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Abstract. In this manuscript, the strain wave equation, which plays an im-
portant role in describing different types of wave propagation in microstruc-

tured solids and the (2+1) dimensional Bogoyavlensky Konopelchenko equa-
tion, is defined in fluid mechanics as the interaction of a Riemann wave prop-

agating along the y-axis and a long wave propagating along the x-axis, were

studied. The generalized Kudryashov method (GKM), which is one of the so-
lution methods of partial differential equations, was applied to these equations

for the first time. Thus, a series of solutions of these equations were obtained.

These found solutions were compared with other solutions. It was seen that
these solutions were not shown before and were presented for the first time

in this study. The new solutions of these equations might have been useful

in understanding the phenomena in which waves are governed by these equa-
tions. In addition, 2D and 3D graphs of these solutions were constructed by

assigning certain values and ranges to them.

1. Introduction

Nonlinear evolution equations (NLEEs) have been utilized to make mathematical
models of encountered problems in various scientific circles. A number of solution
methods have been developed by various scientists to solve NLEEs, which have
very important areas of use [1–10]. In this study, one of these methods, GKM, has
been taken into consideration and applied to the strain wave and (2+1)-dimensional
Bogoyavlensky-Konopelchenko (BK) equations.
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Strain wave equation is given as [11]:

utt − uxx − ϵα1(u
2)xx − kα2uxxt + δα3uxxxx

−(δα4 + k2α7)uxxtt + kδ(α5uxxxxt + α6uxxttt) = 0, (1)

where u(x, t) is the micro-strain wave function. ϵ indicates elastic strain, δ shows the
elastic stresses and the rate between the wavelength and size of the microstructure,
k reflects the dissipative effect and α1, α2, α3, α4, α5, α6, α7 are arbitrary constants.
Assuming δ = O(ϵ) on Eq. (1), an equilibration takes place between dispersion
and nonlinearity. If k = 0 is selected in this equation, the undistributed state
of the micro-stress wave is obtained. In this way, the following equation for the
bi-dispersion in microstructured solids is obtained [12–16]:

utt − uxx − ϵ(α1(u
2)xx − α3uxxxx + α4uxxtt) = 0. (2)

Recently, the solutions of strain wave equation investigated by various researchers
with different methods. Seadawy et al. used the modified extended mapping
method for strain wave equation [11]. Ayati et al. applied the functional vari-
able method and Kudryashov method to strain wave equation [12]. Arshad et al.
practiced the modified direct algebraic method to strain wave equation [13]. Gao et
al. used the F-expansion method for strain wave equation [14]. Irshad et al. prac-
ticed the generalized Jacobi elliptic function method to strain wave equation [15].
Kumar et al. used the generalized exponential rational function method for strain
wave equation [16]. Joseph implemented the new rational F-expansion method to
strain wave equation [17].

(2+1)-dimensional BK equation is given as [18]:

uxt + h1uxxxx + h2uxxxy + h3uxxux + h4(uxyux + uxxuy) = 0, (3)

where h1, h2, h3 and h4 are arbitrary constants. If h1 = a, h2 = β, h3 = 6a, h4 = 4β
values are selected for the h1, h2, h3, h4 constants in Eq. (3), Eq. (3) can be written
as.

uxt + αuxxxx + βuxxxy + 6αuxxux + 4βuxyux + 4βuxxuy = 0. (4)

The resulting Eq. (4) is handled as a two-dimensional generalization of the KdV
equation, and under favorable conditions, it can be converted to the KdV equation
[19]. This equation provides the Calogero-Bogoyavlensky-Schiff equation for α = 0
and is also defined as the interplay of a Riemann wave spreading along the y-axis
and a long wave spreading along the x-axis in fluid mechanics [20,21]. For Eq. (4)
uy = vx is transformed and integrated, and the following equation is found:

ut + αuxxx + βvxxx + 3α(ux)
2 + 4βuxvx = 0. (5)

Accordingly, Eq. (4) can be expressed as a system as follows:
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ut + αuxxx + βvxxx + 3α(ux)
2 + 4βuxvx = 0,

uy = vx. (6)

When looking at the past works on (2+1)-dimensional BK equation. Zhou et al.
gave based on its bilinear form, the N th-order breather solutions of the (2+1)-
dimensional generalized BK equation [21]. Ray got infinitesimal generators of
(2+1)-dimensional BK equation by using Lie group analysis method and inves-
tigated symmetry analysis and similarity reduction of (2+1)-dimensional BK equa-
tion [18,22]. Chen and Ma obtained the symbolic solutions of the (2+1)-dimensional
BK equation that own a Hirota bilinear form [23].

The purpose of this article is to detect soliton solutions of strain wave equation
and (2+1)-dimensional BK equation using GKM [24–27]. First of all, the features of
GKM, which is the method we used in our study, are explained. Subsequently, some
soliton solutions of the strain wave equation and (2+1)-dimensional BK equation
were found using this method.

2. Analysis of the Method

Consider a general nonlinear partial differential equation for a function v that
depends on three variables, as follows:

K(v, vt, vy, vx, vxx, ...) = 0. (7)

Step 1: First, the traveling wave transform is discussed in the following form;

v(x, y, t) = v(η), η = x+ y −mt. (8)

Eq. (7) is transformed into an ordinary differential equation using the transforma-
tions in Eq. (8) as follows:

L(t, y, x, v, v
′
, v

′′
, · · · ) = 0, (9)

where superscripts demonstrate ordinary derivatives according η
Step 2: Assume that the solutions of Eq. (9) are treated as follows:

v(η) =

∑σ
i=0 aiQ

i(η)∑ρ
j=0 bjQ

j(η)
=

P [Q(η)]

S[Q(η)]
, (10)

where Q is 1
1±eη . It is stated that Q is the solution of the following equation

Qη = Q2 −Q. (11)

Step 3: The solution of Eq. (9) is sought according to this method as follows:

v(η) =
a0 + a1Q+ a2Q

2 + · · ·+ aσQ
σ

b0 + b1Q+ b2Q2 + · · ·+ bρQρ
. (12)

The values of σ and ρ in Eq. (10) can be determined through the homogeneous
balance principle. For this, a balance is established between the highest-order
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derivative and the highest-order nonlinear term in Eq. (9).
Step 4: Eq. (10) is inserted into Eq. (9). Thus, a polynomial R(Q) of Q is
obtained. Thereafter all coefficients of R(Q) are set equal to zero, to obtain a
system of algebraic equations. Solving the resulting system determines c and the
coefficients a0, a1, a2, . . . , aσ, b0, b1, b2, . . . , bρ. Finally, the soliton solutions of Eq.
(9) are obtained.

3. Application of GKM to the equations

Example 1. Initially, the following transformation is considered.

u(x, t) = u(η), η = x− ct. (13)

Substituting Eq. (13) into Eq. (2) yields the following equation.

(c2 − 1)u− ϵα1u
2 + ϵ(α3 − c2α4)u

′′ = 0. (14)

If the balance principle is applied to Eq. (14), the following equation is obtained

σ = ρ+ 2

If ρ = 1, then σ = 3. Thus the following equations are found.

u(η) =
a0 + a1Q+ a2Q

2 + a3Q
3

b0 + b1Q
, (15)

u′(η) =
(
Q2 −Q

)
×

[
(a1 + 2a2Q+ 3a3Q

2)(b0 + b1Q)− b1
(
a0 + a1Q+ a2Q

2 + a3Q
3
)

(b0 + b1Q)2

]
,

u′′(η) =
(Q2 −Q)(2Q− 1)

(b0 + b1Q)2

×
[
(a1 + 2a2Q+ 3a3Q

2)(b0 + b1Q)− b1
(
a0 + a1Q+ a2Q

2 + a3Q
3)]

+
(Q2 −Q)2

(b0 + b1Q)3
[
(2a2 + 6a3Q)(b0 + b1Q)2 − 2b1(a1 + 2a2Q+ 3a3Q

2)(b0 + b1Q)
]

+
(Q2 −Q)2

(b0 + b1Q)3
[
2b21

(
a0 + a1Q+ a2Q

2 + a3Q
3)] .

The soliton solutions of the strain wave equation are obtained in different cases as
follows;

Case 1.

a0 = 0, a1 =
6b0(α3 − α4)

α1(−1 + ϵα4)
, a3 =

6b1(−α3 + α4)

α1(−1 + ϵα4)
,

a2 =
6(−b0 + b1)(α3 − α4)

α1(−1 + ϵα4)
, c = −

√
−1 + ϵα3√
−1 + ϵα4

.
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By substituting the above equalities into Eq. (15), the following solution of Eq. (2) is
found.

u1(x, t) =
3(α3 − α4)(

1 + cosh
[
x+ t

√
−1+ϵα3√
−1+ϵα4

])
α1(−1 + ϵα4)

. (16)

Figure 1. 3D and 2D plots of u1(x, t) solution.

Case 2.

a0 =
b0(α3 − α4)

α1(1 + ϵα4)
, a1 =

(−6b0 + b1)(α3 − α4)

α1(1 + ϵα4)
,

a2 =
6(b0 − b1)(α3 − α4)

α1(1 + ϵα4)
,

a3 =
6b1(α3 − α4)

α1(1 + ϵα4)
, c =

√
1 + ϵα3√
1 + ϵα4

.

By substituting the above equalities into Eq. (15), the following solution of Eq. (2) is
found.

u2(x, t) =

(
−2 + cosh

[
x− t

√
1+ϵα3√
1+ϵα4

])
(α3 − α4)(

1 + cosh
[
x− t

√
1+ϵα3√
1+ϵα4

])
α1(1 + ϵα4)

. (17)
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Figure 2. 3D and 2D plots of u2(x, t) solution.

Example 2. First, he following transformation is taken into account.

u(x, y, t) = u(η), v(x, y, t) = v(η), η = kx+my − ct. (18)

Substituting Eq. (18) into system (6) yields the following equation.

−cu′ + (αk3 +mβk2)u′′′ + (3αk2 + 4mβk)(u′)2 = 0. (19)

The following equation is obtained by transformation u′ = g in Eq. (19).

−cg + (αk3 +mβk2)g′′ + (3αk2 + 4mβk)g2 = 0. (20)

As a result of applying (18) transformation to this system,
v = m

k
u equality is obtained. If the balance principle is applied to Eq. (20), the following

equation is obtained.

σ = ρ+ 2

If ρ = 1, then σ = 3. Thus the following equations are found.

u(η) =
a0 + a1Q+ a2Q

2 + a3Q
3

b0 + b1Q
, (21)

u′(η) =
(
Q2 −Q

)
×

[
(a1 + 2a2Q+ 3a3Q

2)(b0 + b1Q)− b1
(
a0 + a1Q+ a2Q

2 + a3Q
3
)

(b0 + b1Q)2

]
,

u′′(η) =
(Q2 −Q)(2Q− 1)

(b0 + b1Q)2

×
[
(a1 + 2a2Q+ 3a3Q

2)(b0 + b1Q)− b1
(
a0 + a1Q+ a2Q

2 + a3Q
3)]

+
(Q2 −Q)2

(b0 + b1Q)3
[
(2a2 + 6a3Q)(b0 + b1Q)2 − 2b1(a1 + 2a2Q+ 3a3Q

2)(b0 + b1Q)
]

+
(Q2 −Q)2

(b0 + b1Q)3
[
2b21

(
a0 + a1Q+ a2Q

2 + a3Q
3)] .
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The soliton solutions of the (2+1)-dimensional BK equation are obtained in different
cases as follows;;

Case 1.

a0 = 0, a1 = −a2

6
, a3 = −a2, b0 = 0, c =

k2mβa2

3a2 − 6kb1
,

α = −2mβ (2a2 − 3kb1)

3k (a2 − 2kb1)
.

Replacing the above equations in Eq. (21), the following solution of system (6) is reached.

u1(x, y, t) =
a2

2b1

(
tanh

[
kx

2
+

my

2
− k2mtβa2

6a2 − 12kb1

]
− kx

3
− my

3
+

k2mtβa2

9a2 − 18kb1

)
. (22)

v1(x, y, t) =
ma2

2kb1

(
tanh

[
kx

2
+

my

2
− k2mtβa2

6a2 − 12kb1

]
− kx

3
− my

3
+

k2mtβa2

9a2 − 18kb1

)
.

Figure 3. 3D and 2D plots of u1(x, y, t) solution.

Case 2.

a0 = 0, a1 = −k (kα+mβ) b1
3kα+ 4mβ

, a2 =
6k (kα+mβ) b1

3kα+ 4mβ
,

a3 = −6k (kα+mβ) b1
3kα+ 4mβ

, b0 = 0, c = −k2 (kα+mβ) .

Replacing the above equations in Eq. (21), the following solution of system (6) is reached.

u2(x, y, t) = −
k (kα+mβ)

(
kx+my + k2t (kα+mβ)− 3tanh

[
1
2

(
kx+my + k2t (kα+mβ)

)])
3kα+ 4mβ

(23)

v2(x, y, t) = −
m (kα+mβ)

(
kx+my + k2t (kα+mβ)− 3tanh

[
1
2

(
kx+my + k2t (kα+mβ)

)])
3kα+ 4mβ
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Figure 4. 3D and 2D plots of u2(x, y, t) solution.

4. Results and Discussion

In this study, strain wave and (2+1)-dimensional BK equations are studied. Hyperbolic
solutions for the strain wave equation and dark soliton solutions for the (2+1)-dimensional
BK equation are obtained. When these solutions are compared with previous studies in
the literature, it is seen that the solutions are new and presented for the first time in this
study. The graphical representations of the obtained solutions are made for the following
values.
Figure 1, depicts singular kink soliton for 3D plot of solution (16) for α1 = 2, α3 = 3, α4 =
0.5, ϵ = 4,−25 ≤ x ≤ 25 values with −5 ≤ t ≤ 5 range and 2D plot of solution for t = 2.5
with these values. Figure 2, shows singular kink soliton for 3D plot of solution (17) for
α1 = 1.5, α3 = 2, α4 = 0.2, ϵ = 1.5,−20 ≤ x ≤ 20 values with −4 ≤ t ≤ 4 range and
2D plot of solution for t = 3 with these values. Figure 3, represents soliton solution for
3D plot of solution (22) for a2 = 2, b1 = 1, k = 0.05,m = 1, β = 1, y = 1,−40 ≤ x ≤ 40
values with −3 ≤ t ≤ 3 range and 2D plot of solution for t = 2 with these values. Figure
4, depicts smooth soliton for 3D plot of solution (23) for k = 1,m = 0.2, α = 0.2, β =
0.5, y = 2,−25 ≤ x ≤ 25 values with −5 ≤ t ≤ 5 range and 2D plot of solution for t = 3
with these values.

5. Conclusions

In this study, GKM was considered. GKM was applied to the strain wave equation and
(2+1)-dimensional BK equations. Thus, hyperbolic soliton solutions of the strain wave
equation and dark soliton solutions of the (2+1)-dimensional BK equation were obtained
using this method. These solutions were different from the found solutions in other stud-
ies and were presented for the first time in this study. The accuracy of the results was
confirmed by putting the obtained solutions back into the original equation. The new
solutions of these equations studied could have helped to understand the phenomena in
which waves are governed by these equations. In addition, some special values and inter-
vals were given to the results obtained using Wolfram Mathematic 2D and 3D graphical
representations of the solutions were made.
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The considered method can also be applied to other nonlinear partial differential equa-
tions. The most important advantage of this method is that all solutions are obtained
from a single algebraic equation. This means that it is sufficient to set up a single algo-
rithm and there is no unnecessary computational overhead.
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