New Banach Sequence Spaces Defined by Jordan Totient Function

Uskan Devletli ${ }^{1}$, Merve İlkhan Kara ${ }^{2 *}$

Abstract

In this study, a special lower triangular matrix derived by combining Riesz matrix and Jordan totient matrix is used to construct new Banach spaces. $\alpha-, \beta-, \gamma$-duals of the resulting spaces are obtained and some matrix operators are characterized. Keywords: Matrix mappings, Sequence space, $\alpha-, \beta-, \gamma-$ duals 2010 AMS: 46B45, 47B07, 47H08 ${ }^{1}$ Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce, Turkey, ORCID: 0000-0001-9857-9513 ${ }^{2}$ Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce, Turkey, ORCID: 0000-0002-0831-1474 *Corresponding author: merveilkhan@gmail.com Received: 13 June 2023, Accepted: 18 December 2023, Available online: 21 December 2023 How to cite this article: U. Devletli, M. I. Kara, New Banach Sequence Spaces Defined by Jordan Totient Function, Commun. Adv. Math. Sci., 6(4) (2023), 211-225.

1. Introduction and Background

A sequence space is a vector subspace of the space ω of all sequences with real entries. Well known classical sequence spaces are the space of p-absolutely summable sequences ℓ_{p}, the space of bounded sequences ℓ_{∞}, the space of null sequences c_{0}, the space of convergent sequences c. Throughout the study, the notion ℓ is used instead of ℓ_{1}. Also $b s, c s_{0}$ and $c s$ are the most frequently encountered spaces consisting of sequences generating bounded, null and convergent series, respectively. A Banach sequence space having continuous coordinates is called a $B K$ space. Examples of $B K$ spaces are c_{0} and c endowed with the supremum norm $\|u\|_{\infty}=\sup _{i}\left|u_{i}\right|$, where $\mathbb{N}=\{1,2,3, \ldots\}$.

By virtue of the fact that the matrix mappings between $B K$-spaces are continuous, the theory of matrix mappings plays an important role in the study of sequence spaces. Let U and V be two sequence spaces, $\Lambda=\left(\lambda_{i j}\right)$ be an infinite matrix with real entries and Λ_{i} indicate the $i^{\text {th }}$ row of Λ. If each term of the sequence $\Lambda u=\left((\Lambda u)_{i}\right)=\left(\sum_{j} \lambda_{i j} u_{j}\right)$ is convergent, this sequence is called Λ-transform of $u=\left(u_{i}\right)$. Further, if $\Lambda u \in V$ for every sequence $u \in U$, then the matrix Λ defines a matrix mapping from U into V. (U, V) represents the collection of all matrices defined from U into V. Additionally, $B(U, V)$ is the set of all bounded (continuous) linear operators from U to V. A matrix $\Lambda=\left(\lambda_{i j}\right)$ is called a triangle if $\lambda_{i i} \neq 0$ and $\lambda_{i j}=0$ for $j>i$.

The matrix domain U_{Λ} of the matrix Λ in the space U is defined by

$$
U_{\Lambda}=\{u \in \omega: \Lambda u \in U\} .
$$

Since this space is also a sequnce space, the matrix domain has a crucial role to construct new sequence spaces. Moreover given any triangle Λ and a $B K$-space U, the sequence space U_{Λ} gives a new $B K$-space equipped with the norm $\|u\|_{U_{\Lambda}}=\|\Lambda u\|_{U}$. Several authors applied this technique to construct new Banach spaces with the help of special triangles. For relevant literature, the papers [1-17] can be referred.

The spaces

$$
\begin{aligned}
& U^{\alpha}=\left\{t=\left(t_{i}\right) \in \omega: \sum_{i}\left|t_{i} u_{i}\right|<\infty \text { for all } u=\left(u_{i}\right) \in U\right\} \\
& U^{\beta}=\left\{t=\left(t_{i}\right) \in \omega: \sum_{i} t_{i} u_{i} \text { converges for all } u=\left(u_{i}\right) \in U\right\}, \\
& U^{\gamma}=\left\{t=\left(t_{i}\right) \in \omega: \sup _{i}\left|\sum_{i} t_{i} u_{i}\right|<\infty \text { for all } u=\left(u_{i}\right) \in U\right\},
\end{aligned}
$$

are called the $\alpha-, \beta$-, γ-duals of a sequence space U, respectively.
Note that $\frac{1}{p}+\frac{1}{q}=1$ and $\sup _{i}, \sum_{i}, \lim _{i}$ mean $\sup _{i \in \mathbb{N}}, \sum_{i=1}^{\infty}, \lim _{i \rightarrow \infty}$, respectively.
The Euler totient matrix $\Phi=\left(\phi_{i j}\right)$ is defined as in [18]

$$
\phi_{i j}=\left\{\begin{array}{cll}
\frac{\varphi(j)}{i} & , & \text { if } j \mid i \\
0, & \text { if } j \nmid i,
\end{array}\right.
$$

where φ is the Euler totient function. In the recent time, by using this matrix, many new sequence and series spaces are defined and studied in the papers [19-27].

For $i \in \mathbb{N}$ with $i \neq 1, \varphi(i)$ gives the number of positive integers less than i which are coprime with i and $\varphi(1)=1$. Also, the equality

$$
i=\sum_{j \mid i} \varphi(j)
$$

holds for every $i \in \mathbb{N}$. For $i \in \mathbb{N}$ with $i \neq 1$, the Möbius function μ is defined as

$$
\mu(i)=\left\{\begin{array}{cl}
(-1)^{r} & \begin{array}{l}
\text { if } i=p_{1} p_{2} \ldots p_{r}, \text { where } p_{1}, p_{2}, \ldots, p_{r} \text { are } \\
\\
0
\end{array} \\
\text { non-equivalent prime numbers } \\
\text { if } \tilde{p}^{2} \mid i \text { for some prime number } \tilde{p}
\end{array}\right.
$$

and $\mu(1)=1$. The equality

$$
\begin{equation*}
\sum_{j \mid i} \mu(j)=0 \tag{1.1}
\end{equation*}
$$

holds except for $i=1$.
The arithmetic function $J_{r}: \mathbb{N} \rightarrow \mathbb{N}$ with positive integer order r is called the Jordan totient function. This function generalizes the Euler totient function. If $r=1$, it is reduced to the Euler totient function. The value $J_{r}(i)$ gives the number of r-tuples of positive integers all less than or equal to i that form a coprime $(r+1)$-tuples together with i.

The Jordan function J_{r} is multiplicative, i.e. for $n_{1}, n_{2} \in \mathbb{N}$ with the greatest common divisor 1 the relation $J_{r}\left(n_{1} n_{2}\right)=$ $J_{r}\left(n_{1}\right) J_{r}\left(n_{2}\right)$ holds.

Let $p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{k}^{a_{k}}$ be the unique prime decomposition of $i \in \mathbb{N}$, then

$$
J_{r}(i)=i^{r}\left(1-\frac{1}{p_{1}^{r}}\right)\left(1-\frac{1}{p_{2}^{r}}\right) \ldots\left(1-\frac{1}{p_{k}^{r}}\right)
$$

Also, the following equations hold:

$$
\sum_{j \mid i} J_{r}(j)=i^{r}
$$

and

$$
\sum_{j \mid i} \frac{\mu(j)}{j^{r}}=\frac{J_{r}(i)}{i^{r}}
$$

In [28], the authors have defined a new matrix $\Upsilon^{r}=\left(v_{i j}^{r}\right)$ as

$$
v_{i j}^{r}=\left\{\begin{array}{cc}
\frac{J_{r}(j)}{i^{r}} & , \\
0, & \text { if } j \mid i \\
0, & \text { if } j \nmid i
\end{array}\right.
$$

for each $r \in \mathbb{N}$. It is observed that this matrix is regular; that is a limit preserving mapping c into c. By using this matrix they introduce a space consisting of sequences whose Υ^{r}-transforms are in the space ℓ_{p} for $1 \leq p<\infty$. Also, in [29], new Banach spaces are obtained by the aid of matrix domain of this matrix in the spaces ℓ_{∞}, c, c_{0}. In [30], the authors have studied the compact operators on the resulting spaces.

The Riesz matrix $E=\left(e_{i j}\right)$ is defined as

$$
e_{i j}=\left\{\begin{array}{cl}
\frac{q_{j}}{Q_{i}} & , \quad \text { if } 0 \leq j \leq i \\
0 & , \quad \text { if } j>i,
\end{array}\right.
$$

where $\left(q_{j}\right)$ is a sequence of positive numbers and $Q_{i}=\sum_{j=1}^{i} q_{j}$ for all $i \in \mathbb{N}$.
In a recent paper [31], the authors have constructed a new matrix called Riesz Euler totient matrix and study the domain of the matrix in the space ℓ_{p}. The Riesz Euler totient matrix $R_{\Phi}=\left(r_{i j}\right)$ is defined as

$$
r_{i j}=\left\{\begin{array}{cll}
\frac{q_{j} \varphi(j)}{Q_{i}} & , & \text { if } j \mid i \\
0, & \text { if } j \nmid i .
\end{array}\right.
$$

The main purpose of this study is to construct new Banach spaces $\ell_{\infty}\left(R_{\Upsilon^{r}}\right), \ell_{p}\left(R_{\Upsilon^{r}}\right), \ell\left(R_{\Upsilon^{r}}\right)$. The matrix $R_{\Upsilon^{r}}$ is obtained by combining Jordan totient matrix and Riesz matrix. After studying certain properties of the resulting spaces, α-, β - and γ-duals are computed. Finally some matrix mappings from the resulting spaces to the classical spaces are characterized.

2. The Sequence Spaces $\ell_{\infty}\left(R_{\mathrm{Y}^{r}}\right), \ell_{p}\left(R_{\mathrm{Y}^{r}}\right), \ell\left(R_{\mathrm{Y}^{r}}\right)$

In the present section, we introduce the sequence spaces $\ell_{\infty}\left(R_{\Upsilon^{r}}\right)$, $\ell_{p}\left(R_{\Upsilon^{r}}\right)$, $\ell\left(R_{\Upsilon^{r}}\right)$ by using the matrix $R_{\Upsilon^{r}}$, where $1<p<\infty$. Also, we present some theorems which give inclusion relations concerning these spaces.

The matrix $R_{\Upsilon^{r}}=\left(v_{i j}\right)$ is defined as

$$
v_{i j}=\left\{\begin{array}{cll}
\frac{q_{j} J_{r}(j)}{Q_{i}^{r}} & , & \text { if } j \mid i \\
0, & \text { if } j \nmid i,
\end{array}\right.
$$

where $Q_{i}=q_{1}+q_{2}+\ldots+q_{i}$. We call this matrix as Riesz Jordan totient matrix operator.
Observe that in the special cases this matrix is reduced to the some matrices mentioned in the first section. If $r=1$ and $q_{j}=1$ for each j, it gives the Euler totient matrix. If $r=1$, it gives the Riesz Euler totient matrix. If $q_{j}=1$ for each j, it gives the Jorden totient matrix.

The inverse $R_{\Upsilon^{r}}^{-1}=\left(v_{i j}^{-1}\right)$ of the matrix $R_{\Upsilon^{r}}$ is computed as

$$
v_{i j}^{-1}=\left\{\begin{array}{ccc}
\frac{\mu\left(\frac{i}{j}\right)}{J_{r}(i)} \frac{Q_{j}^{r}}{q_{i}} & , & \text { if } j \mid i \\
0 & , & \text { if } j \nmid i
\end{array}\right.
$$

for all $i, j \in \mathbb{N}$.
Now, we introduce the sequence spaces $\ell_{\infty}\left(R_{\Upsilon^{r}}\right), \ell_{p}\left(R_{r^{r}}\right), \ell\left(R_{\Upsilon^{r}}\right)$ by

$$
\begin{aligned}
& \ell_{\infty}\left(R_{\Upsilon^{r}}\right)=\left\{u=\left(u_{i}\right) \in \omega: \sup _{i}\left|\frac{1}{Q_{i}^{r}} \sum_{j \mid i} q_{j} J_{r}(j) u_{j}\right|<\infty\right\}, \\
& \ell_{p}\left(R_{\Upsilon^{r}}\right)=\left\{u=\left(u_{i}\right) \in \omega: \sum_{i}\left|\frac{1}{Q_{i}^{r}} \sum_{j \mid i} q_{j} J_{r}(j) u_{j}\right|^{p}<\infty\right\} \quad(1<p<\infty),
\end{aligned}
$$

$$
\ell\left(R_{\Upsilon^{r}}\right)=\left\{u=\left(u_{i}\right) \in \omega: \sum_{i}\left|\frac{1}{Q_{i}^{r}} \sum_{j \mid i} q_{j} J_{r}(j) u_{j}\right|<\infty\right\} .
$$

Unless otherwise stated, $v=\left(v_{i}\right)$ will be the $R_{\Upsilon^{r}}$-transform of a sequence $u=\left(u_{i}\right)$, that is, $v_{i}=\left(R_{\Upsilon^{r}} u\right)_{i}=\frac{1}{Q_{i}^{r}} \sum_{j \mid i} q_{j} J_{r}(j) u_{j}$ for all $i \in \mathbb{N}$.

Theorem 2.1. The spaces $\ell_{\infty}\left(R_{\Upsilon^{r}}\right), \ell_{p}\left(R_{\Upsilon^{r}}\right), \ell\left(R_{\Upsilon^{r}}\right)$ are Banach spaces with the norms given by

$$
\begin{gathered}
\left.\|u\|_{\ell_{\infty}\left(R_{\mathrm{r}} r\right.}\right) \\
=\sup _{i}\left|\frac{1}{Q_{i}^{r}} \sum_{j \mid i} q_{j} J_{r}(j) u_{j}\right| \\
\|u\|_{\ell_{p}\left(R_{\left.\mathrm{r}^{r}\right)}\right)}=\left(\sum_{i}\left|\frac{1}{Q_{i}^{r}} \sum_{j \mid i} q_{j} J_{r}(j) u_{j}\right|^{p}\right)^{1 / p}(1<p<\infty), \\
\|u\|_{\ell\left(R_{\mathrm{r} r}\right)}=\sum_{i}\left|\frac{1}{Q_{i}^{r}} \sum_{j \mid i} q_{j} J_{r}(j) u_{j}\right|
\end{gathered}
$$

Proof. We omit the proof which is straightforward.
Corollary 2.2. The spaces $\ell_{\infty}\left(R_{\Upsilon^{r}}\right), \ell_{p}\left(R_{\Upsilon^{r}}\right), \ell\left(R_{\Upsilon^{r}}\right)$ are $B K$-spaces, where $1<p<\infty$.
Theorem 2.3. The space $U\left(R_{\Upsilon^{r}}\right)$ is linearly isomorphic to U, where $U \in\left\{\ell_{\infty}, \ell_{p}, \ell\right\}$ and $1<p<\infty$.
Proof. Let f be a mapping defined from $U\left(R_{\Upsilon^{r}}\right)$ to U such that $f(u)=R_{\Upsilon^{r}} u$ for all $u \in U\left(R_{\Upsilon^{r}}\right)$. It is clear that f is linear. Also it is injective since the kernel of f consists of only zero. To prove that f is surjective consider the sequence $u=\left(u_{i}\right)$ whose terms are

$$
u_{i}=\sum_{j \mid i} \frac{\mu\left(\frac{i}{j}\right)}{J_{r}(i)} \frac{Q_{j}^{r}}{q_{i}} v_{j}
$$

for all $i \in \mathbb{N}$, where $v=\left(v_{j}\right)$ is any sequence in U. It follows from (1.1) that

$$
\begin{aligned}
\left(R_{\Upsilon_{r} r} u\right)_{i} & =\frac{1}{Q_{i}^{r}} \sum_{j \mid i} q_{j} J_{r}(j) u_{j}=\frac{1}{Q_{i}^{r}} \sum_{j \mid i} q_{j} J_{r}(j) \sum_{k \mid j} \frac{\mu\left(\frac{j}{k}\right)}{J_{r}(j)} \frac{Q_{k}^{r}}{q_{j}} v_{k} \\
& =\frac{1}{Q_{i}^{r}} \sum_{j \mid i} \sum_{k \mid j} \mu\left(\frac{j}{k}\right) Q_{k}^{r} v_{k}=\frac{1}{Q_{i}^{r}} \sum_{j \mid i}\left(\sum_{k \mid j} \mu(k)\right) Q_{\frac{i}{j}}^{r} v_{\frac{i}{j}}=\frac{1}{Q_{i}^{r}} \mu(1) Q_{i}^{r} v_{i}=v_{i}
\end{aligned}
$$

and so $u=\left(u_{i}\right) \in U\left(R_{\Upsilon^{r}}\right) . f$ preserves norms since the equality $\|u\|_{U\left(R_{\Upsilon^{r}}\right)}=\|f(u)\|_{U}$ holds.
Remark 2.4. The space $\ell_{2}\left(R_{\Upsilon^{r}}\right)$ is an inner product space with the inner product defined as $\langle u, \tilde{u}\rangle_{\ell_{2}\left(R_{\Upsilon^{r}}\right)}=\left\langle R_{\Upsilon^{r} r} u, R_{\Upsilon^{r}} \tilde{u}\right\rangle_{\ell_{2}}$, where $\langle., .\rangle_{\ell_{2}}$ is the inner product on ℓ_{2} which induces $\|.\|_{\ell_{2}}$.
Theorem 2.5. The space $\ell_{p}\left(R_{\Upsilon^{r}}\right)$ is not an inner product space for $p \neq 2$.
Proof. Consider the sequences $u=\left(u_{i}\right)$ and $\tilde{u}=\left(\tilde{u}_{i}\right)$, where

$$
u_{i}=\left\{\begin{array}{cll}
\frac{\mu(i)}{J_{r}(i)} \frac{Q_{1}^{r}}{q_{i}}+\frac{\mu\left(\frac{i}{2}\right)}{J_{r}(i)} \frac{Q_{2}^{r}}{q_{i}} & , & \text { if } i \text { is even } \\
\frac{\mu(i)}{J_{r}(i)} \frac{Q_{1}^{r}}{q_{i}} & , & \text { if } i \text { is odd }
\end{array}\right.
$$

and

$$
\tilde{u}_{i}=\left\{\begin{array}{cll}
\frac{\mu(i)}{J_{r}(i)} \frac{Q_{1}^{r}}{q_{i}}-\frac{\mu\left(\frac{i}{2}\right)}{J_{r}(i)} \frac{Q_{2}^{r}}{q_{i}} & , & \text { if } i \text { is even } \\
\frac{\mu(i)}{J_{r}(i)} \frac{Q_{1}^{r}}{q_{i}} & , & \text { if } i \text { is odd }
\end{array}\right.
$$

for all $i \in \mathbb{N}$. Then, we have $R_{\Upsilon^{r}} u=(1,1,0, \ldots, 0, \ldots) \in \ell_{p}$ and $R_{\Upsilon_{r} r} \tilde{u}=(1,-1,0, \ldots, 0, \ldots) \in \ell_{p}$. Hence, one can easily observe that

$$
\|u+\tilde{u}\|_{\ell_{p}\left(R_{\left.\mathrm{r}^{r}\right)}\right.}^{2}+\|u-\tilde{u}\|_{\ell_{p}\left(R_{\left.\mathrm{r}^{r}\right)}\right.}^{2} \neq 2\left(\|u\|_{\ell_{p}\left(R_{\left.\mathrm{r}^{r}\right)}\right.}^{2}+\|\tilde{u}\|_{\ell_{p}\left(R_{\left.\mathrm{r}^{r}\right)}\right)}^{2}\right) .
$$

Theorem 2.6. The inclusion $\ell_{p}\left(R_{\Upsilon^{r}}\right) \subset \ell_{q}\left(R_{\Upsilon^{r}}\right)$ strictly holds for $1 \leq p<q<\infty$.
Proof. It is clear that the inclusion $\ell_{p}\left(R_{\Upsilon^{r}}\right) \subset \ell_{q}\left(R_{\Upsilon^{r}}\right)$ holds since $\ell_{p} \subset \ell_{q}$ for $1 \leq p<q<\infty$. Also, $\ell_{p} \subset \ell_{q}$ is strict and so there exists a sequence $z=\left(z_{i}\right)$ in $\ell_{q} \backslash \ell_{p}$. By defining a sequence $u=\left(u_{i}\right)$ as

$$
u_{i}=\sum_{j \mid i} \frac{\mu\left(\frac{i}{j}\right)}{J_{r}(i)} \frac{Q_{j}^{r}}{q_{i}} z_{j}
$$

for all $i \in \mathbb{N}$, we conclude that $u \in \ell_{q}\left(R_{\Upsilon^{r}}\right) \backslash \ell_{p}\left(R_{\Upsilon^{r}}\right)$. Hence, the desired inclusion is strict.
Theorem 2.7. The inclusion $\ell_{p}\left(R_{\Upsilon^{r}}\right) \subset \ell_{\infty}\left(R_{\Upsilon^{r}}\right)$ strictly holds for $1 \leq p<\infty$.
Proof. The inclusion is obvious since $\ell_{p} \subset \ell_{\infty}$ holds for $1 \leq p<\infty$. Let $u=\left(u_{i}\right)$ be a sequence such that $u_{i}=\sum_{j \mid i}(-1)^{j} \frac{\mu\left(\frac{i}{j}\right)}{J_{r}(i)} \frac{Q_{j}^{r}}{q_{i}}$ for all $i \in \mathbb{N}$. We obtain that $R_{\Upsilon_{r} r} u=\left(\frac{1}{Q_{i}^{r}} \sum_{j \mid i} q_{j} J_{r}(j) \sum_{k \mid j}(-1)^{k} \frac{\mu\left(\frac{j}{k}\right)}{J_{r}(j)} \frac{Q_{k}^{r}}{q_{j}}\right)=\left((-1)^{i}\right) \in \ell_{\infty} \backslash \ell_{p}$ which implies that $u \in \ell_{\infty}\left(R_{\Upsilon^{r}}\right) \backslash \ell_{p}\left(R_{\Upsilon^{r}}\right)$ for $1 \leq p<\infty$.

Lemma 2.8. [32] The necessary and sufficient conditions for $\Lambda=\left(\lambda_{i j}\right) \in(U, V)$ with $U, V \in\left\{\ell_{\infty}, c, c_{0}, \ell_{p}, \ell\right\}$ and $p>1$ can be read from Table 1. Here and in what follows, \mathscr{N} denotes the family of all finite subsets of \mathbb{N}.

To From	ℓ_{∞}	c	c_{0}	ℓ_{p}	ℓ
ℓ_{∞}	$\mathbf{1 .}$	4.	9.	14.	16.
c	$\mathbf{1 .}$	5.	10.	14.	16.
c_{0}	$\mathbf{1 .}$	$\mathbf{6 .}$	11.	$\mathbf{1 4 .}$	$\mathbf{1 6 .}$
ℓ_{p}	$\mathbf{2 .}$	7.	12.	-	$\mathbf{1 7 .}$
ℓ	3.	8.	13.	$\mathbf{1 5}$	$\mathbf{1 8 .}$

Table 1. The characterization of the class (U, V), where $U, V \in\left\{\ell_{\infty}, c, c_{0}, \ell_{p}, \ell\right\}$.
1.

$$
\begin{equation*}
\sup _{i} \sum_{j}\left|\lambda_{i j}\right|<\infty \tag{2.1}
\end{equation*}
$$

2.

$$
\begin{equation*}
\sup _{i} \sum_{j}\left|\lambda_{i j}\right|^{q}<\infty \tag{2.2}
\end{equation*}
$$

3.

$$
\begin{equation*}
\sup _{i, j}\left|\lambda_{i j}\right|<\infty \tag{2.3}
\end{equation*}
$$

4.

$$
\begin{equation*}
\lim _{i} \lambda_{i j} \text { exists for each } j \in \mathbb{N} \tag{2.4}
\end{equation*}
$$

$$
\lim _{i} \sum_{j}\left|\lambda_{i j}\right|=\sum_{j}\left|\lim _{i} \lambda_{i j}\right|
$$

5. (2.1), (2.4) and

$$
\lim _{i} \sum_{j} \lambda_{i j} \text { exists. }
$$

6. (2.1) and (2.4)
7. (2.2) and (2.4)
8. (2.3) and (2.4)
9.

$$
\lim _{i} \sum_{j}\left|\lambda_{i j}\right|=0
$$

10. (2.1) and

$$
\begin{aligned}
& \lim _{i} \lambda_{i j}=0 \text { for each } j \in \mathbb{N} \\
& \lim _{i} \sum_{j} \lambda_{i j}=0
\end{aligned}
$$

11. (2.1) and (2.5)
12. (2.2) and (2.5)
13. (2.3) and (2.5)
14.

$$
\sup _{K \in \mathscr{N}} \sum_{i}\left|\sum_{j \in K} \lambda_{i j}\right|^{p}<\infty
$$

15.

$$
\sup _{j} \sum_{i}\left|\lambda_{i j}\right|^{p}<\infty
$$

16.

$$
\sup _{N, K \in \mathscr{N}}\left|\sum_{i \in N} \sum_{j \in K} \lambda_{i j}\right|<\infty \Leftrightarrow \sup _{N \in \mathscr{N}} \sum_{j}\left|\sum_{i \in N} \lambda_{i j}\right|<\infty \Leftrightarrow \sup _{K \in \mathscr{N}} \sum_{i}\left|\sum_{j \in K} \lambda_{i j}\right|<\infty
$$

17.

$$
\sup _{N \in \mathscr{N}} \sum_{j}\left|\sum_{i \in N} \lambda_{i j}\right|^{q}<\infty
$$

18.

$$
\sup _{j} \sum_{i}\left|\lambda_{i j}\right|<\infty
$$

3. The α-, β - and γ-duals

In this section, we determine the α-, β - and γ-duals of the sequence spaces $\ell_{\infty}\left(R_{\Upsilon^{r}}\right), \ell_{p}\left(R_{\Upsilon^{r}}\right), \ell\left(R_{\Upsilon^{r}}\right)$, where $1<p<\infty$. In the following theorem, we determine the α-duals.

Theorem 3.1. The α-duals of the spaces $\ell_{\infty}\left(R_{\Upsilon^{r}}\right), \ell_{p}\left(R_{\Upsilon^{r}}\right), \ell\left(R_{\Upsilon^{r}}\right)$ are as follows:

$$
\begin{aligned}
\left(\ell_{\infty}\left(R_{\Upsilon^{r}}\right)\right)^{\alpha} & =\left\{t=\left(t_{i}\right) \in \omega: \sup _{N \in \mathscr{N}} \sum_{j}\left|\sum_{i \in N, j \mid i} \frac{\mu\left(\frac{i}{j}\right)}{J_{r}(i)} \frac{Q_{j}^{r}}{q_{i}} t_{i}\right|<\infty\right\}, \\
\left(\ell_{p}\left(R_{\Upsilon^{r}}\right)\right)^{\alpha} & =\left\{t=\left(t_{i}\right) \in \omega: \sup _{N \in \mathscr{N}} \sum_{j}\left|\sum_{i \in N, j \mid i} \frac{\mu\left(\frac{i}{j}\right)}{J_{r}(i)} \frac{Q_{j}^{r}}{q_{i}} t_{i}\right|^{q}<\infty\right\}, \\
\left(\ell\left(R_{\Upsilon^{r} r}\right)\right)^{\alpha} & =\left\{t=\left(t_{i}\right) \in \omega: \sup _{j} \sum_{i \in \mathbb{N}, j \mid i}\left|\frac{\mu\left(\frac{i}{j}\right)}{J_{r}(i)} \frac{Q_{j}^{r}}{q_{i}} t_{i}\right|<\infty\right\}
\end{aligned}
$$

Proof. Consider the matrix $C=\left(c_{i j}\right)$ defined by

$$
c_{i j}=\left\{\begin{array}{ccc}
\frac{\mu\left(\frac{i}{j}\right)}{J_{r}(i)} \frac{Q_{j}^{r}}{q_{i}} t_{i} & , \quad j \mid i \\
0 & , & j \nmid i
\end{array}\right.
$$

for any sequence $t=\left(t_{i}\right) \in \omega$. Let $U \in\left\{\ell_{\infty}, \ell_{p}, \ell\right\}$. Given any $u=\left(u_{i}\right) \in U\left(R_{r_{r}}\right)$, we have $t_{i} u_{i}=(C v)_{i}$ for all $i \in \mathbb{N}$. This implies that $t u \in \ell$ with $u \in U\left(R_{\Upsilon^{r}}\right)$ if and only if $C v \in \ell$ with $v \in U$. It follows that $t \in\left(U\left(R_{\Upsilon^{r}}\right)\right)^{\alpha}$ if and only if $C \in(U, \ell)$ which completes the proof in view of Lemma 2.8.
Lemma 3.2. [33, Theorem 3.1] Let $B=\left(b_{i j}\right)$ be defined via a sequence $t=\left(t_{k}\right) \in \omega$ and the inverse matrix $\tilde{\Delta}=\left(\tilde{\delta}_{i j}\right)$ of the triangle matrix $\Delta=\left(\delta_{i j}\right)$ by

$$
b_{i j}=\sum_{k=j}^{i} t_{k} \tilde{\delta}_{k j}
$$

for all $i, j \in \mathbb{N}$. Then,

$$
U_{\Delta}^{\beta}=\left\{t=\left(t_{k}\right) \in \omega: B \in(U, c)\right\}
$$

and

$$
U_{\Delta}^{\gamma}=\left\{t=\left(t_{k}\right) \in \omega: B \in\left(U, \ell_{\infty}\right)\right\}
$$

Consequently, we have the following theorem.
Theorem 3.3. Let define the following sets:

$$
\begin{aligned}
& A_{1}=\left\{t=\left(t_{k}\right) \in \omega: \lim _{i} \sum_{k=j, j \mid k}^{i} \frac{\mu\left(\frac{k}{j}\right)}{J_{r}(k)} \frac{Q_{j}^{r}}{q_{k}} t_{k} \text { exists for each } j \in \mathbb{N}\right\}, \\
& A_{2}=\left\{t=\left(t_{k}\right) \in \omega: \sup _{i} \sum_{j}\left|\sum_{k=j, j \mid k}^{i} \frac{\mu\left(\frac{k}{j}\right)}{J_{r}(k)} \frac{Q_{j}^{r}}{q_{k}} t_{k}\right|^{q}<\infty\right\}, \\
& A_{3}=\left\{t=\left(t_{k}\right) \in \omega: \lim _{i} \sum_{j}\left|\sum_{k=j, j \mid k}^{i} \frac{\mu\left(\frac{k}{j}\right)}{J_{r}(k)} \frac{Q_{j}^{r}}{q_{k}} t_{k}\right|=\sum_{j}\left|\sum_{k=j, j \mid k}^{\infty} \frac{\mu\left(\frac{k}{j}\right)}{J_{r}(k)} \frac{Q_{j}^{r}}{q_{k}} t_{k}\right|\right\}, \\
& A_{4}=\left\{t=\left(t_{k}\right) \in \omega: \sup _{i, j}\left|\sum_{k=j, j \mid k}^{i} \frac{\mu\left(\frac{k}{j}\right)}{J_{r}(k)} \frac{Q_{j}^{r}}{q_{k}} t_{k}\right|<\infty\right\} .
\end{aligned}
$$

The β - and γ-duals of the spaces $\ell_{\infty}\left(R_{\Upsilon^{r}}\right), \ell_{p}\left(R_{\Upsilon^{r}}\right), \ell\left(R_{\Upsilon^{r}}\right)$ are as follows:

$$
\begin{aligned}
& \left(\ell_{\infty}\left(R_{\Upsilon^{r}}\right)\right)^{\beta}=A_{1} \cap A_{3},\left(\ell_{p}\left(R_{\Upsilon^{r}}\right)\right)^{\beta}=A_{1} \cap A_{2},\left(\ell\left(R_{\Upsilon^{r}}\right)\right)^{\beta}=A_{1} \cap A_{4} \\
& \left(\ell_{\infty}\left(R_{\Upsilon^{r}}\right)\right)^{\gamma}=A_{2} \text { with } q=1,\left(\ell_{p}\left(R_{\Upsilon^{r}}\right)\right)^{\gamma}=A_{2},\left(\ell\left(R_{\Upsilon^{r}}\right)\right)^{\gamma}=A_{4} .
\end{aligned}
$$

Proof. Let $t=\left(t_{k}\right) \in \omega, U \in\left\{\ell_{\infty}, \ell_{p}, \ell\right\}$ and $B=\left(b_{i j}\right)$ be an infinite matrix with terms

$$
b_{i j}=\left\{\begin{array}{cl}
\sum_{k=j, j \mid k}^{i} t_{k} \frac{\mu\left(\frac{k}{j}\right)}{J_{r^{\prime}(k)} \frac{Q_{j}^{r}}{q_{k}}} & , \quad \text { if } 1 \leq j \leq i \\
0 & , \quad \text { if } j>i
\end{array}\right.
$$

Hence it follows that

$$
\sum_{j=1}^{i} t_{j} u_{j}=\sum_{j=1}^{j} t_{j}\left(\sum_{k \mid j} \frac{\mu\left(\frac{j}{k}\right)}{J_{r}(j)} \frac{Q_{k}^{r}}{q_{j}} v_{k}\right)=\sum_{j=1}^{i}\left(\sum_{k=j, j \mid k}^{i} t_{k} \frac{\mu\left(\frac{k}{j}\right)}{J_{r}(k)} \frac{Q_{j}^{r}}{q_{k}}\right) v_{j}=(B v)_{i}
$$

for any $u=\left(u_{i}\right) \in U\left(R_{\Upsilon^{r}}\right)$. This equality yields that $t u \in c s$ for $u \in U\left(R_{\Upsilon^{r}}\right)$ if and only if $B v \in c$ for $v \in U$. That is, $t \in\left(U\left(R_{\Upsilon^{r}}\right)\right)^{\beta}$ if and only if $B \in(U, c)$. Hence, by Lemma 2.8, it is concluded that $\left(\ell_{\infty}\left(R_{\Upsilon^{r}}\right)\right)^{\beta}=A_{1} \cap A_{3},\left(\ell_{p}\left(R_{\Upsilon^{r}}\right)\right)^{\beta}=A_{1} \cap A_{2}$, $\left(\ell\left(R_{\Upsilon^{r}}\right)\right)^{\beta}=A_{1} \cap A_{4}$.

This equality also yields that $t u \in b s$ for $u \in U\left(R_{\Upsilon^{r}}\right)$ if and only if $B v \in \ell_{\infty}$ for $v \in U$. That is, $t \in\left(U\left(R_{\Upsilon^{r}}\right)\right)^{\gamma}$ if and only if $B \in\left(U, \ell_{\infty}\right)$. Hence, by Lemma 2.8, it is concluded that $\left(\ell_{\infty}\left(R_{\Upsilon^{r}}\right)\right)^{\gamma}=A_{2}$ with $q=1,\left(\ell_{p}\left(R_{\Upsilon^{r}}\right)\right)^{\gamma}=A_{2},\left(\ell\left(R_{\Upsilon^{r}}\right)\right)^{\gamma}=A_{4}$.

4. Certain Matrix Transformations

In this section, characterization of certain classes of matrices is given. The following result is obtained from Theorem 4.1 in [34] and this result is required to characterize the classes of matrices from $\ell_{\infty}\left(R_{\Upsilon^{r}}\right), \ell_{p}\left(R_{\Upsilon^{r}}\right), \ell\left(R_{\Upsilon^{r}}\right)$ into $\ell_{\infty}, c, c_{0}, \ell$.

Theorem 4.1. Let $1<p<\infty, U \in\left\{\ell_{\infty}, \ell_{p}, \ell\right\}$ and $V \subset \omega$. Then, $\Lambda=\left(\lambda_{i j}\right) \in\left(U_{R_{\mathrm{r}_{r}}}, V\right)$ if and only if $\Theta^{(i)}=\left(\theta_{l j}^{(i)}\right) \in$ (U, c) for each fixed $i \in \mathbb{N}$ and $\Theta=\left(\theta_{i j}\right) \in(U, V)$, where

$$
\theta_{l j}^{(i)}=\left\{\begin{array}{cll}
\sum_{k=j, j \mid k}^{l} \lambda_{i k} \frac{\mu\left(\frac{k}{j}\right)}{J_{r}(k)} \frac{Q_{j}^{r}}{q_{k}} & , \quad 1 \leq j \leq l \\
0 & , \quad j>l
\end{array}\right.
$$

and

$$
\theta_{i j}=\sum_{k=j, j \mid k}^{\infty} \lambda_{i k} \frac{\mu\left(\frac{k}{j}\right)}{J_{r}(k)} \frac{Q_{j}^{r}}{q_{k}} .
$$

Proof. Let $\Lambda \in\left(U_{R_{\mathrm{Y}} r}, V\right)$ and $u \in U_{R_{\mathrm{r}} r}$. Then, the equality

$$
\begin{align*}
\sum_{j=1}^{l} \lambda_{i j} u_{j} & =\sum_{j=1}^{l} \lambda_{i j}\left(\sum_{k \mid j} \frac{\mu\left(\frac{j}{k}\right)}{J_{r}(j)} \frac{Q_{k}^{r}}{q_{j}} v_{k}\right) \tag{4.1}\\
& =\sum_{j=1}^{l}\left(\sum_{k=j, j \mid k}^{l} \lambda_{i k} \frac{\mu\left(\frac{k}{j}\right)}{J_{r}(k)} \frac{Q_{j}^{r}}{q_{k}}\right) v_{j}=\sum_{j=1}^{l} \theta_{l j}^{(i)} v_{j}
\end{align*}
$$

holds. Since Λu exists, it follows that $\Theta^{(i)} \in(U, c)$ for each fixed $i \in \mathbb{N}$. It is deduced that $\Lambda u=\Theta v$ as $l \rightarrow \infty$ in (4.1). Hence, $\Lambda u \in V$ implies that $\Theta v \in V$; that is $\Theta \in(U, V)$.

Conversely, suppose that $\Theta^{(i)}=\left(\theta_{l j}^{(i)}\right) \in(U, c)$ for each fixed $i \in \mathbb{N}$ and $\Theta=\left(\theta_{i j}\right) \in(U, V)$. Let $u \in U_{R_{\mathrm{r} r}}$. Then, $\left(\theta_{i j}\right) \in U^{\beta}$ for each fixed $i \in \mathbb{N}$ implies that $\left(\lambda_{i j}\right) \in U_{R_{r} r}^{\beta}$ for each fixed $i \in \mathbb{N}$. Hence, Λu exists. From equality (4.1), it follows that $\Lambda u=\Theta v$ as $l \rightarrow \infty$. This proves that $\Lambda \in\left(U_{R^{r} r}, V\right)$.

Theorem 4.2. Let $\Lambda=\left(\lambda_{i j}\right)$ be an infinite matrix. Then, the following statements hold:

1. $\Lambda \in\left(\ell_{\infty}\left(R_{r^{r}}\right), \ell_{\infty}\right)$ if and only if

$$
\begin{align*}
& \lim _{l \rightarrow \infty} \sum_{k=j, j \mid k}^{l} \lambda_{i k} \frac{\mu\left(\frac{k}{j}\right)}{J_{r}(k)} \frac{Q_{j}^{r}}{q_{k}} \text { exists for each fixed } i, j \in \mathbb{N}, \tag{4.2}\\
& \lim _{l} \sum_{j}\left|\sum_{k=j, j \mid k}^{l} \lambda_{i k} \frac{\mu\left(\frac{k}{j}\right)}{J_{r}(k)} \frac{Q_{j}^{r}}{q_{k}}\right|=\sum_{j}\left|\lim _{l} \sum_{k=j, j \mid k}^{l} \lambda_{i k} \frac{\mu\left(\frac{k}{j}\right)}{J_{r}(k)} \frac{Q_{j}^{r}}{q_{k}}\right| \tag{4.3}
\end{align*}
$$

and

$$
\begin{equation*}
\sup _{i} \sum_{j}\left|\sum_{k=j, j \mid k}^{\infty} \lambda_{i k} \frac{\mu\left(\frac{k}{j}\right)}{J_{r}(k)} \frac{Q_{j}^{r}}{q_{k}}\right|<\infty \tag{4.4}
\end{equation*}
$$

2. $\Lambda \in\left(\ell_{\infty}\left(R_{r^{r}}\right), c\right)$ if and only if (4.2), (4.3),

$$
\begin{align*}
& \lim _{i} \sum_{k=j, j \mid k}^{\infty} \lambda_{i k} \frac{\mu\left(\frac{k}{j}\right)}{J_{r}(k)} \frac{Q_{j}^{r}}{q_{k}} \text { exists for each } j \in \mathbb{N}, \tag{4.5}\\
& \lim _{i} \sum_{j}\left|\sum_{k=j, j \mid k}^{\infty} \lambda_{i k} \frac{\mu\left(\frac{k}{j}\right)}{J_{r}(k)} \frac{Q_{j}^{r}}{q_{k}}\right|=\sum_{j}\left|\lim _{i} \sum_{k=j, j \mid k}^{\infty} \lambda_{i k} \frac{\mu\left(\frac{k}{j}\right)}{J_{r}(k)} \frac{Q_{j}^{r}}{q_{k}}\right| .
\end{align*}
$$

3. $\Lambda \in\left(\ell_{\infty}\left(R_{\Upsilon^{r}}\right), c_{0}\right)$ if and only if (4.2), (4.3),

$$
\lim _{i} \sum_{j}\left|\sum_{k=j, j \mid k}^{\infty} \lambda_{i k} \frac{\mu\left(\frac{k}{j}\right)}{J_{r}(k)} \frac{Q_{j}^{r}}{q_{k}}\right|=0 .
$$

4. $\Lambda \in\left(\ell_{\infty}\left(R_{\Upsilon^{r}}\right), \ell\right)$ if and only if (4.2), (4.3) and

$$
\begin{equation*}
\sup _{N, K \in \mathscr{N}}\left|\sum_{i \in N} \sum_{j \in K} \sum_{k=j, j \mid k}^{\infty} \lambda_{i k} \frac{\mu\left(\frac{k}{j}\right)}{J_{r}(k)} \frac{Q_{j}^{r}}{q_{k}}\right|<\infty \tag{4.6}
\end{equation*}
$$

Proof. The proof follows from Lemma 2.8 and Theorem 4.1.
Theorem 4.3. Let $\Lambda=\left(\lambda_{i j}\right)$ be an infinite matrix and $p>1$. Then, the following statements hold:

1. $\Lambda \in\left(\ell_{p}\left(R_{\Upsilon^{r}}\right), \ell_{\infty}\right)$ if and only if (4.2),

$$
\begin{align*}
& \sup _{l \in \mathbb{N}} \sum_{j=1}^{l}\left|\sum_{k=j, j \mid k}^{l} \lambda_{i k} \frac{\mu\left(\frac{k}{j}\right)}{J_{r}(k)} \frac{Q_{j}^{r}}{q_{k}}\right|^{q}<\infty \text { for each fixed } i \in \mathbb{N}, \tag{4.7}\\
& \sup _{i} \sum_{j}\left|\sum_{k=j, j \mid k}^{\infty} \lambda_{i k} \frac{\mu\left(\frac{k}{j}\right)}{J_{r}(k)} \frac{Q_{j}^{r}}{q_{k}}\right|^{q}<\infty . \tag{4.8}
\end{align*}
$$

2. $\Lambda \in\left(\ell_{p}\left(R_{r^{r}}\right), c\right)$ if and only if (4.2), (4.7), (4.5), (4.8).
3. $\Lambda \in\left(\ell_{p}\left(R_{\Upsilon^{r}}\right), c_{0}\right)$ if and only if (4.2), (4.7), (4.8),

$$
\begin{equation*}
\lim _{i} \sum_{k=j, j \mid k}^{\infty} \lambda_{i k} \frac{\mu\left(\frac{k}{j}\right)}{J_{r}(k)} \frac{Q_{j}^{r}}{q_{k}}=0 \text { for each } j \in \mathbb{N} . \tag{4.9}
\end{equation*}
$$

4. $\Lambda \in\left(\ell_{p}\left(R_{r^{r}}\right), \ell\right)$ if and only if (4.2), (4.7),

$$
\sup _{N \in \mathscr{N}} \sum_{j}\left|\sum_{i \in N} \sum_{k=j, j \mid k}^{\infty} \lambda_{i k} \frac{\mu\left(\frac{k}{j}\right)}{J_{r}(k)} \frac{Q_{j}^{r}}{q_{k}}\right|^{q}<\infty .
$$

Proof. The proof follows from Lemma 2.8 and Theorem 4.1.
Theorem 4.4. Let $\Lambda=\left(\lambda_{i j}\right)$ be an infinite matrix. Then, the following statements hold:

1. $\Lambda \in\left(\ell\left(R_{\Upsilon^{r}}\right), \ell_{\infty}\right)$ if and only if (4.2),

$$
\begin{align*}
& \sup _{l, j}\left|\sum_{k=j, j \mid k}^{l} \lambda_{i k} \frac{\mu\left(\frac{k}{j}\right)}{J_{r}(k)} \frac{Q_{j}^{r}}{q_{k}}\right|<\infty \text { for each fixed } i \in \mathbb{N}, \tag{4.10}\\
& \sup _{i, j}\left|\sum_{k=j, j \mid k}^{\infty} \lambda_{i k} \frac{\mu\left(\frac{k}{j}\right)}{J_{r}(k)} \frac{Q_{j}^{r}}{q_{k}}\right|<\infty . \tag{4.11}
\end{align*}
$$

2. $\Lambda \in\left(\ell\left(R_{\Upsilon^{r}}\right), c\right)$ if and only if (4.2), (4.10), (4.5), (4.11).
3. $\Lambda \in\left(\ell\left(R_{\Upsilon^{r}}\right), c_{0}\right)$ if and only if(4.2), (4.10), (4.9), (4.11).
4. $\Lambda \in\left(\ell\left(R_{\Upsilon^{r}}\right), \ell\right)$ if and only if (4.2), (4.10),

$$
\sup _{j} \sum_{i}\left|\sum_{k=j, j \mid k}^{\infty} \lambda_{i k} \frac{\mu\left(\frac{k}{j}\right)}{J_{r}(k)} \frac{Q_{j}^{r}}{q_{k}}\right|<\infty
$$

Proof. The proof follows from Lemma 2.8 and Theorem 4.1.
Corollary 4.5. Let $\Lambda=\left(\lambda_{i j}\right)$ be an infinite matrix. Then, the following statements hold:

1. $\Lambda \in\left(\ell_{\infty}\left(R_{\Upsilon^{r}}\right), b s\right)$ if and only if (4.2), (4.3),

$$
\begin{equation*}
\sup _{i} \sum_{j}\left|\sum_{l=1}^{i} \sum_{k=j, j \mid k}^{\infty} \lambda_{l k} \frac{\mu\left(\frac{k}{j}\right)}{J_{r}(k)} \frac{Q_{j}^{r}}{q_{k}}\right|<\infty \tag{4.12}
\end{equation*}
$$

2. $\Lambda \in\left(\ell_{\infty}\left(R_{\Upsilon^{r}}\right), c s\right)$ if and only if (4.2), (4.3),

$$
\begin{align*}
& \lim _{i} \sum_{l=1}^{i} \sum_{k=j, j \mid k}^{\infty} \lambda_{l k} \frac{\mu\left(\frac{k}{j}\right)}{J_{r}(k)} \frac{Q_{j}^{r}}{q_{k}} \text { exists for each } j \in \mathbb{N}, \tag{4.13}\\
& \lim _{i} \sum_{j}\left|\sum_{l=1}^{i} \sum_{k=j, j \mid k}^{\infty} \lambda_{l k} \frac{\mu\left(\frac{k}{j}\right)}{J_{r}(k)} \frac{Q_{j}^{r}}{q_{k}}\right|=\sum_{j}\left|\lim _{i} \sum_{l=1}^{i} \sum_{k=j, j \mid k}^{\infty} \lambda_{l k} \frac{\mu\left(\frac{k}{j}\right)}{J_{r}(k)} \frac{Q_{j}^{r}}{q_{k}}\right| .
\end{align*}
$$

3. $\Lambda \in\left(\ell_{\infty}\left(R_{\Upsilon^{r}}\right), c s_{0}\right)$ if and only if (4.2), (4.3)

$$
\lim _{i} \sum_{j}\left|\sum_{l=1}^{i} \sum_{k=j, j \mid k}^{\infty} \lambda_{l k} \frac{\mu\left(\frac{k}{j}\right)}{J_{r}(k)} \frac{Q_{j}^{r}}{q_{k}}\right|=0 .
$$

Corollary 4.6. Let $\Lambda=\left(\lambda_{i j}\right)$ be an infinite matrix. Then, the following statements hold:

1. $\Lambda \in\left(\ell_{p}\left(R_{\Upsilon^{r}}\right), b s\right)$ if and only if (4.2), (4.7),

$$
\begin{equation*}
\sup _{i} \sum_{j}\left|\sum_{l=1}^{i} \sum_{k=j, j \mid k}^{\infty} \lambda_{i k} \frac{\mu\left(\frac{k}{j}\right)}{J_{r}(k)} \frac{Q_{j}^{r}}{q_{k}}\right|^{q}<\infty . \tag{4.14}
\end{equation*}
$$

2. $\Lambda \in\left(\ell_{p}\left(R_{\Upsilon^{r}}\right), c s\right)$ if and only if (4.2), (4.7), (4.13), (4.14).
3. $\Lambda \in\left(\ell_{p}\left(R_{\Upsilon^{r}}\right), c s_{0}\right)$ if and only if (4.2), (4.7), (4.14),

$$
\begin{equation*}
\lim _{i} \sum_{l=1}^{i} \sum_{k=j, j \mid k}^{\infty} \lambda_{l k} \frac{\mu\left(\frac{k}{j}\right)}{J_{r}(k)} \frac{Q_{j}^{r}}{q_{k}}=0 \text { for each } j \in \mathbb{N} . \tag{4.15}
\end{equation*}
$$

Corollary 4.7. Let $\Lambda=\left(\lambda_{i j}\right)$ be an infinite matrix. Then, the following statements hold:

1. $\Lambda \in\left(\ell\left(R_{\Upsilon^{r}}\right)\right.$, bs $)$ if and only if (4.2), (4.10),

$$
\begin{equation*}
\sup _{i, j}\left|\sum_{l=1}^{i} \sum_{k=j, j \mid k}^{\infty} \lambda_{i k} \frac{\mu\left(\frac{k}{j}\right)}{J_{r}(k)} \frac{Q_{j}^{r}}{q_{k}}\right|<\infty . \tag{4.16}
\end{equation*}
$$

2. $\Lambda \in\left(\ell\left(R_{r^{r}}\right), c s\right)$ if and only if (4.2), (4.10), (4.13), (4.16).
3. $\Lambda \in\left(\ell\left(R_{\Upsilon^{r}}\right), c s_{0}\right)$ if and only if (4.2), (4.10), (4.15), (4.16).

Theorem 4.8. Let $\Lambda=\left(\lambda_{i j}\right)$ be an infinite matrix and $p>1$. Then, the following statements hold:
(a) $\Lambda \in\left(\ell_{\infty}, \ell_{p}\left(R_{\Upsilon^{r}}\right)\right)=\left(c, \ell_{p}\left(R_{\Upsilon^{r}}\right)\right)=\left(c_{0}, \ell_{p}\left(R_{\Upsilon^{r}}\right)\right)$ if and only if

$$
\sup _{K \in \mathscr{N}} \sum_{i}\left|\sum_{j \in K} \sum_{l \mid i} \frac{q_{l} J_{r}(l)}{Q_{i}^{r}} \lambda_{l j}\right|^{p}<\infty .
$$

(b) $\Lambda \in\left(\ell, \ell_{p}\left(R_{\Upsilon^{r}}\right)\right)$ if and only if

$$
\sup _{j} \sum_{i}\left|\sum_{l \mid i} \frac{q_{l} J_{r}(l)}{Q_{i}^{r}} \lambda_{l j}\right|^{p}<\infty .
$$

Proof. The proof is given only for the matrix in $\left(\ell_{\infty}, \ell_{p}\left(R_{r^{r}}\right)\right)$ since the other case can be proven similarly. Given any infinite $\operatorname{matrix} \Lambda=\left(\lambda_{i j}\right) \in\left(\ell_{\infty}, \ell_{p}\left(R_{\Upsilon^{r}}\right)\right)$, define a new matrix $\hat{\Lambda}=\left(\hat{\lambda}_{i j}\right)$ by

$$
\hat{\lambda}_{i j}=\sum_{l \mid i} \frac{q_{l} J_{r}(l)}{Q_{i}^{r}} \lambda_{l j}
$$

for all $i, j \in \mathbb{N}$. Then, for any $u=\left(u_{j}\right) \in \ell_{\infty}$, the equality

$$
\sum_{j} \hat{\lambda}_{i j} u_{j}=\sum_{l \mid i} \frac{q_{l} J_{r}(l)}{Q_{i}^{r}} \sum_{j} \lambda_{l j} u_{j}
$$

means that $(\hat{\Lambda} u)_{i}=\left(R_{\Upsilon^{r}}(\Lambda u)\right)_{i}$ for all $i \in \mathbb{N}$. This implies that $\Lambda u \in \ell_{p}\left(R_{\Upsilon^{r}}\right)$ for $u=\left(u_{j}\right) \in \ell_{\infty}$ if and only if $\hat{\Lambda} u \in \ell_{p}$ for $u=\left(u_{j}\right) \in \ell_{\infty}$. Hence, we conclude from Lemma 2.8 that

$$
\sup _{K \in \mathscr{N}} \sum_{i}\left|\sum_{j \in K} \sum_{l \mid i} \frac{q_{l} J_{r}(l)}{Q_{i}^{r}} \lambda_{l j}\right|^{p}<\infty .
$$

Theorem 4.9. Let $\Lambda=\left(\lambda_{i j}\right)$ be an infinite matrix. Then, the following statements hold:
(a) $\Lambda \in\left(\ell_{\infty}, \ell_{\infty}\left(R_{\Upsilon^{r}}\right)\right)=\left(c, \ell_{\infty}\left(R_{\Upsilon^{r}}\right)\right)=\left(c_{0}, \ell_{\infty}\left(R_{\Upsilon^{r}}\right)\right)$ if and only if

$$
\sup _{i} \sum_{j}\left|\sum_{l \mid i} \frac{q_{l} J_{r}(l)}{Q_{i}^{r}} \lambda_{l j}\right|<\infty .
$$

(b) $\Lambda \in\left(\ell, \ell_{\infty}\left(R_{\Upsilon^{r}}\right)\right)$ if and only if

$$
\sup _{i, j}\left|\sum_{l \mid i} \frac{q_{l} J_{r}(l)}{Q_{i}^{r}} \lambda_{l j}\right|<\infty .
$$

Proof. The proof follows with the same way in the proof of Theorem 4.8.
Theorem 4.10. Let $\Lambda=\left(\lambda_{i j}\right)$ be an infinite matrix. Then, the following statements hold:
(a) $\Lambda \in\left(\ell_{\infty}, \ell\left(R_{\Upsilon^{r}}\right)\right)=\left(c, \ell\left(R_{\Upsilon^{r}}\right)\right)=\left(c_{0}, \ell\left(R_{\Upsilon^{r}}\right)\right)$ if and only if

$$
\sup _{K \in \mathscr{N}} \sum_{i}\left|\sum_{j \in K} \sum_{l \mid i} \frac{q_{l} J_{r}(l)}{Q_{i}^{r}} \lambda_{l j}\right|<\infty
$$

(b) $\Lambda \in\left(\ell, \ell\left(R_{\Upsilon^{r}}\right)\right)$ if and only if

$$
\sup _{j} \sum_{i}\left|\sum_{l \mid i} \frac{q_{l} J_{r}(l)}{Q_{i}^{r}} \lambda_{l j}\right|<\infty .
$$

Proof. The proof follows with the same way in the proof of Theorem 4.8.
Now, we investigate the norm of the bounded linear matrix operators from $\ell_{\infty}\left(R_{\Upsilon^{r}}\right), \ell_{p}\left(R_{\Upsilon^{r}}\right), \ell\left(R_{\Upsilon^{r}}\right)$ into $\ell_{\infty}\left(R_{\Upsilon^{r}}\right)$ and $\ell\left(R_{\Upsilon^{r}}\right)$. Firstly, we have a lemma which is essential for our investigation.

Lemma 4.11. Given any infinite matrix $\Lambda=\left(\lambda_{i j}\right)$, the norm of bounded linear operators is defined by

$$
\begin{gathered}
\|\Lambda\|_{\left(\ell_{\infty}, \ell_{\infty}\right)}=\|\Lambda\|_{\left(\ell_{p}, \ell_{\infty}\right)}=\sup _{i} \sum_{j}\left|\lambda_{i j}\right|^{q} \\
\|\Lambda\|_{\left(, \ell_{\infty}\right)}=\sup _{i, j}\left|\lambda_{i j}\right| \\
\|\Lambda\|_{\left(\ell_{\infty}, \ell\right)}=\|\Lambda\|_{\left(\ell_{p}, \ell\right)}=\sup _{K \in \mathcal{N}} \sum_{j}\left|\sum_{i \in K} \lambda_{i j}\right|^{q} \\
\|\Lambda\|_{(\ell, \ell)}=\sup _{j} \sum_{i}\left|\lambda_{i j}\right| .
\end{gathered}
$$

Theorem 4.12. Let $\Lambda=\left(\lambda_{i j}\right)$ be an infinite matrix.
(a) If $\Lambda \in B\left(\ell_{\infty}\left(R_{\Upsilon^{r}}\right), \ell_{\infty}\left(R_{\Upsilon^{r}}\right)\right)$ or $\Lambda \in B\left(\ell_{p}\left(R_{\Upsilon^{r}}\right), \ell_{\infty}\left(R_{\Upsilon^{r}}\right)\right)$, then

$$
\sup _{i} \sum_{j}\left|\sum_{j \mid l} \frac{\mu\left(\frac{l}{j}\right)}{J_{r}(l)} \frac{Q_{j}^{r}}{q_{l}} \sum_{k \mid i} \frac{q_{k} J_{r}(k)}{Q_{i}^{r}} \lambda_{k l}\right|^{q}<\infty
$$

and

$$
\|\Lambda\|_{\left(\ell_{\infty}\left(R_{\mathrm{r} r}\right), \ell_{\infty}\left(R_{\mathrm{r}} r\right)\right)}=\|\Lambda\|_{\left(\ell_{p}\left(R_{\mathrm{rr}} r\right) \ell_{\infty}\left(R_{\mathrm{r}} r\right)\right)}=\sup _{i} \sum_{j}\left|\sum_{j \mid l} \frac{\mu\left(\frac{l}{j}\right)}{J_{r}(l)} \frac{Q_{j}^{r}}{q_{l}} \sum_{k \mid i} \frac{q_{k} J_{r}(k)}{Q_{i}^{r}} \lambda_{k l}\right|^{q} .
$$

(b) If $\Lambda \in B\left(\ell\left(R_{\Upsilon^{r}}\right), \ell_{\infty}\left(R_{\Upsilon^{r}}\right)\right)$, then

$$
\sup _{i, j}\left|\sum_{j \mid l} \frac{\mu\left(\frac{l}{j}\right)}{J_{r}(l)} \frac{Q_{j}^{r}}{q_{l}} \sum_{k \mid i} \frac{q_{k} J_{r}(k)}{Q_{i}^{r}} \lambda_{k l}\right|<\infty
$$

and
(c) If $\Lambda \in B\left(\ell_{\infty}\left(R_{\Upsilon^{r}}\right), \ell\left(R_{\Upsilon^{r}}\right)\right)$ or $\Lambda \in B\left(\ell_{p}\left(R_{\Upsilon^{r}}\right), \ell\left(R_{\Upsilon^{r}}\right)\right)$, then

$$
\sup _{K \in \mathscr{N}} \sum_{j}\left|\sum_{i \in K} \sum_{j \mid l} \frac{\mu\left(\frac{l}{j}\right)}{J_{r}(l)} \frac{Q_{j}^{r}}{q_{l}} \sum_{k \mid i} \frac{q_{k} J_{r}(k)}{Q_{i}^{r}} \lambda_{k l}\right|^{q}<\infty
$$

and

$$
\|\Lambda\|_{\left(\ell_{\infty}\left(R_{\mathrm{r}^{r}}\right), \ell\left(R_{\mathrm{r}} r\right)\right)}=\|\Lambda\|_{\left(\ell_{p}\left(R_{\mathrm{r}^{r} r}\right) \ell\left(R_{\left.\mathrm{r}^{r}\right)}\right)\right.}=\sup _{K \in \mathscr{N}} \sum_{j}\left|\sum_{i \in K} \sum_{j \mid l} \frac{\mu\left(\frac{l}{j}\right)}{J_{r}(l)} \frac{Q_{j}^{r}}{q_{l}} \sum_{k \mid i} \frac{q_{k} J_{r}(k)}{Q_{i}^{r}} \lambda_{k l}\right|^{q} .
$$

(d) If $\Lambda \in B\left(\ell\left(R_{\Upsilon^{r}}\right), \ell\left(R_{\Upsilon^{r}}\right)\right)$, then

$$
\sup _{j} \sum_{i}\left|\sum_{j \mid l} \frac{\mu\left(\frac{l}{j}\right)}{J_{r}(l)} \frac{Q_{j}^{r}}{q_{l}} \sum_{k \mid i} \frac{q_{k} J_{r}(k)}{Q_{i}^{r}} \lambda_{k l}\right|<\infty
$$

and

$$
\|\Lambda\|_{\left(\ell \left(R_{\left.\left.\mathrm{r}^{r}\right), \ell\left(R_{\mathrm{r}^{r}}\right)\right)}\right.\right.}=\sup _{j} \sum_{i}\left|\sum_{j \mid l} \frac{\mu\left(\frac{l}{j}\right)}{J_{r}(l)} \frac{Q_{j}^{r}}{q_{l}} \sum_{k \mid i} \frac{q_{k} J_{r}(k)}{Q_{i}^{r}} \lambda_{k l}\right| .
$$

Proof. Let $\tilde{\Lambda}=R_{\Upsilon^{r}} \Lambda R_{\Upsilon^{r}}^{-1}$. From Theorem 2.3, it is known that the spaces $U\left(R_{\Upsilon^{r}}\right)$ and U are linearly isomorphic. Hence, we deduce from the following diagram

that $\|\Lambda\|_{\left(U\left(R_{\Upsilon^{r} r}\right), V\left(R_{\left.\Upsilon_{r}\right)}\right)\right.}=\|\tilde{\Lambda}\|_{(U, V)}$, where $U \in\left\{\ell_{\infty}, \ell_{p}, \ell\right\}$ and $V \in\left\{\ell_{\infty}, \ell\right\}$. Thus, the desired results follows from Lemma 4.11.

Article Information

Acknowledgements: The authors would like to express their sincere thanks to the editor and the anonymous reviewers for their helpful comments and suggestions.

Author's contributions: All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Conflict of Interest Disclosure: No potential conflict of interest was declared by the author.
Copyright Statement: Authors own the copyright of their work published in the journal and their work is published under the CC BY-NC 4.0 license.

Supporting/Supporting Organizations: No grants were received from any public, private or non-profit organizations for this research.

Ethical Approval and Participant Consent: It is declared that during the preparation process of this study, scientific and ethical principles were followed and all the studies benefited from are stated in the bibliography.

Plagiarism Statement: This article was scanned by the plagiarism program. No plagiarism detected.
Availability of data and materials: Not applicable.

References

${ }^{[1]}$ B. Altay, F. Başar, M. Mursaleen, On the Euler sequence spaces which include the spaces ℓ_{p} and $\ell_{\infty} I$, Inform. Sci., 176(10) (2006), 1450-1462.
${ }^{\text {[2] F. Başar, B. Altay, On the space of sequences of p-bounded variation and related matrix mappings, Ukrainian Math. J., }}$ 55(1) (2003), 136-147.
[3] F. Başar, Summability Theory and Its Applications, Bentham Science Publishers, İstanbul, 2012.
${ }^{[4]}$ E. E. Kara, Some topological and geometrical properties of new Banach sequence spaces, J. Inequal. Appl., 2013(38) (2013), 15 pages.
[5] M. Kirişci, F. Başar, Some new sequence spaces derived by the domain of generalized difference matrix, Comput. Math. Appl., 60 (2010), 1299-1309.
${ }^{[6]}$ M. Kirişci, Riesz type integrated and differentiated sequence spaces, Bull. Math. Anal. Appl., 7(2) (2015), 14-27.
${ }^{[7]}$ S. Demiriz, E. E. Kara, On compact operators on some sequence spaces related to matrix $B(r, s, t)$, Thai J. Math., 14(3) (2016), 651-666.
${ }^{[8]}$ M. Mursaleen, A.K. Noman, On some new difference sequence spaces of non-absolute type, Math. Comput. Modelling, 52(3-4) (2010), 603-617.
${ }^{\text {[9] T. Yaying, B. Hazarika, On sequence spaces defined by the domain of a regular Tribonacci matrix, Math. Slovaca, 70(3) }}$ (2020), 697-706.
${ }^{[10]}$ P. Zengin Alp, A new paranormed sequence space defined by Catalan conservative matrix, Math. Methods Appl. Sci., 44(9) (2021), 7651-7658.
${ }^{[11]}$ T. Yaying, B. Hazarika, M. Mursaleen, On sequence space derived by the domain of q-Cesaro matrix in ℓ_{p} space and the associated operator ideal, J. Math. Anal. Appl., 493(1) (2021), 124453.
${ }^{[12]}$ M. İlkhan, E. E. Kara, Matrix transformations and compact operators on Catalan sequence spaces, J. Math. Anal. Appl., 498(1) (2021), 124925.
${ }^{[13]}$ T. Yaying, Paranormed Riesz difference sequence spaces of fractional order, Kragujevac J. Math., 46(2) (2022), 175-191.
${ }^{[14]}$ P. Zengin Alp, E. E. Kara, New Banach spaces defined by the domain of Riesz-Fibonacci matrix, Korean J. Math., 29(4) (2021), 665-677.
${ }^{[15]}$ M. İlkhan Kara, H. Roopaei, The Cesàro-Gamma operator and its associated sequence space, Adv. Oper. Theory, 6(3) (2021), 1-21.
${ }^{[16]}$ H. Roopaei, M. İlkhan Kara, Negative difference operator and its associated sequence space, Numer. Funct. Anal. Optim., 42(4) (2021), 480-496.
${ }^{[17]}$ H. Roopaei, M. İlkhan, Fractional Cesàro matrix and its associated sequence space, Concr. Oper., 8(1) (2021), 24-39.
${ }^{[18]}$ M. İlkhan, E. E. Kara, A new Banach space defined by Euler totient matrix operator, Oper. Matrices, 13(2) (2019), 527-544.
${ }^{[19]}$ S. Demiriz, S. Erdem, Domain of Euler-totient matrix operator in the space Li ${ }_{p}$, Korean J. Math., 28(2) (2020), 361-378.
${ }^{[20]}$ S. Demiriz, M. İlkhan, E. E. Kara, Almost convergence and Euler totient matrix, Ann. Funct. Anal., 11(3) (2020), 604-616.
${ }^{[21]}$ S. Erdem, S. Demiriz, 4-dimensional Euler-totient matrix operator and some double sequence spaces, Math. Sci. Appl. E-Notes, 8(2) (2020), 110-122.
${ }^{[22]}$ G. C. Hazar Güleç, Merve İlkhan, A new paranormed series space using Euler totient means and some matrix transformations, Korean J. Math., 28(2) (2020), 205-221.
${ }^{[23]}$ G. C. Hazar Güleç, Merve İlkhan, A new characterization of absolute summability factors, Commun. Optim. Theory, 2020 (2020), Article ID 15, 11 pages.
${ }^{[24]}$ M. İlkhan, Matrix domain of a regular matrix derived by Euler totient function in the spaces c_{0} and c, Mediterr. J. Math., 17 (2020), Article number 27.
${ }^{[25]}$ M. İlkhan, G. C. Hazar Güleç, A study on absolute Euler totient series space and certain matrix transformations, Mugla J. Sci. Technol., 6(1) (2020), 112-119.
${ }^{[26]}$ M. İlkhan, S. Demiriz, E. E. Kara, A new paranormed sequence space defined by Euler totient matrix, Karaelmas Sci. Eng. J., 9(2) (2019), 277-282.
${ }^{[27]}$ M. İlkhan, Certain geometric properties and matrix transformations on a newly introduced Banach space, Fundam. J. Math. Appl., 3(1) (2020), 45-51.
${ }^{[28]}$ M. İlkhan, N. Şimşek, E. E. Kara, A new regular infinite matrix defined by Jordan totient function and its matrix domain in ℓ_{p}, Math. Methods Appl. Sci., 44(9) (2021), 7622-7633.
${ }^{[29]}$ E. E. Kara, N. Şimşek, M. İlkhan Kara, On new sequence spaces related to domain of the Jordan totient matrix, S. A. Mohiuddine, B. Hazarika (editors), Sequence space theory with applications, New York, Chapman and Hall/CRC, 2022, pp. 1-19.
${ }^{[30]}$ M. İlkhan, E. E. Kara, F. Usta, Compact operators on the Jordan totient sequence spaces, Math. Methods Appl. Sci., 44(9) (2021), 7666-7675.
${ }^{[31]}$ M. İlkhan, M. A. Bayrakdar, A study on matrix domain of Riesz-Euler totient matrix in the space of p-absolutely summable sequences, Commun. Adv. Math. Sci., 4(1) (2021), 14-25.
${ }^{[32]}$ M. Stieglitz, H. Tietz, Matrix transformationen von folgenraumen eine ergebnisübersicht, Math. Z., 154 (1977), 1-16.
${ }^{[33]}$ B. Altay, F. Başar, Certain topological properties and duals of the matrix domain of a triangle matrix in a sequence space, J. Math. Anal. Appl., 336 (2007), 632-645.
${ }^{\text {[34] }}$ M. Kirişci, F. Başar, Some new sequence spaces derived by the domain of generalized difference matrix, Comput. Math. Appl., 60 (2010), 1299-1309.

