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Abstract

In this study, a special lower triangular matrix derived by combining Riesz matrix and Jordan totient matrix is
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1. Introduction and Background

A sequence space is a vector subspace of the space @ of all sequences with real entries. Well known classical sequence
spaces are the space of p-absolutely summable sequences £, the space of bounded sequences /.., the space of null sequences
co, the space of convergent sequences c. Throughout the study, the notion ¢ is used instead of /1. Also bs, c¢sp and cs are the
most frequently encountered spaces consisting of sequences generating bounded, null and convergent series, respectively. A
Banach sequence space having continuous coordinates is called a BK space. Examples of BK spaces are cg and ¢ endowed with
the supremum norm ||u||., = sup; |u;|, where N = {1,2,3,...}.

By virtue of the fact that the matrix mappings between BK-spaces are continuous, the theory of matrix mappings plays an
important role in the study of sequence spaces. Let U and V be two sequence spaces, A = (A;;) be an infinite matrix with real
entries and A; indicate the i’ row of A. If each term of the sequence Au = ((Au);) = (¥; Aiju;) is convergent, this sequence is
called A-transform of u = (u;). Further, if Au € V for every sequence u € U, then the matrix A defines a matrix mapping from
U into V. (U, V) represents the collection of all matrices defined from U into V. Additionally, B(U,V) is the set of all bounded
(continuous) linear operators from U to V. A matrix A = (4; j) is called a triangle if A; # 0 and A;; = 0 for j > i.

The matrix domain Uy of the matrix A in the space U is defined by

Up={ucw:AuclUj}.

Since this space is also a sequnce space, the matrix domain has a crucial role to construct new sequence spaces. Moreover given
any triangle A and a BK-space U, the sequence space U, gives a new BK-space equipped with the norm |[ul|;,, = [ Aul|, -
Several authors applied this technique to construct new Banach spaces with the help of special triangles. For relevant literature,
the papers [1-17] can be referred.
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The spaces

U”‘={t:(t,»)ea):2|t,»u,-|<oofora11u:(u,-)eU},
i

UB = {t =) Ew: Zt,-ui converges for all u = (u;) € U} ,

1

Ztiui
i

are called the -, 3-, y-duals of a sequence space U, respectively.
Note that % + é =1 and sup;, };, lim; mean sup;c, Yo, lim;_,c, respectively.
The Euler totient matrix ® = (¢;;) is defined as in [18]

e
0ij = i P
0 , ifj1i,

1

UY—{I—(Ii)Ew:sup

<oof0rallu—(u,-)€U},

where ¢ is the Euler totient function. In the recent time, by using this matrix, many new sequence and series spaces are defined
and studied in the papers [19-27].

For i € N with i # 1, (i) gives the number of positive integers less than i which are coprime with i and ¢(1) = 1. Also,
the equality

i=Y o))

Jli
holds for every i € N. For i € N with i # 1, the Mobius function u is defined as

(=1)" ifi = p1ps...p,, Where py, ps,..., p, are
u(i) = non-equivalent prime numbers
0 if 5% | i for some prime number j

and u(1) = 1. The equality
Y u@)=0 (1.1)

Jli

holds except for i = 1.

The arithmetic function J, : N — N with positive integer order r is called the Jordan totient function. This function
generalizes the Euler totient function. If = 1, it is reduced to the Euler totient function. The value J,(i) gives the number of
r-tuples of positive integers all less than or equal to i that form a coprime (r+ 1)-tuples together with i.

The Jordan function J, is multiplicative, i.e. for nj,n; € N with the greatest common divisor 1 the relation J,(njny) =
Jr(n1)Jr(n2) holds.

Let p{' p3*...p* be the unique prime decomposition of i € N, then

Ny ty gL
B =10 (1= (= ),

Also, the following equations hold:

Zl;J,(j):i’

and
1) _ 4G
Z jr - :

! i
jli
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") as

In [28], the authors have defined a new matrix Y = (V] :

i 0 , ifjti

for each r € N. It is observed that this matrix is regular; that is a limit preserving mapping c into c. By using this matrix they
introduce a space consisting of sequences whose Y"-transforms are in the space £, for 1 < p < ee. Also, in [29], new Banach
spaces are obtained by the aid of matrix domain of this matrix in the spaces ¢, ¢, co. In [30], the authors have studied the
compact operators on the resulting spaces.

The Riesz matrix E = (e;;) is defined as

qj . < i<
ey=q o o TOSJ=I
0 , ifj>i,

where (g;) is a sequence of positive numbers and Q; = ):i]-:l gjforallieN.
In a recent paper [31], the authors have constructed a new matrix called Riesz Euler totient matrix and study the domain of
the matrix in the space £,. The Riesz Euler totient matrix Rp = (r;;) is defined as

4;9()) I
rij = g lf] | l
0 , ifjti.

The main purpose of this study is to construct new Banach spaces lo (Ryr), £,(Ryr), £(Ryr). The matrix Ry- is obtained by
combining Jordan totient matrix and Riesz matrix. After studying certain properties of the resulting spaces, @-, 3- and y-duals
are computed. Finally some matrix mappings from the resulting spaces to the classical spaces are characterized.

2. The Sequence Spaces (..(Ryr), £,(Ryr), £(Ryr)

In the present section, we introduce the sequence spaces {o(Ryr), £, (Ryr), £(Ryr) by using the matrix Ry, where 1 < p < oo,
Also, we present some theorems which give inclusion relations concerning these spaces.
The matrix Ryr = (v;;) is defined as

qjjr(j) e s
vi={ O if j|i
0, ifjfi,

where Q; = g1 +¢q> + ... + g;. We call this matrix as Riesz Jordan totient matrix operator.

Observe that in the special cases this matrix is reduced to the some matrices mentioned in the first section. If r = 1 and
q; =1 for each j, it gives the Euler totient matrix. If » = 1, it gives the Riesz Euler totient matrix. If g; = 1 for each j, it gives
the Jorden totient matrix.

. —1 _ (y,—1
The inverse Ry, = (vl.j

u(t) o e
vj;l _ -/r(Ji) q—i’ , ifj|i
0, ifjti

) of the matrix Ryr is computed as

foralli,j e N.
Now, we introduce the sequence spaces o (RYr ), £, (Ryr), {(Ryr) by

<},

14
<oo} (1 <p<e),

1 .
— Y qir(J)u;

T

loo(Ryr) = {u = (u;) € @ : sup

1

1 .
— Y ajJ-(j)uj
ijli

Lp(Ryr) = {M =(w)ecw:),

i
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<ol

Unless otherwise stated, v = (v;) will be the Ry--transform of a sequence u = (u;), that is, v; = (Ryru); = & Yiqidr(J)u;
foralli e N.

- Zq, Ju;

i jli

L(Ryr) = {u = (w) € Z

i

Theorem 2.1. The spaces {w(Ryr), £,(Ryr), £(Ryr) are Banach spaces with the norms given by

quJ M/
i jli

N\ /P

) (I <p <o),

1
— Y ajd-(j)u;

¥

lulle..ryr) = sup
i

)

qu/

ijli

llulle, (Rer) = <Z

i

llulloryry = Y

i

Proof. We omit the proof which is straightforward. O

Corollary 2.2. The spaces l(Ryr), £,(Ryr), {(Ryr) are BK-spaces, where 1 < p < oo,
Theorem 2.3. The space U(Ryr) is linearly isomorphic to U, where U € {{w,{,,0} and 1 < p < oo,

Proof. Let f be a mapping defined from U (Ryr) to U such that f(u) = Ryru for all u € U(Ryr). It is clear that f is linear. Also
it is injective since the kernel of f consists of only zero. To prove that f is surjective consider the sequence u = (u;) whose
terms are ,
u(5) 0
up=y —=—Lv;
Jr(l) qi

i

for all i € N, where v = (v;) is any sequence in U. It follows from (1.1) that

J
(Ryru)i = — Z% = ir):q]‘fr(j)z 7 ((lji (;)jkvk

i jli i jli klj

ZZ“ v = Z(Zu >Q2V4=erl( )Qpvi = v

ijli klj L jli \klj !
and so u = (u;) € U(Ryr). f preserves norms since the equality ||u(|y (g, = |lf ()| holds. O

Remark 2.4. The space {>(Ryr) is an inner product space with the inner product defined as (u, i) b(Ryr) = (Ryru, Ryrii)g,,
where (.,.)q, is the inner product on ¢, which induces ||.||s,.

Theorem 2.5. The space £,(Ryr) is not an inner product space for p # 2.

Proof. Consider the sequences u = (u;) and & = (#;), where

“(?) % I}l((%) %2 , ifiiseven
u; = r i rr i
l Ly . ifiisodd
and
ui) O n(3) % e
g={ 70 o - Jrrf(zl)qu ., ifiiseven
Ma . ifiisodd

for all i € N. Then, we have Ryru = (1,1,0,...,0,...) € £, and Ry-ii = (1,—1,0,...,0,...) € £,. Hence, one can easily observe
that

ot -+ 03 ey + =12, ) 7 2 (1l gy + 112 ) ) -
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Theorem 2.6. The inclusion £, (Ryr) C £4(Ryr) strictly holds for 1 < p < g < oo

Proof. Tt is clear that the inclusion £, (Ryr) C £4(Ry) holds since £, C £, for 1 < p < g < eo. Also, £, C { is strict and so
there exists a sequence z = (z;) in £, \¢,. By defining a sequence u = (u;) as

Ly O
i = N <j
jli ‘]r(l) qi
for all i € N, we conclude that u € £,(Ry~)\/,(Ryr). Hence, the desired inclusion is strict. O

Theorem 2.7. The inclusion £, (Ryr) C Lo (Ryr) strictly holds for 1 < p < oo,

Proof. The inclusion is obvious since £, C £ holds for 1 < p < eo. Let u = (u;) be a sequence such that u; = Zj|,-(—1 )/ 556)) %

-Ir(j) qj
for 1 < p < eo. O

foralli € N. We obtain that Ryru = <Q‘ X199 (J) g (=D by Qi) = ((—1)") € £\, which implies that u € lo(Ryr)\ L, (Ryr)

Lemma 2.8. [32] The necessary and sufficient conditions for A = (Aij) € (U,V) withU,V € {lw,c,c0,¢p,L} and p > 1 can
be read from Table 1. Here and in what follows, A" denotes the family of all finite subsets of N.

To lo | ¢ | co | & 12
From
loo 1. [ 4. 9. | 14. | 16.
c 1. | 5. | 10. | 14. | 16.
co 1. | 6. | 11. | 14. | 16.
Ly 2. | 7.1 12. - 17.
Y4 3. |8 |13. | 15 | 18.

Table 1. The characterization of the class (U,V), where U,V € {{w,c,co,¢p,(}.

1.
sup ) [Aij| < e 2.1)
tj
2.
squwj‘q<oo 2.2)
tj
3.
sup M”'j‘ < o 2.3)
iJ
4.
lim A;; exists for each j € N, 2.4

hm A,,'j
i

J J




» o N A

10.

11.
12.
13.
14.

15.

16.

17.

18.

2.1), (2.4) and

lim) A;; exists.
i XJ: H

2.1) and (2.4)
(2.2) and (2.4)
(2.3) and (2.4)

liln’l; |lij| =0

2.1) and

limA;; = 0 for each j € N,
1

llz’n;}q/ =0

2.1) and (2.5)
(2.2) and (2.5)
(2.3) and (2.5)

p
< oo

sup Z

Kev

) %

jek

supZ|l,‘.,-|p < o
Joi

sup
N,Ke NV

Y ) A

ieN jek

q
sup Z < oo

Nest

Y i

ieN

squM,-j‘ <o
j i

<<>°<:>Nsu1/3VZ
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2.5)

Zl,'j < o0

ieN

Y A

< o0 < sup Z
Ket i | jek

J
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3. The a-, B- and y-duals

In this section, we determine the ¢-, B- and y-duals of the sequence spaces o (RY), £,(Ryr), £(Ryr), where 1 < p < co.
In the following theorem, we determine the o-duals.
- w} ,
YR

q
| <=}

iengli Jr(i) di l
<oo}.

Theorem 3.1. The a-duals of the spaces le(Ryr), £,(Ryr), {(Ryr) are as follows:

u(f)Qf;t’
iEN, j|i Ji(0) qi"

(oo (Ryr))* = {t =) €w: sup Z

Net

(£p(Ryr))* = {t =t ew: NSSB/;

ut) o

Jr(l) qi

1

(U(Ryr))* = {t = (t;) € @ : sup Z

JieN,jli
Proof. Consider the matrix C = (c;;) defined by
nit) s
Cij = er) ‘]T‘jti s i
0 , Jfi

for any sequence r = (f;) € @. Let U € {{w,{,,¢}. Given any u = (u;) € U(Ryr), we have tju; = (Cv); for all i € N. This
implies that tu € £ with u € U(Ryr) if and only if Cv € £ with v € U. It follows that t € (U(Ryr))? if and only if C € (U,{)
which completes the proof in view of Lemma 2.8. O

Lemma 3.2. [33, Theorem 3.1] Let B = (b;;) be defined via a sequence t = (ty) € @ and the inverse matrix A = (S,-j) of the
triangle matrix A = (8;;) by

i
bij =Y, by
k=j
foralli,je N. Then,
Ul ={i=(w)cw:Bec(U,c)}

and
Ul={t=(t) e w:Be (UL}

Consequently, we have the following theorem.

Theorem 3.3. Let define the following sets:

A t (t)ewlimi H(%)Qﬁt ists fi hjeN
1= = (I i —= 1y exists for each | s
e r) g

iout o |
Ay =<1t= () € ®:sup L=y <°°}v
2 { k i ; k:%\k‘]’(k) 13 ¢
iout) o = k) o
Az=<{t=)cw:li = —Ly| = S
3 { weoind) L 5" "L L i "}
Lou) o

— 1t
k=j,jlk Jr(k) qk

<w}.

The B- and y-duals of the spaces lo(Ryr), {,(Ryr), {(Ryr) are as follows:
(leo(Ryr))P = AL N A3, (€,(Ryr))P = A1 NAy, (U(Ryr))P = A1 NA.
(boo(RYr))Y =Ag with g =1, ({,(Ryr))" = Aa, ({(Ryr))? = As.

A4:{t:(tk)€a):sup
i,J
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Proof. Lett = (ty) € 0, U € {{w,{,,¢} and B = (b;;) be an infinite matrix with terms
() o . .

bij = i JJV‘thr(;‘) , M lsj<i

0 , it j>i

Hence it follows that

Y o= Y (3 A0 2 i y M0
tjup= )1 vj=(Bv)i
j=1 j=1 k‘jJ (J) q] k=, jlk Jr(k) qk
for any u = (u;) € U(Ryr). This equality yields that ru € cs for u € U(Ryr) if and only if Bv € ¢ for v € U. That is,
€ (U(Ryr))P if and only if B € (U, c). Hence, by Lemma 2.8, it is concluded that (¢u.(Ry+))P = A1 NA3, (€,(Ryr))P = A1 NA,,
(K(Ryr))ﬁ =A|NAy.

This equality also yields that tu € bs for u € U(Ry) if and only if Bv € £, forv € U. That is, r € (U(Ryr))” if and only if

€ (U,!). Hence, by Lemma 2.8, it is concluded that (e (Ry))? = Ay with g =1, ({,(Ryr))" = A2, ({(Ryr))¥ = As.
0

4. Certain Matrix Transformations
In this section, characterization of certain classes of matrices is given. The following result is obtained from Theorem 4.1
in [34] and this result is required to characterize the classes of matrices from le,(Ryr), £,(Ryr), £(Ryr) into le, ¢, co,¥.
Theorem 4.1. Let | < p < o, U € {{w,,0} and V C ®. Then, A = (A;j) € (Ur,,,V) if and only if ) = (9};)) e
(U,c) for each fixed i € N and ® = (6;;) € (U,V), where

. 1 uty o; .
o) =3 Lisjutuging - 1S7s!
0 , j>1
and L
Y]
6= Y AikTr—t
k=j,jlk Jr (k) gk

Proof. Let A € (Ug,,,V) and u € Ug,,. Then, the equality

’ l rp) o
j;l,-juj = Z’L/<ZJ(]) kvk> (41)

E(E ) g
.

holds. Since Au exists, it follows that ® ) ¢
Au € V implies that ®v € V; thatis ® € (U,V

Conversely, suppose that @) = ( (')) (U,c) for each fixed i € N and ® = (6;;) € (U,V). Let u € Ug,,. Then,

,¢) for each fixed i € N. It is deduced that Au = @v as [ — oo in (4.1). Hence,

(6:j) € UP for each fixed i € N implies that (2;;) € Ugﬂ for each fixed i € N. Hence, Au exists. From equality (4.1), it follows
that Au = @v as [ — eo. This proves that A € (Ug,,,V). O

Theorem 4.2. Let A = (A;;) be an infinite matrix. Then, the following statements hold:

1. A € (Uu(Ryr), L) if and only if

Loouh) o
lim Z Aix—== =L exists for each fixed i, j € N, 4.2)
e e Irk) g

u(f) o

n() o]
Ai
k%\k Jr(k) dk Z

43
kJ]\k J()‘]k “43)

hmZ

J

=L lim
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and
n(5)
sup ik
PL L MG
2. A€ (Uw(Ryr),c) if and only if (4.2), (4.3),
Ky o
lim Z 7sz s, )g exists for each j € N,
. .k Jr(k) qi
= uh)o;
lim Ak = /Lk
' ;k=§j\k Jr(k) q Z k;’/\k

3. A€ (Uu(Ryr),co) if and only if (4.2), (4.3),

k

= (50
ﬂvi J ]:

L “1.(K) 4

k=j,jlk

lignz

J

4. A € (L(Ryr),0) if and only if (4.2), (4.3) and

= uh)o;
LL L li"Jr(k) qx

iEN jeK k=j,jlk

sup
N.KeNV

Proof. The proof follows from Lemma 2.8 and Theorem 4.1.

Theorem 4.3. Let A = (A;j) be an infinite matrix and p > 1. Then, the following statements hold:

1. A€ (€y(Ryr),lw) if and only if (4.2),

( )Q’ ! ,
supz Z l,k —~| < oo foreach fixedi € N,
LEN j=1|k=j,jlk I

n() ol
supz Z i
i k= lk J (k) qx

2. A€ (£y(Ry),c) ifand only if (4.2), (4.7), (4.5), (4.8).
3. A€ (Ly(Ry),co) if and only if (4.2), (4.7), (4.8),

= ut)o;
lim Ait—2~ =L =0 for each j € N.
i k:;j\k kJr(k) qk

4. A€ (Ly(Ryr), L) if and only if (4.2), (4.7),

supZZil (g)qu
ik
NeAN " j |ieNk=j,jlk Jr (k) qx

(%) 0]

“.4)

4.5)

(4.6)

4.7

(4.8)

(4.9)
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Proof. The proof follows from Lemma 2.8 and Theorem 4.1.

Theorem 4.4. Let A = (A;j) be an infinite matrix. Then, the following statements hold.:

1. A€ (U(Ryr),lw) if and only if (4.2),

l ) O
sup Z likQ% < oo for each fixed i € N,
Lj |k=j,jlk Jr(k) qx

= )
sup Ai — | <oo.
i,j k:%‘k Jr(k) 13

2. A€ (((Ryr),¢) if and only if (4.2), (4.10), (4.5), (4.11),
3. A (E(Ry),co) if and only if 4.2), (4.10), (4.9), (4.11).
4. A€ (U(Ryr),?) if and only if (4.2), (4.10),

oo k r
5ol

sup
k=j,jlk Jr (k) qi

Joi

Proof. The proof follows from Lemma 2.8 and Theorem 4.1.

Corollary 4.5. Let A = (A;j) be an infinite matrix. Then, the following statements hold:

1. A € (bu(Ryr),bs) if and only if (4.2), (4.3),

sup Z

J

(%)Q’
Z Y T <

=lk= jj\k r

2. A € (Lo(Ryr),cs) if and only if (4.2), (4.3),

u(®) o
hmZ Z 7Lk —= exists for each j € N,
" i=1k=j,jlk Ir(k) q
k kY or
iy Z i <,> nox:

‘ =) [lim
J |l=lk= Jj\k J

=Jj.jlk
3. A€ (les(Ryr),cs0) if and only if (4.2), (4.3)

hm

LY 5 a2

Jl=lk= /J\k I

Corollary 4.6. Let A = (A;j) be an infinite matrix. Then, the following statements hold:

1. A € (Ly(Ryr),bs) if and only if (4.2), (4.7),
q

ZZ Z ('f)Q’

L) |i=lk= Jj\k

i E{k—z lk‘l (k) gk '

(4.10)

.11

4.12)

(4.13)

4.14)
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2. A€ (€y(Ryr),cs) if and only if (4.2), (4.7), (4.13), (4.14).
3. A€ ({,(Ryr),cs0) if and only if (4.2), (4.7), (4.14),
u®) o
Z Z 7le AC )——OforeachjeN (4.15)
I=1 r

k=j,jlk

l

Corollary 4.7. Let A = (A;j) be an infinite matrix. Then, the following statements hold:
1. A€ ({(Ry),bs) if and only if (4.2), (4.10),

e u®)
sup ik = (4.16)
ij l:lk:;j\k Jr(k) qx

2. A€ (L(Ryr),cs) if and only if (4.2), (4.10), (4.13), (4.16).
3. A€ (U(Ryr),cs0) if and only if (4.2), (4.10), (4.15), (4.16).

Theorem 4.8. Let A = (A;j) be an infinite matrix and p > 1. Then, the following statements hold:
(a) A € (Lo, p(Ryr)) = (¢, €p(Ryr)) = (co,¢p(Ryr)) if and only if

] p
sup ), ZZq’ huj| <

KeV JEK 1li

(b) A € (£,,(Ryr)) if and only if

J 14
SPZZq’ 2

i I‘[ i

Proof. The proof is given only for the matrix in (¢, ¢,(Ryr)) since the other case can be proven similarly. Given any infinite
matrix A = (A;j) € (feo,{,(Ryr)), define a new matrix A = (4;;) by

J(l

1]i

means that (Au); = (Ryr(Au)); for all i € N. This implies that Au € £,(Ry+) for u = (u;) € le if and only if Au € ¢, for
u = (uj) € L. Hence, we conclude from Lemma 2.8 that

)4
sup Y| ¥ ¥ 205 1 <

KeAN i |jek i i

Theorem 4.9. Let A = (A;j) be an infinite matrix. Then, the following statements hold:
(a) A € (loo, loo(Ryr)) = (¢,lee(Ryr)) = (0, Leo(Ryr)) if and only if

al: (1),
wE |25
(b) A € (¢,0u(Ryr)) if and only if

VA
sup Y 202,

1i i

Z;J
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Proof. The proof follows with the same way in the proof of Theorem 4.8. O

Theorem 4.10. Let A = (A;) be an infinite matrix. Then, the following statements hold:
(a) A € (Lo, L(Ryr)) = (¢,{(Ryr)) = (co,£(Ryr)) if and only if

wp Y| ¥ ¥ 400,

KeA i |jeK 1i i

(b) A € (¢,4(Ryr)) if and only if

supy. ¥ 47

i ¥

Proof. The proof follows with the same way in the proof of Theorem 4.8. O

Now, we investigate the norm of the bounded linear matrix operators from lw(Ryr), £,(Ryr), £(Ryr) into fe(Ryr) and
£(Ryr). Firstly, we have a lemma which is essential for our investigation.

Lemma 4.11. Given any infinite matrix A = (A;;), the norm of bounded linear operators is defined by

Al () = 1Al 1.0y = SUP Y | 2|
i

1Al 6,6 = suplAsjl
129)

1Al ety = 1Al 2p0) = = sup. )y

> /1,]

KeV " j |ieck
[Alle.0) = sup Y |A].
i
Theorem 4.12. Let A = (A;;) be an infinite matrix.
(a) IfA € B(ém(Rrr)7€m(RYr)) orA € B(ép(Ryr),ew(Ryr)), then
i v i (k
ION e DRIV P
ql k|i i
and .
Qr qu
||A|| Rrr Rr} ||AH [p Ryr RTr Supz ] Z r N
( qi k|i i
(b) IfA S B(K(Rrr),gm(RTr)), then
4
Z j CIkJ -
i Ird) ‘1’ a9

and 1

7 Jo(
Z](]) Jqu r

il a0 i

||AH (U(Ryr ) beo(Ryr)) = S_

(¢)If A € B(lo(Ryr),¢(Ryr)) or A € B({,(Ryr),¢(Ryr)), then

oo

Q; Z aqidr (k
qi k|i ;

sup Z

Ken j

ryh

i€k j\l

and 1

q
(7) @) « qulr (k
Prindy et

=T i %

ANl (e (Ryr) Ry = 1Al 2, Ry, ) U(Ryr)) = SUp Y
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(d) If A € B({(Ryr), (Ry+)), then

Q§ aqit-(k
lkz
) qi k; ;

and

1AW eryr ey SupZ

i

y by ekt
QI k)i

J\l Qi

Proof. Let A = RrrAR{,l. From Theorem 2.3, it is known that the spaces U (Ryr) and U are linearly isomorphic. Hence, we
deduce from the following diagram

U(Ryr) —2> V(Ryr)

R{,.l T i Ryr

U——V
R=Ryr AR}

that [|Allwry)v(Ryr)) = |\/~\H(U7v), where U € {le,{),,} and V € {{,¢}. Thus, the desired results follows from Lemma
4.11. O
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