j \leq l \\ 0 & , \quad j > l \end{cases}$$

and

$$heta_{ij} = \sum_{k=j,j|k}^{\infty} \lambda_{ik} rac{\mu(rac{k}{j})}{J_r(k)} rac{Q_j^r}{q_k}.$$

Proof. Let $\Lambda \in (U_{R_{YT}}, V)$ and $u \in U_{R_{YT}}$. Then, the equality

$$\sum_{j=1}^{l} \lambda_{ij} u_{j} = \sum_{j=1}^{l} \lambda_{ij} \left(\sum_{k|j} \frac{\mu(\frac{j}{k})}{J_{r}(j)} \frac{Q_{k}^{r}}{q_{j}} v_{k} \right)$$

$$= \sum_{j=1}^{l} \left(\sum_{k=j,j|k}^{l} \lambda_{ik} \frac{\mu(\frac{k}{j})}{J_{r}(k)} \frac{Q_{j}^{r}}{q_{k}} \right) v_{j} = \sum_{j=1}^{l} \theta_{lj}^{(i)} v_{j}$$
(4.1)

holds. Since Λu exists, it follows that $\Theta^{(i)} \in (U,c)$ for each fixed $i \in \mathbb{N}$. It is deduced that $\Lambda u = \Theta v$ as $l \to \infty$ in (4.1). Hence, $\Lambda u \in V$ implies that $\Theta v \in V$; that is $\Theta \in (U, V)$.

Conversely, suppose that $\Theta^{(i)} = \left(\theta_{lj}^{(i)}\right) \in (U,c)$ for each fixed $i \in \mathbb{N}$ and $\Theta = (\theta_{ij}) \in (U,V)$. Let $u \in U_{R_{Y}r}$. Then, $(\theta_{ij}) \in U^{\beta}$ for each fixed $i \in \mathbb{N}$ implies that $(\lambda_{ij}) \in U_{R_{Y}r}^{\beta}$ for each fixed $i \in \mathbb{N}$. Hence, Λu exists. From equality (4.1), it follows that $\Lambda u = \Theta v$ as $l \to \infty$. This proves that $\Lambda \in (U_{R_{Y}r}, V)$.

Theorem 4.2. Let $\Lambda = (\lambda_{ij})$ be an infinite matrix. Then, the following statements hold:

1. $\Lambda \in (\ell_{\infty}(R_{\Upsilon^r}), \ell_{\infty})$ if and only if

$$\lim_{l \to \infty} \sum_{k=j,j|k}^{l} \lambda_{ik} \frac{\mu(\frac{k}{j})}{J_r(k)} \frac{Q_j^r}{q_k} \text{ exists for each fixed } i, j \in \mathbb{N},$$
(4.2)

$$\lim_{l} \sum_{j} \left| \sum_{k=j,j|k}^{l} \lambda_{ik} \frac{\mu(\frac{k}{j})}{J_{r}(k)} \frac{Q_{j}^{r}}{q_{k}} \right| = \sum_{j} \left| \lim_{l} \sum_{k=j,j|k}^{l} \lambda_{ik} \frac{\mu(\frac{k}{j})}{J_{r}(k)} \frac{Q_{j}^{r}}{q_{k}} \right|$$
(4.3)

and

$$\sup_{i} \sum_{j} \left| \sum_{k=j,j|k}^{\infty} \lambda_{ik} \frac{\mu(\frac{k}{j})}{J_{r}(k)} \frac{Q_{j}^{r}}{q_{k}} \right| < \infty.$$

$$(4.4)$$

2. $\Lambda \in (\ell_{\infty}(R_{\Upsilon}r), c)$ if and only if (4.2), (4.3),

$$\lim_{i} \sum_{k=j,j|k}^{\infty} \lambda_{ik} \frac{\mu(\frac{k}{j})}{J_{r}(k)} \frac{Q_{j}^{r}}{q_{k}} \text{ exists for each } j \in \mathbb{N},$$
(4.5)

$$\lim_{i} \sum_{j} \left| \sum_{k=j,j|k}^{\infty} \lambda_{ik} \frac{\mu(\frac{k}{j})}{J_{r}(k)} \frac{Q_{j}^{r}}{q_{k}} \right| = \sum_{j} \left| \lim_{i} \sum_{k=j,j|k}^{\infty} \lambda_{ik} \frac{\mu(\frac{k}{j})}{J_{r}(k)} \frac{Q_{j}^{r}}{q_{k}} \right|.$$

3. $\Lambda \in (\ell_{\infty}(R_{\Upsilon^r}), c_0)$ if and only if (4.2), (4.3),

$$\lim_{i}\sum_{j}\left|\sum_{k=j,j|k}^{\infty}\lambda_{ik}\frac{\mu(\frac{k}{j})}{J_{r}(k)}\frac{Q_{j}^{r}}{q_{k}}\right|=0.$$

4. $\Lambda \in (\ell_{\infty}(R_{\Upsilon^r}), \ell)$ if and only if (4.2), (4.3) and

$$\sup_{N,K\in\mathscr{N}}\left|\sum_{i\in N}\sum_{j\in K}\sum_{k=j,j|k}^{\infty}\lambda_{ik}\frac{\mu(\frac{k}{j})}{J_{r}(k)}\frac{Q_{j}^{r}}{q_{k}}\right|<\infty.$$
(4.6)

Proof. The proof follows from Lemma 2.8 and Theorem 4.1.

Theorem 4.3. Let $\Lambda = (\lambda_{ij})$ be an infinite matrix and p > 1. Then, the following statements hold:

$$I. \ \Lambda \in (\ell_p(R_{\Upsilon^r}), \ell_{\infty}) \text{ if and only if (4.2),}$$

$$\sup_{l \in \mathbb{N}} \sum_{j=1}^{l} \left| \sum_{k=j, j \mid k}^{l} \lambda_{ik} \frac{\mu(\frac{k}{j})}{J_r(k)} \frac{Q_j^r}{q_k} \right|^q < \infty \text{ for each fixed } i \in \mathbb{N},$$

$$(4.7)$$

$$\sup_{i} \sum_{j} \left| \sum_{k=j,j|k}^{\infty} \lambda_{ik} \frac{\mu(\frac{k}{j})}{J_{r}(k)} \frac{Q_{j}^{r}}{q_{k}} \right|^{q} < \infty.$$

$$(4.8)$$

- 2. $\Lambda \in (\ell_p(R_{\Upsilon^r}), c)$ if and only if (4.2), (4.7), (4.5), (4.8).
- 3. $\Lambda \in (\ell_p(R_{\Upsilon^r}), c_0)$ if and only if (4.2), (4.7), (4.8),

$$\lim_{i} \sum_{k=j,j|k}^{\infty} \lambda_{ik} \frac{\mu(\frac{k}{j})}{J_r(k)} \frac{Q_j^r}{q_k} = 0 \text{ for each } j \in \mathbb{N}.$$
(4.9)

4. $\Lambda \in (\ell_p(R_{\Upsilon^r}), \ell)$ if and only if (4.2), (4.7),

$$\sup_{N\in\mathscr{N}}\sum_{j}\left|\sum_{i\in N}\sum_{k=j,j|k}^{\infty}\lambda_{ik}\frac{\mu(\frac{k}{j})}{J_{r}(k)}\frac{Q_{j}^{r}}{q_{k}}\right|^{q}<\infty.$$

Proof. The proof follows from Lemma 2.8 and Theorem 4.1.

Theorem 4.4. Let $\Lambda = (\lambda_{ij})$ be an infinite matrix. Then, the following statements hold:

1. $\Lambda \in (\ell(R_{\Upsilon^r}), \ell_{\infty})$ if and only if (4.2),

$$\sup_{l,j} \left| \sum_{k=j,j|k}^{l} \lambda_{ik} \frac{\mu(\frac{k}{j})}{J_r(k)} \frac{Q_j^r}{q_k} \right| < \infty \text{ for each fixed } i \in \mathbb{N},$$
(4.10)

$$\sup_{i,j} \left| \sum_{k=j,j|k}^{\infty} \lambda_{ik} \frac{\mu(\frac{k}{j})}{J_r(k)} \frac{Q_j^r}{q_k} \right| < \infty.$$
(4.11)

- 2. $\Lambda \in (\ell(R_{\Upsilon^r}), c)$ if and only if (4.2), (4.10), (4.5), (4.11).
- 3. $\Lambda \in (\ell(R_{\Upsilon^r}), c_0)$ if and only if (4.2), (4.10), (4.9), (4.11).
- 4. $\Lambda \in (\ell(R_{\Upsilon^r}), \ell)$ if and only if (4.2), (4.10),

$$\sup_{j}\sum_{i}\left|\sum_{k=j,j|k}^{\infty}\lambda_{ik}\frac{\mu(\frac{k}{j})}{J_{r}(k)}\frac{Q_{j}^{r}}{q_{k}}\right|<\infty.$$

Proof. The proof follows from Lemma 2.8 and Theorem 4.1.

Corollary 4.5. Let $\Lambda = (\lambda_{ij})$ be an infinite matrix. Then, the following statements hold:

1. $\Lambda \in (\ell_{\infty}(R_{\Upsilon}), bs)$ if and only if (4.2), (4.3),

$$\sup_{i} \sum_{j} \left| \sum_{l=1}^{i} \sum_{k=j,j|k}^{\infty} \lambda_{lk} \frac{\mu(\frac{k}{j})}{J_{r}(k)} \frac{Q_{j}^{r}}{q_{k}} \right| < \infty.$$

$$(4.12)$$

2. $\Lambda \in (\ell_{\infty}(R_{\Upsilon}^{r}), cs)$ if and only if (4.2), (4.3),

$$\lim_{i} \sum_{l=1}^{i} \sum_{k=j,j|k}^{\infty} \lambda_{lk} \frac{\mu(\frac{k}{j})}{J_r(k)} \frac{Q_j^r}{q_k} \text{ exists for each } j \in \mathbb{N},$$
(4.13)

$$\lim_{i}\sum_{j}\left|\sum_{l=1}^{i}\sum_{k=j,j|k}^{\infty}\lambda_{lk}\frac{\mu(\frac{k}{j})}{J_{r}(k)}\frac{Q_{j}^{r}}{q_{k}}\right|=\sum_{j}\left|\lim_{i}\sum_{l=1}^{i}\sum_{k=j,j|k}^{\infty}\lambda_{lk}\frac{\mu(\frac{k}{j})}{J_{r}(k)}\frac{Q_{j}^{r}}{q_{k}}\right|.$$

3. $\Lambda \in (\ell_{\infty}(R_{\Upsilon^r}), cs_0)$ if and only if (4.2), (4.3)

$$\lim_{i}\sum_{j}\left|\sum_{l=1}^{i}\sum_{k=j,j|k}^{\infty}\lambda_{lk}\frac{\mu(\frac{k}{j})}{J_{r}(k)}\frac{Q_{j}^{r}}{q_{k}}\right|=0.$$

Corollary 4.6. Let $\Lambda = (\lambda_{ij})$ be an infinite matrix. Then, the following statements hold:

1. $\Lambda \in (\ell_p(R_{\Upsilon^r}), bs)$ if and only if (4.2), (4.7),

$$\sup_{i} \sum_{j} \left| \sum_{l=1}^{i} \sum_{k=j,j|k}^{\infty} \lambda_{ik} \frac{\mu(\frac{k}{j})}{J_{r}(k)} \frac{\mathcal{Q}_{j}^{r}}{q_{k}} \right|^{q} < \infty.$$

$$(4.14)$$

2. $\Lambda \in (\ell_p(R_{\Upsilon}r), cs)$ if and only if (4.2), (4.7), (4.13), (4.14).

3. $\Lambda \in (\ell_p(R_{\Upsilon^r}), cs_0)$ if and only if (4.2), (4.7), (4.14),

$$\lim_{i} \sum_{l=1}^{i} \sum_{k=j,j|k}^{\infty} \lambda_{lk} \frac{\mu(\frac{k}{j})}{J_{r}(k)} \frac{Q_{j}^{r}}{q_{k}} = 0 \text{ for each } j \in \mathbb{N}.$$
(4.15)

Corollary 4.7. Let $\Lambda = (\lambda_{ij})$ be an infinite matrix. Then, the following statements hold:

1. $\Lambda \in (\ell(R_{\Upsilon}), bs)$ if and only if (4.2), (4.10),

$$\sup_{i,j} \left| \sum_{l=1}^{i} \sum_{k=j,j|k}^{\infty} \lambda_{ik} \frac{\mu(\frac{k}{j})}{J_r(k)} \frac{Q_j^r}{q_k} \right| < \infty.$$
(4.16)

- 2. $\Lambda \in (\ell(R_{\Upsilon^r}), cs)$ if and only if (4.2), (4.10), (4.13), (4.16).
- 3. $\Lambda \in (\ell(R_{\Upsilon^r}), cs_0)$ if and only if (4.2), (4.10), (4.15), (4.16).
- **Theorem 4.8.** Let $\Lambda = (\lambda_{ij})$ be an infinite matrix and p > 1. Then, the following statements hold: (a) $\Lambda \in (\ell_{\infty}, \ell_p(R_{\Upsilon^r})) = (c, \ell_p(R_{\Upsilon^r})) = (c_0, \ell_p(R_{\Upsilon^r}))$ if and only if

$$\sup_{K\in\mathscr{N}}\sum_{i}\left|\sum_{j\in K}\sum_{l\mid i}\frac{q_{l}J_{r}(l)}{Q_{i}^{r}}\lambda_{lj}\right|^{p}<\infty.$$

1.0

(b) $\Lambda \in (\ell, \ell_p(R_{\Upsilon^r}))$ if and only if

$$\sup_{j}\sum_{i}\left|\sum_{l\mid i}\frac{q_{l}J_{r}(l)}{Q_{i}^{r}}\lambda_{lj}\right|^{p}<\infty.$$

Proof. The proof is given only for the matrix in $(\ell_{\infty}, \ell_p(R_{\Upsilon}))$ since the other case can be proven similarly. Given any infinite matrix $\Lambda = (\lambda_{ij}) \in (\ell_{\infty}, \ell_p(R_{\Upsilon}))$, define a new matrix $\hat{\Lambda} = (\hat{\lambda}_{ij})$ by

$$\hat{\lambda}_{ij} = \sum_{l|i} rac{q_l J_r(l)}{Q_i^r} \lambda_{lj}$$

for all $i, j \in \mathbb{N}$. Then, for any $u = (u_j) \in \ell_{\infty}$, the equality

$$\sum_{j} \hat{\lambda}_{ij} u_j = \sum_{l|i} \frac{q_l J_r(l)}{Q_i^r} \sum_{j} \lambda_{lj} u_j$$

means that $(\hat{\Lambda} u)_i = (R_{\Upsilon}(\Lambda u))_i$ for all $i \in \mathbb{N}$. This implies that $\Lambda u \in \ell_p(R_{\Upsilon})$ for $u = (u_j) \in \ell_{\infty}$ if and only if $\hat{\Lambda} u \in \ell_p$ for $u = (u_i) \in \ell_{\infty}$. Hence, we conclude from Lemma 2.8 that

$$\sup_{K\in\mathscr{N}}\sum_{i}\left|\sum_{j\in K}\sum_{l\mid i}\frac{q_{l}J_{r}(l)}{Q_{i}^{r}}\lambda_{lj}\right|^{p}<\infty.$$

Theorem 4.9. Let $\Lambda = (\lambda_{ij})$ be an infinite matrix. Then, the following statements hold: (a) $\Lambda \in (\ell_{\infty}, \ell_{\infty}(R_{\Upsilon^r})) = (c, \ell_{\infty}(R_{\Upsilon^r})) = (c_0, \ell_{\infty}(R_{\Upsilon^r}))$ if and only if

$$\sup_{i} \sum_{j} \left| \sum_{l|i} \frac{q_{l} J_{r}(l)}{Q_{i}^{r}} \lambda_{lj} \right| < \infty.$$

$$(b) \Lambda \in (\ell, \ell_{\infty}(R_{\Upsilon}r)) \text{ if and only if}$$

$$\sup_{i,j} \left| \sum_{l|i} \frac{q_{l} J_{r}(l)}{Q_{i}^{r}} \lambda_{lj} \right| < \infty.$$

Proof. The proof follows with the same way in the proof of Theorem 4.8.

Theorem 4.10. Let $\Lambda = (\lambda_{ij})$ be an infinite matrix. Then, the following statements hold: (a) $\Lambda \in (\ell_{\infty}, \ell(R_{\Upsilon})) = (c, \ell(R_{\Upsilon})) = (c_0, \ell(R_{\Upsilon}))$ if and only if

$$\sup_{K \in \mathcal{N}} \sum_{i} \left| \sum_{j \in K} \sum_{l \mid i} \frac{q_l J_r(l)}{Q_i^r} \lambda_{lj} \right| < \infty.$$
(b) $\Lambda \in (\ell, \ell(R_{\Upsilon}r))$ if and only if

$$\sup_{j} \sum_{i} \left| \sum_{l|i} \frac{q_{l} J_{r}(l)}{Q_{i}^{r}} \lambda_{lj} \right| < \infty.$$

Proof. The proof follows with the same way in the proof of Theorem 4.8.

Now, we investigate the norm of the bounded linear matrix operators from $\ell_{\infty}(R_{\Upsilon})$, $\ell_p(R_{\Upsilon})$, $\ell(R_{\Upsilon})$ into $\ell_{\infty}(R_{\Upsilon})$ and $\ell(R_{\Upsilon})$. Firstly, we have a lemma which is essential for our investigation.

Lemma 4.11. Given any infinite matrix $\Lambda = (\lambda_{ij})$, the norm of bounded linear operators is defined by

$$\begin{split} \|\Lambda\|_{(\ell_{\infty},\ell_{\infty})} &= \|\Lambda\|_{(\ell_{p},\ell_{\infty})} = \sup_{i} \sum_{j} |\lambda_{ij}|^{q} \\ \|\Lambda\|_{(\ell,\ell_{\infty})} &= \sup_{i,j} |\lambda_{ij}| \\ \|\Lambda\|_{(\ell_{\infty},\ell)} &= \|\Lambda\|_{(\ell_{p},\ell)} = \sup_{K \in \mathscr{N}} \sum_{j} \left| \sum_{i \in K} \lambda_{ij} \right|^{q} \\ \|\Lambda\|_{(\ell,\ell)} &= \sup_{j} \sum_{i} |\lambda_{ij}|. \end{split}$$

Theorem 4.12. Let $\Lambda = (\lambda_{ij})$ be an infinite matrix.

(a) If $\Lambda \in B(\ell_{\infty}(R_{\Upsilon^r}), \ell_{\infty}(R_{\Upsilon^r}))$ or $\Lambda \in B(\ell_p(R_{\Upsilon^r}), \ell_{\infty}(R_{\Upsilon^r}))$, then

$$\sup_{i} \sum_{j \mid l} \sum_{j \mid l} \frac{\mu(\frac{l}{j})}{J_{r}(l)} \frac{Q_{j}^{r}}{q_{l}} \sum_{k \mid i} \frac{q_{k} J_{r}(k)}{Q_{i}^{r}} \lambda_{kl} \bigg|^{q} < \infty$$

and

$$\|\Lambda\|_{(\ell_{\infty}(R_{\Upsilon}r),\ell_{\infty}(R_{\Upsilon}r))} = \|\Lambda\|_{(\ell_{p}(R_{\Upsilon}r),\ell_{\infty}(R_{\Upsilon}r))} = \sup_{i} \sum_{j} \left| \sum_{j|l} \frac{\mu(\frac{l}{j})}{J_{r}(l)} \frac{Q_{j}^{r}}{q_{l}} \sum_{k|i} \frac{q_{k}J_{r}(k)}{Q_{i}^{r}} \lambda_{kl} \right|^{q}.$$

(b) If
$$\Lambda \in B(\ell(R_{\Upsilon^r}), \ell_{\infty}(R_{\Upsilon^r}))$$
, then

$$\sup_{i,j} \left| \sum_{j|l} \frac{\mu(\frac{l}{j})}{J_r(l)} \frac{\mathcal{Q}_j^r}{q_l} \sum_{k|i} \frac{q_k J_r(k)}{\mathcal{Q}_i^r} \lambda_{kl} \right| < \infty$$

and

$$\|\Lambda\|_{(\ell(R_{\Upsilon}r),\ell_{\infty}(R_{\Upsilon}r))} = \sup_{i,j} \left| \sum_{j|l} \frac{\mu(\frac{l}{j})}{J_r(l)} \frac{Q_j^r}{q_l} \sum_{k|i} \frac{q_k J_r(k)}{Q_i^r} \lambda_{kl} \right|.$$

(c) If
$$\Lambda \in B(\ell_{\infty}(R_{\Upsilon^r}), \ell(R_{\Upsilon^r}))$$
 or $\Lambda \in B(\ell_p(R_{\Upsilon^r}), \ell(R_{\Upsilon^r}))$, then

$$\sup_{K \in \mathscr{N}} \sum_{j} \left| \sum_{i \in K} \sum_{j|l} \frac{\mu(\frac{l}{j})}{J_{r}(l)} \frac{\mathcal{Q}_{j}^{r}}{q_{l}} \sum_{k|i} \frac{q_{k} J_{r}(k)}{\mathcal{Q}_{i}^{r}} \lambda_{kl} \right|^{q} < \infty$$

and

$$\|\Lambda\|_{(\ell_{\infty}(R_{\Upsilon}r),\ell(R_{\Upsilon}r))} = \|\Lambda\|_{(\ell_{p}(R_{\Upsilon}r),\ell(R_{\Upsilon}r))} = \sup_{K \in \mathscr{N}} \sum_{j} \left| \sum_{i \in K} \sum_{j|l} \frac{\mu(\frac{l}{j})}{J_{r}(l)} \frac{Q_{j}^{r}}{q_{l}} \sum_{k|l} \frac{q_{k}J_{r}(k)}{Q_{i}^{r}} \lambda_{kl} \right|^{q}.$$

(*d*) If $\Lambda \in B(\ell(R_{\Upsilon^r}), \ell(R_{\Upsilon^r}))$, then

$$\sup_{j} \sum_{i} \left| \sum_{j|l} \frac{\mu(\frac{l}{j})}{J_{r}(l)} \frac{Q_{j}^{r}}{q_{l}} \sum_{k|i} \frac{q_{k} J_{r}(k)}{Q_{i}^{r}} \lambda_{kl} \right| < \infty$$

and

$$\|\Lambda\|_{(\ell(R_{\Upsilon}r),\ell(R_{\Upsilon}r))} = \sup_{j} \sum_{i} \left| \sum_{j|l} \frac{\mu(\frac{l}{j})}{J_{r}(l)} \frac{Q_{j}^{r}}{q_{l}} \sum_{k|i} \frac{q_{k}J_{r}(k)}{Q_{i}^{r}} \lambda_{kl} \right|.$$

Proof. Let $\tilde{\Lambda} = R_{\Upsilon} \Lambda R_{\Upsilon}^{-1}$. From Theorem 2.3, it is known that the spaces $U(R_{\Upsilon})$ and U are linearly isomorphic. Hence, we deduce from the following diagram

$$U(R_{\Upsilon^{r}}) \xrightarrow{\Lambda} V(R_{\Upsilon^{r}})$$

$$R_{\Upsilon^{r}}^{-1} \uparrow \qquad \qquad \downarrow R_{\Upsilon^{r}}$$

$$U \xrightarrow{\tilde{\Lambda} = R_{\Upsilon^{r}} \Lambda R_{\Upsilon^{r}}^{-1}} V$$

that $\|\Lambda\|_{(U(R_{\Upsilon}r),V(R_{\Upsilon}r))} = \|\tilde{\Lambda}\|_{(U,V)}$, where $U \in \{\ell_{\infty},\ell_{p},\ell\}$ and $V \in \{\ell_{\infty},\ell\}$. Thus, the desired results follows from Lemma 4.11.

Article Information

Acknowledgements: The authors would like to express their sincere thanks to the editor and the anonymous reviewers for their helpful comments and suggestions.

Author's contributions: All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Conflict of Interest Disclosure: No potential conflict of interest was declared by the author.

Copyright Statement: Authors own the copyright of their work published in the journal and their work is published under the CC BY-NC 4.0 license.

Supporting/Supporting Organizations: No grants were received from any public, private or non-profit organizations for this research.

Ethical Approval and Participant Consent: It is declared that during the preparation process of this study, scientific and ethical principles were followed and all the studies benefited from are stated in the bibliography.

Plagiarism Statement: This article was scanned by the plagiarism program. No plagiarism detected.

Availability of data and materials: Not applicable.

References

- B. Altay, F. Başar, M. Mursaleen, On the Euler sequence spaces which include the spaces ℓ_p and ℓ_∞ I, Inform. Sci., 176(10) (2006), 1450-1462.
- F. Başar, B. Altay, On the space of sequences of p-bounded variation and related matrix mappings, Ukrainian Math. J., 55(1) (2003), 136-147.
- ^[3] F. Başar, *Summability Theory and Its Applications*, Bentham Science Publishers, İstanbul, 2012.
- [4] E. E. Kara, Some topological and geometrical properties of new Banach sequence spaces, J. Inequal. Appl., 2013(38) (2013), 15 pages.
- [5] M. Kirişci, F. Başar, Some new sequence spaces derived by the domain of generalized difference matrix, Comput. Math. Appl., 60 (2010), 1299-1309.
- [6] M. Kirişci, Riesz type integrated and differentiated sequence spaces, Bull. Math. Anal. Appl., 7(2) (2015), 14-27.
- ^[7] S. Demiriz, E. E. Kara, On compact operators on some sequence spaces related to matrix B(r, s, t), Thai J. Math., 14(3) (2016), 651-666.

- [8] M. Mursaleen, A.K. Noman, On some new difference sequence spaces of non-absolute type, Math. Comput. Modelling, 52(3-4) (2010), 603-617.
- [9] T. Yaying, B. Hazarika, On sequence spaces defined by the domain of a regular Tribonacci matrix, Math. Slovaca, 70(3) (2020), 697-706.
- P. Zengin Alp, A new paranormed sequence space defined by Catalan conservative matrix, Math. Methods Appl. Sci., 44(9) (2021), 7651-7658.
- ^[11] T. Yaying, B. Hazarika, M. Mursaleen, On sequence space derived by the domain of q-Cesaro matrix in ℓ_p space and the associated operator ideal, J. Math. Anal. Appl., **493**(1) (2021), 124453.
- [12] M. İlkhan, E. E. Kara, Matrix transformations and compact operators on Catalan sequence spaces, J. Math. Anal. Appl., 498(1) (2021), 124925.
- ^[13] T. Yaying, Paranormed Riesz difference sequence spaces of fractional order, Kragujevac J. Math., 46(2) (2022), 175-191.
- [14] P. Zengin Alp, E. E. Kara, New Banach spaces defined by the domain of Riesz-Fibonacci matrix, Korean J. Math., 29(4) (2021), 665-677.
- [15] M. İlkhan Kara, H. Roopaei, *The Cesàro–Gamma operator and its associated sequence space*, Adv. Oper. Theory, 6(3) (2021), 1-21.
- [16] H. Roopaei, M. İlkhan Kara, Negative difference operator and its associated sequence space, Numer. Funct. Anal. Optim., 42(4) (2021), 480-496.
- ^[17] H. Roopaei, M. İlkhan, Fractional Cesàro matrix and its associated sequence space, Concr. Oper., 8(1) (2021), 24-39.
- ^[18] M. İlkhan, E. E. Kara, A new Banach space defined by Euler totient matrix operator, Oper. Matrices, **13**(2) (2019), 527-544.
- ^[19] S. Demiriz, S. Erdem, *Domain of Euler-totient matrix operator in the space Li_p*, Korean J. Math., **28**(2) (2020), 361-378.
- ^[20] S. Demiriz, M. İlkhan, E. E. Kara, Almost convergence and Euler totient matrix, Ann. Funct. Anal., **11**(3) (2020), 604-616.
- S. Erdem, S. Demiriz, 4-dimensional Euler-totient matrix operator and some double sequence spaces, Math. Sci. Appl. E-Notes, 8(2) (2020), 110-122.
- [22] G. C. Hazar Güleç, Merve İlkhan, A new paranormed series space using Euler totient means and some matrix transformations, Korean J. Math., 28(2) (2020), 205-221.
- [23] G. C. Hazar Güleç, Merve İlkhan, A new characterization of absolute summability factors, Commun. Optim. Theory, 2020 (2020), Article ID 15, 11 pages.
- ^[24] M. İlkhan, *Matrix domain of a regular matrix derived by Euler totient function in the spaces* c_0 *and* c, Mediterr. J. Math., 17 (2020), Article number 27.
- [25] M. İlkhan, G. C. Hazar Güleç, A study on absolute Euler totient series space and certain matrix transformations, Mugla J. Sci. Technol., 6(1) (2020), 112-119.
- [26] M. İlkhan, S. Demiriz, E. E. Kara, A new paranormed sequence space defined by Euler totient matrix, Karaelmas Sci. Eng. J., 9(2) (2019), 277-282.
- [27] M. İlkhan, Certain geometric properties and matrix transformations on a newly introduced Banach space, Fundam. J. Math. Appl., 3(1) (2020), 45-51.
- ^[28] M. İlkhan, N. Şimşek, E. E. Kara, A new regular infinite matrix defined by Jordan totient function and its matrix domain in ℓ_p , Math. Methods Appl. Sci., **44**(9) (2021), 7622-7633.
- [29] E. E. Kara, N. Şimşek, M. İlkhan Kara, On new sequence spaces related to domain of the Jordan totient matrix, S. A. Mohiuddine, B. Hazarika (editors), Sequence space theory with applications, New York, Chapman and Hall/CRC, 2022, pp. 1-19.
- [30] M. İlkhan, E. E. Kara, F. Usta, Compact operators on the Jordan totient sequence spaces, Math. Methods Appl. Sci., 44(9) (2021), 7666-7675.
- ^[31] M. İlkhan, M. A. Bayrakdar, A study on matrix domain of Riesz-Euler totient matrix in the space of p-absolutely summable sequences, Commun. Adv. Math. Sci., 4(1) (2021), 14-25.
- ^[32] M. Stieglitz, H. Tietz, Matrix transformationen von folgenraumen eine ergebnisübersicht, Math. Z., 154 (1977), 1-16.
- ^[33] B. Altay, F. Başar, *Certain topological properties and duals of the matrix domain of a triangle matrix in a sequence space*, J. Math. Anal. Appl., **336** (2007), 632–645.

[34] M. Kirişci, F. Başar, Some new sequence spaces derived by the domain of generalized difference matrix, Comput. Math. Appl., 60 (2010), 1299-1309.